fbpx
Wikipedia

Weyl's inequality

In linear algebra, Weyl's inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed. It can be used to estimate the eigenvalues of a perturbed Hermitian matrix.

Weyl's inequality about perturbation edit

Let   be Hermitian on inner product space   with dimension  , with spectrum ordered in descending order  . Note that these eigenvalues can be ordered, because they are real (as eigenvalues of Hermitian matrices).[1]

Weyl inequality — 

 
Proof

By the min-max theorem, it suffices to show that any   with dimension  , there exists a unit vector   such that  .

By the min-max principle, there exists some   with codimension  , such that

 
Similarly, there exists such a   with codimension  . Now   has codimension  , so it has nontrivial intersection with  . Let  , and we have the desired vector.

The second one is a corollary of the first, by taking the negative.

Weyl's inequality states that the spectrum of Hermitian matrices is stable under perturbation. Specifically, we have:[1]

Corollary (Spectral stability) — 

 
 
where
 
is the operator norm.

In jargon, it says that   is Lipschitz-continuous on the space of Hermitian matrices with operator norm.

Weyl's inequality between eigenvalues and singular values edit

Let   have singular values   and eigenvalues ordered so that  . Then

 

For  , with equality for  . [2]

Applications edit

Estimating perturbations of the spectrum edit

Assume that   is small in the sense that its spectral norm satisfies   for some small  . Then it follows that all the eigenvalues of   are bounded in absolute value by  . Applying Weyl's inequality, it follows that the spectra of the Hermitian matrices M and N are close in the sense that[3]

 

Note, however, that this eigenvalue perturbation bound is generally false for non-Hermitian matrices (or more accurately, for non-normal matrices). For a counterexample, let   be arbitrarily small, and consider

 

whose eigenvalues   and   do not satisfy  .

Weyl's inequality for singular values edit

Let   be a   matrix with  . Its singular values   are the   positive eigenvalues of the   Hermitian augmented matrix

 

Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values.[1] This result gives the bound for the perturbation in the singular values of a matrix   due to an additive perturbation  :

 

where we note that the largest singular value   coincides with the spectral norm  .

Notes edit

  1. ^ a b c Tao, Terence (2010-01-13). "254A, Notes 3a: Eigenvalues and sums of Hermitian matrices". Terence Tao's blog. Retrieved 25 May 2015.
  2. ^ Roger A. Horn, and Charles R. Johnson Topics in Matrix Analysis. Cambridge, 1st Edition, 1991. p.171
  3. ^ Weyl, Hermann. "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)." Mathematische Annalen 71, no. 4 (1912): 441-479.

References edit

  • Matrix Theory, Joel N. Franklin, (Dover Publications, 1993) ISBN 0-486-41179-6
  • "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen", H. Weyl, Math. Ann., 71 (1912), 441–479

weyl, inequality, this, article, about, linear, algebra, number, theory, number, theory, linear, algebra, theorem, about, changes, eigenvalues, hermitian, matrix, that, perturbed, used, estimate, eigenvalues, perturbed, hermitian, matrix, contents, about, pert. This article is about Weyl s inequality in linear algebra For Weyl s inequality in number theory see Weyl s inequality number theory In linear algebra Weyl s inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed It can be used to estimate the eigenvalues of a perturbed Hermitian matrix Contents 1 Weyl s inequality about perturbation 2 Weyl s inequality between eigenvalues and singular values 3 Applications 3 1 Estimating perturbations of the spectrum 3 2 Weyl s inequality for singular values 4 Notes 5 ReferencesWeyl s inequality about perturbation editLet A textstyle A nbsp be Hermitian on inner product space V textstyle V nbsp with dimension n textstyle n nbsp with spectrum ordered in descending order l1 ln textstyle lambda 1 geq geq lambda n nbsp Note that these eigenvalues can be ordered because they are real as eigenvalues of Hermitian matrices 1 Weyl inequality li j 1 A B li A lj B li j n A B displaystyle lambda i j 1 A B leq lambda i A lambda j B leq lambda i j n A B nbsp Proof By the min max theorem it suffices to show that any W V textstyle W subset V nbsp with dimension i j 1 textstyle i j 1 nbsp there exists a unit vector w textstyle w nbsp such that w A B w li A lj B textstyle langle w A B w rangle leq lambda i A lambda j B nbsp By the min max principle there exists some WA textstyle W A nbsp with codimension i 1 textstyle i 1 nbsp such thatli A maxx WA x 1 x Ax displaystyle lambda i A max x in W A x 1 langle x Ax rangle nbsp Similarly there exists such a WB textstyle W B nbsp with codimension j 1 textstyle j 1 nbsp Now WA WB textstyle W A cap W B nbsp has codimension i j 2 textstyle leq i j 2 nbsp so it has nontrivial intersection with W textstyle W nbsp Let w W WA WB textstyle w in W cap W A cap W B nbsp and we have the desired vector The second one is a corollary of the first by taking the negative Weyl s inequality states that the spectrum of Hermitian matrices is stable under perturbation Specifically we have 1 Corollary Spectral stability lk A B lk A ln B l1 B displaystyle lambda k A B lambda k A in lambda n B lambda 1 B nbsp lk A B lk A B op displaystyle lambda k A B lambda k A leq B op nbsp where B op max l1 B ln B displaystyle B op max lambda 1 B lambda n B nbsp is the operator norm In jargon it says that lk displaystyle lambda k nbsp is Lipschitz continuous on the space of Hermitian matrices with operator norm Weyl s inequality between eigenvalues and singular values editLet A Cn n displaystyle A in mathbb C n times n nbsp have singular values s1 A sn A 0 displaystyle sigma 1 A geq cdots geq sigma n A geq 0 nbsp and eigenvalues ordered so that l1 A ln A displaystyle lambda 1 A geq cdots geq lambda n A nbsp Then l1 A lk A s1 A sk A displaystyle lambda 1 A cdots lambda k A leq sigma 1 A cdots sigma k A nbsp For k 1 n displaystyle k 1 ldots n nbsp with equality for k n displaystyle k n nbsp 2 Applications editEstimating perturbations of the spectrum edit Assume that R displaystyle R nbsp is small in the sense that its spectral norm satisfies R 2 ϵ displaystyle R 2 leq epsilon nbsp for some small ϵ gt 0 displaystyle epsilon gt 0 nbsp Then it follows that all the eigenvalues of R displaystyle R nbsp are bounded in absolute value by ϵ displaystyle epsilon nbsp Applying Weyl s inequality it follows that the spectra of the Hermitian matrices M and N are close in the sense that 3 mi ni ϵ i 1 n displaystyle mu i nu i leq epsilon qquad forall i 1 ldots n nbsp Note however that this eigenvalue perturbation bound is generally false for non Hermitian matrices or more accurately for non normal matrices For a counterexample let t gt 0 displaystyle t gt 0 nbsp be arbitrarily small and consider M 001 t20 N M R 011 t20 R 0100 displaystyle M begin bmatrix 0 amp 0 1 t 2 amp 0 end bmatrix qquad N M R begin bmatrix 0 amp 1 1 t 2 amp 0 end bmatrix qquad R begin bmatrix 0 amp 1 0 amp 0 end bmatrix nbsp whose eigenvalues m1 m2 0 displaystyle mu 1 mu 2 0 nbsp and n1 1 t n2 1 t displaystyle nu 1 1 t nu 2 1 t nbsp do not satisfy mi ni R 2 1 displaystyle mu i nu i leq R 2 1 nbsp Weyl s inequality for singular values edit Let M displaystyle M nbsp be a p n displaystyle p times n nbsp matrix with 1 p n displaystyle 1 leq p leq n nbsp Its singular values sk M displaystyle sigma k M nbsp are the p displaystyle p nbsp positive eigenvalues of the p n p n displaystyle p n times p n nbsp Hermitian augmented matrix 0MM 0 displaystyle begin bmatrix 0 amp M M amp 0 end bmatrix nbsp Therefore Weyl s eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values 1 This result gives the bound for the perturbation in the singular values of a matrix M displaystyle M nbsp due to an additive perturbation D displaystyle Delta nbsp sk M D sk M s1 D displaystyle sigma k M Delta sigma k M leq sigma 1 Delta nbsp where we note that the largest singular value s1 D displaystyle sigma 1 Delta nbsp coincides with the spectral norm D 2 displaystyle Delta 2 nbsp Notes edit a b c Tao Terence 2010 01 13 254A Notes 3a Eigenvalues and sums of Hermitian matrices Terence Tao s blog Retrieved 25 May 2015 Roger A Horn and Charles R Johnson Topics in Matrix Analysis Cambridge 1st Edition 1991 p 171 Weyl Hermann Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen mit einer Anwendung auf die Theorie der Hohlraumstrahlung Mathematische Annalen 71 no 4 1912 441 479 References editMatrix Theory Joel N Franklin Dover Publications 1993 ISBN 0 486 41179 6 Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen H Weyl Math Ann 71 1912 441 479 Retrieved from https en wikipedia org w index php title Weyl 27s inequality amp oldid 1207714542, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.