fbpx
Wikipedia

No-deleting theorem

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies.[1] It is a time-reversed dual to the no-cloning theorem,[2][3] which states that arbitrary states cannot be copied. This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust. Physicist Arun K. Pati along with Samuel L. Braunstein proved this theorem.

The no-deleting theorem, together with the no-cloning theorem, underpin the interpretation of quantum mechanics in terms of category theory, and, in particular, as a dagger symmetric monoidal category.[4][5] This formulation, known as categorical quantum mechanics, in turn allows a connection to be made from quantum mechanics to linear logic as the logic of quantum information theory (in exact analogy to classical logic being founded on Cartesian closed categories).

Overview of quantum deletion

Suppose that there are two copies of an unknown quantum state. A pertinent question in this context is to ask if it is possible, given two identical copies, to delete one of them using quantum mechanical operations? It turns out that one cannot. The no-deleting theorem is a consequence of linearity of quantum mechanics. Like the no-cloning theorem this has important implications in quantum computing, quantum information theory and quantum mechanics in general.

The process of quantum deleting takes two copies of an arbitrary, unknown quantum state at the input port and outputs a blank state along with the original. Mathematically, this can be described by:

 

where   is the deleting operation which is not necessarily unitary (but a linear operator),   is the unknown quantum state,   is the blank state,   is the initial state of the deleting machine and   is the final state of the machine.

It may be noted that classical bits can be copied and deleted, as can qubits in orthogonal states. For example, if we have two identical qubits   and   then we can transform to   and  . In this case we have deleted the second copy. However, it follows from linearity of quantum theory that there is no   that can perform the deleting operation for any arbitrary state  .

Formal statement of the no-deleting theorem

Let   be an unknown quantum state in some Hilbert space (and let other states have their usual meaning). Then, there is no linear isometric transformation such that  , with the final state of the ancilla being independent of  .

Proof

The theorem holds for quantum states in a Hilbert space of any dimension. For simplicity, consider the deleting transformation for two identical qubits. If two qubits are in orthogonal states, then deletion requires that

 ,
 .

Let   be the state of an unknown qubit. If we have two copies of an unknown qubit, then by linearity of the deleting transformation we have

 
 

In the above expression, the following transformation has been used:

 

However, if we are able to delete a copy, then, at the output port of the deleting machine, the combined state should be

 .

In general, these states are not identical and hence we can say that the machine fails to delete a copy. If we require that the final output states are same, then we will see that there is only one option:

 

and

 

Since final state   of the ancilla is normalized for all values of   it must be true that   and   are orthogonal. This means that the quantum information is simply in the final state of the ancilla. One can always obtain the unknown state from the final state of the ancilla using local operation on the ancilla Hilbert space. Thus, linearity of quantum theory does not allow an unknown quantum state to be deleted perfectly.

Consequence

  • If it were possible to delete an unknown quantum state, then, using two pairs of EPR states, we could send signals faster than light. Thus, violation of the no-deleting theorem is inconsistent with the no-signalling condition.
  • The no-cloning and the no-deleting theorems point to the conservation of quantum information.
  • A stronger version of the no-cloning theorem and the no-deleting theorem provide permanence to quantum information. To create a copy one must import the information from some part of the universe and to delete a state one needs to export it to another part of the universe where it will continue to exist.

See also

References

  1. ^ A. K. Pati and S. L. Braunstein, "Impossibility of Deleting an Unknown Quantum State", Nature 404 (2000), p164.
  2. ^ W.K. Wootters and W.H. Zurek, "A Single Quantum Cannot be Cloned", Nature 299 (1982), p802.
  3. ^ D. Dieks, "Communication by EPR devices", Physics Letters A, vol. 92(6) (1982), p271.
  4. ^ John Baez, Physics, Topology, Logic and Computation: A Rosetta Stone (2009)
  5. ^ Bob Coecke, Quantum Picturalism, (2009) ArXiv 0908.1787
  6. ^ Quantum no-hiding theorem experimentally confirmed for first time. Mar 07, 2011 by Lisa Zyga

deleting, theorem, physics, deleting, theorem, quantum, information, theory, theorem, which, states, that, general, given, copies, some, arbitrary, quantum, state, impossible, delete, copies, time, reversed, dual, cloning, theorem, which, states, that, arbitra. In physics the no deleting theorem of quantum information theory is a no go theorem which states that in general given two copies of some arbitrary quantum state it is impossible to delete one of the copies 1 It is a time reversed dual to the no cloning theorem 2 3 which states that arbitrary states cannot be copied This theorem seems remarkable because in many senses quantum states are fragile the theorem asserts that in a particular case they are also robust Physicist Arun K Pati along with Samuel L Braunstein proved this theorem The no deleting theorem together with the no cloning theorem underpin the interpretation of quantum mechanics in terms of category theory and in particular as a dagger symmetric monoidal category 4 5 This formulation known as categorical quantum mechanics in turn allows a connection to be made from quantum mechanics to linear logic as the logic of quantum information theory in exact analogy to classical logic being founded on Cartesian closed categories Contents 1 Overview of quantum deletion 2 Formal statement of the no deleting theorem 2 1 Proof 3 Consequence 4 See also 5 ReferencesOverview of quantum deletion EditSuppose that there are two copies of an unknown quantum state A pertinent question in this context is to ask if it is possible given two identical copies to delete one of them using quantum mechanical operations It turns out that one cannot The no deleting theorem is a consequence of linearity of quantum mechanics Like the no cloning theorem this has important implications in quantum computing quantum information theory and quantum mechanics in general The process of quantum deleting takes two copies of an arbitrary unknown quantum state at the input port and outputs a blank state along with the original Mathematically this can be described by U ps A ps B A C ps A 0 B A C displaystyle U psi rangle A psi rangle B A rangle C psi rangle A 0 rangle B A rangle C where U displaystyle U is the deleting operation which is not necessarily unitary but a linear operator ps A displaystyle psi rangle A is the unknown quantum state 0 B displaystyle 0 rangle B is the blank state A C displaystyle A rangle C is the initial state of the deleting machine and A C displaystyle A rangle C is the final state of the machine It may be noted that classical bits can be copied and deleted as can qubits in orthogonal states For example if we have two identical qubits 00 displaystyle 00 rangle and 11 displaystyle 11 rangle then we can transform to 00 displaystyle 00 rangle and 10 displaystyle 10 rangle In this case we have deleted the second copy However it follows from linearity of quantum theory that there is no U displaystyle U that can perform the deleting operation for any arbitrary state ps displaystyle psi rangle Formal statement of the no deleting theorem EditLet ps displaystyle psi rangle be an unknown quantum state in some Hilbert space and let other states have their usual meaning Then there is no linear isometric transformation such that ps A ps B A C ps A 0 B A C displaystyle psi rangle A psi rangle B A rangle C rightarrow psi rangle A 0 rangle B A rangle C with the final state of the ancilla being independent of ps displaystyle psi rangle Proof Edit The theorem holds for quantum states in a Hilbert space of any dimension For simplicity consider the deleting transformation for two identical qubits If two qubits are in orthogonal states then deletion requires that 0 A 0 B A C 0 A 0 B A 0 C displaystyle 0 rangle A 0 rangle B A rangle C rightarrow 0 rangle A 0 rangle B A 0 rangle C 1 A 1 B A C 1 A 0 B A 1 C displaystyle 1 rangle A 1 rangle B A rangle C rightarrow 1 rangle A 0 rangle B A 1 rangle C Let ps a 0 b 1 displaystyle psi rangle alpha 0 rangle beta 1 rangle be the state of an unknown qubit If we have two copies of an unknown qubit then by linearity of the deleting transformation we have ps A ps B A C a 2 0 A 0 B b 2 1 A 1 B a b 0 A 1 B 1 A 0 B A C displaystyle psi rangle A psi rangle B A rangle C alpha 2 0 rangle A 0 rangle B beta 2 1 rangle A 1 rangle B alpha beta 0 rangle A 1 rangle B 1 rangle A 0 rangle B A rangle C a 2 0 A 0 B A 0 C b 2 1 A 0 B A 1 C 2 a b F A B C displaystyle qquad rightarrow alpha 2 0 rangle A 0 rangle B A 0 rangle C beta 2 1 rangle A 0 rangle B A 1 rangle C sqrt 2 alpha beta Phi rangle ABC In the above expression the following transformation has been used 1 2 0 A 1 B 1 A 0 B A C F A B C displaystyle 1 sqrt 2 0 rangle A 1 rangle B 1 rangle A 0 rangle B A rangle C rightarrow Phi rangle ABC However if we are able to delete a copy then at the output port of the deleting machine the combined state should be ps A 0 B A C a 0 A 0 B b 1 A 0 B A C displaystyle psi rangle A 0 rangle B A rangle C alpha 0 rangle A 0 rangle B beta 1 rangle A 0 rangle B A rangle C In general these states are not identical and hence we can say that the machine fails to delete a copy If we require that the final output states are same then we will see that there is only one option F 1 2 0 A 0 B A 1 C 1 A 0 B A 0 C displaystyle Phi rangle 1 sqrt 2 0 rangle A 0 rangle B A 1 rangle C 1 rangle A 0 rangle B A 0 rangle C and A C a A 0 C b A 1 C displaystyle A rangle C alpha A 0 rangle C beta A 1 rangle C Since final state A displaystyle A rangle of the ancilla is normalized for all values of a b displaystyle alpha beta it must be true that A 0 C displaystyle A 0 rangle C and A 1 C displaystyle A 1 rangle C are orthogonal This means that the quantum information is simply in the final state of the ancilla One can always obtain the unknown state from the final state of the ancilla using local operation on the ancilla Hilbert space Thus linearity of quantum theory does not allow an unknown quantum state to be deleted perfectly Consequence EditIf it were possible to delete an unknown quantum state then using two pairs of EPR states we could send signals faster than light Thus violation of the no deleting theorem is inconsistent with the no signalling condition The no cloning and the no deleting theorems point to the conservation of quantum information A stronger version of the no cloning theorem and the no deleting theorem provide permanence to quantum information To create a copy one must import the information from some part of the universe and to delete a state one needs to export it to another part of the universe where it will continue to exist See also EditNo broadcast theorem No cloning theorem No communication theorem No hiding theorem 6 Quantum cloning Quantum entanglement Quantum information Quantum teleportation Uncertainty principleReferences Edit A K Pati and S L Braunstein Impossibility of Deleting an Unknown Quantum State Nature 404 2000 p164 W K Wootters and W H Zurek A Single Quantum Cannot be Cloned Nature 299 1982 p802 D Dieks Communication by EPR devices Physics Letters A vol 92 6 1982 p271 John Baez Physics Topology Logic and Computation A Rosetta Stone 2009 Bob Coecke Quantum Picturalism 2009 ArXiv 0908 1787 Quantum no hiding theorem experimentally confirmed for first time Mar 07 2011 by Lisa Zyga Retrieved from https en wikipedia org w index php title No deleting theorem amp oldid 1127026771, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.