fbpx
Wikipedia

Werner state

A Werner state[1] is a × -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form . That is, it is a bipartite quantum state that satisfies

for all unitary operators U acting on d-dimensional Hilbert space. These states were first developed by Reinhard F. Werner in 1989.

General definition edit

Every Werner state   is a mixture of projectors onto the symmetric and antisymmetric subspaces, with the relative weight   being the main parameter that defines the state, in addition to the dimension  :

 

where

 
 

are the projectors and

 

is the permutation or flip operator that exchanges the two subsystems A and B.

Werner states are separable for p12 and entangled for p < 12. All entangled Werner states violate the PPT separability criterion, but for d ≥ 3 no Werner state violates the weaker reduction criterion. Werner states can be parametrized in different ways. One way of writing them is

 

where the new parameter α varies between −1 and 1 and relates to p as

 

Two-qubit example edit

Two-qubit Werner states, corresponding to   above, can be written explicitly in matrix form as

 
Equivalently, these can be written as a convex combination of the totally mixed state with (the projection onto) a Bell state:
 
where   (or, confining oneself to positive values,  ) is related to   by  . Then, two-qubit Werner states are separable for   and entangled for  .

Werner-Holevo channels edit

A Werner-Holevo quantum channel   with parameters   and integer   is defined as [2][3][4]

 

where the quantum channels   and   are defined as

 
 

and   denotes the partial transpose map on system A. Note that the Choi state of the Werner-Holevo channel   is a Werner state:

 

where  .

Multipartite Werner states edit

Werner states can be generalized to the multipartite case.[5] An N-party Werner state is a state that is invariant under   for any unitary U on a single subsystem. The Werner state is no longer described by a single parameter, but by N! − 1 parameters, and is a linear combination of the N! different permutations on N systems.

References edit

  1. ^ Reinhard F. Werner (1989). "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A. 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID 9902666.
  2. ^ Reinhard F. Werner and Alexander S. Holevo (2002). "Counterexample to an additivity conjecture for output purity of quantum channels". Journal of Mathematical Physics. 43 (9): 4353–4357. arXiv:quant-ph/0203003. Bibcode:2002JMP....43.4353W. doi:10.1063/1.1498491. S2CID 42832247.
  3. ^ Fannes, Mark; Haegeman, B.; Mosonyi, Milan; Vanpeteghem, D. (2004). "Additivity of minimal entropy out- put for a class of covariant channels". unpublished. arXiv:quant-ph/0410195. Bibcode:2004quant.ph.10195F.
  4. ^ Debbie Leung and William Matthews (2015). "On the power of PPT-preserving and non-signalling codes". IEEE Transactions on Information Theory. 61 (8): 4486–4499. arXiv:1406.7142. doi:10.1109/TIT.2015.2439953. S2CID 14083225.
  5. ^ Eggeling, Tilo; Werner, Reinhard (2001). "Separability properties of tripartite states with UxUxU-symmetry". Physical Review A. 63: 042111. arXiv:quant-ph/0010096. doi:10.1103/PhysRevA.63.042111. S2CID 119350302.

werner, state, displaystyle, displaystyle, dimensional, bipartite, quantum, state, density, matrix, that, invariant, under, unitary, operators, form, displaystyle, otimes, that, bipartite, quantum, state, displaystyle, that, satisfies, displaystyle, otimes, da. A Werner state 1 is a d 2 displaystyle d 2 d 2 displaystyle d 2 dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form U U displaystyle U otimes U That is it is a bipartite quantum state r A B displaystyle rho AB that satisfies r A B U U r A B U U displaystyle rho AB U otimes U rho AB U dagger otimes U dagger for all unitary operators U acting on d dimensional Hilbert space These states were first developed by Reinhard F Werner in 1989 Contents 1 General definition 2 Two qubit example 3 Werner Holevo channels 4 Multipartite Werner states 5 ReferencesGeneral definition editEvery Werner state W A B p d displaystyle W AB p d nbsp is a mixture of projectors onto the symmetric and antisymmetric subspaces with the relative weight p 0 1 displaystyle p in 0 1 nbsp being the main parameter that defines the state in addition to the dimension d 2 displaystyle d geq 2 nbsp W A B p d p 2 d d 1 P A B sym 1 p 2 d d 1 P A B as displaystyle W AB p d p frac 2 d d 1 P AB text sym 1 p frac 2 d d 1 P AB text as nbsp where P A B sym 1 2 I A B F A B displaystyle P AB text sym frac 1 2 I AB F AB nbsp P A B as 1 2 I A B F A B displaystyle P AB text as frac 1 2 I AB F AB nbsp are the projectors and F A B i j i j A j i B displaystyle F AB sum ij i rangle langle j A otimes j rangle langle i B nbsp is the permutation or flip operator that exchanges the two subsystems A and B Werner states are separable for p 1 2 and entangled for p lt 1 2 All entangled Werner states violate the PPT separability criterion but for d 3 no Werner state violates the weaker reduction criterion Werner states can be parametrized in different ways One way of writing them is r A B 1 d 2 d a I A B a F A B displaystyle rho AB frac 1 d 2 d alpha I AB alpha F AB nbsp where the new parameter a varies between 1 and 1 and relates to p as a 1 2 p d 1 1 2 p d displaystyle alpha 1 2p d 1 1 2p d nbsp Two qubit example editTwo qubit Werner states corresponding to d 2 displaystyle d 2 nbsp above can be written explicitly in matrix form asW A B p 2 p 6 2 0 0 0 0 1 1 0 0 1 1 0 0 0 0 2 1 p 2 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 p 3 0 0 0 0 3 2 p 6 3 4 p 6 0 0 3 4 p 6 3 2 p 6 0 0 0 0 p 3 displaystyle W AB p 2 frac p 6 begin pmatrix 2 amp 0 amp 0 amp 0 0 amp 1 amp 1 amp 0 0 amp 1 amp 1 amp 0 0 amp 0 amp 0 amp 2 end pmatrix frac 1 p 2 begin pmatrix 0 amp 0 amp 0 amp 0 0 amp 1 amp 1 amp 0 0 amp 1 amp 1 amp 0 0 amp 0 amp 0 amp 0 end pmatrix begin pmatrix frac p 3 amp 0 amp 0 amp 0 0 amp frac 3 2p 6 amp frac 3 4p 6 amp 0 0 amp frac 3 4p 6 amp frac 3 2p 6 amp 0 0 amp 0 amp 0 amp frac p 3 end pmatrix nbsp Equivalently these can be written as a convex combination of the totally mixed state with the projection onto a Bell state W A B l 2 l PS PS 1 l 4 I A B PS 1 2 01 10 displaystyle W AB lambda 2 lambda Psi rangle langle Psi frac 1 lambda 4 I AB qquad Psi rangle equiv frac 1 sqrt 2 01 rangle 10 rangle nbsp where l 1 3 1 displaystyle lambda in 1 3 1 nbsp or confining oneself to positive values l 0 1 displaystyle lambda in 0 1 nbsp is related to p displaystyle p nbsp by l 3 4 p 3 displaystyle lambda 3 4p 3 nbsp Then two qubit Werner states are separable for l 1 3 displaystyle lambda leq 1 3 nbsp and entangled for l gt 1 3 displaystyle lambda gt 1 3 nbsp Werner Holevo channels editA Werner Holevo quantum channel W A B p d displaystyle mathcal W A rightarrow B left p d right nbsp with parameters p 0 1 displaystyle p in left 0 1 right nbsp and integer d 2 displaystyle d geq 2 nbsp is defined as 2 3 4 W A B p d p W A B sym 1 p W A B as displaystyle mathcal W A rightarrow B left p d right p mathcal W A rightarrow B text sym left 1 p right mathcal W A rightarrow B text as nbsp where the quantum channels W A B sym displaystyle mathcal W A rightarrow B text sym nbsp and W A B as displaystyle mathcal W A rightarrow B text as nbsp are defined as W A B sym X A 1 d 1 Tr X A I B id A B T A X A displaystyle mathcal W A rightarrow B text sym X A frac 1 d 1 left operatorname Tr X A I B operatorname id A rightarrow B T A X A right nbsp W A B as X A 1 d 1 Tr X A I B id A B T A X A displaystyle mathcal W A rightarrow B text as X A frac 1 d 1 left operatorname Tr X A I B operatorname id A rightarrow B T A X A right nbsp and T A displaystyle T A nbsp denotes the partial transpose map on system A Note that the Choi state of the Werner Holevo channel W A B p d displaystyle mathcal W A rightarrow B p d nbsp is a Werner state W A B p d F R A p 2 d d 1 P R B sym 1 p 2 d d 1 P R B as displaystyle mathcal W A rightarrow B left p d right Phi RA p frac 2 d left d 1 right P RB text sym left 1 p right frac 2 d left d 1 right P RB text as nbsp where F R A 1 d i j i j R i j A displaystyle Phi RA frac 1 d sum i j i rangle langle j R otimes i rangle langle j A nbsp Multipartite Werner states editWerner states can be generalized to the multipartite case 5 An N party Werner state is a state that is invariant under U U U displaystyle U otimes U otimes cdots otimes U nbsp for any unitary U on a single subsystem The Werner state is no longer described by a single parameter but by N 1 parameters and is a linear combination of the N different permutations on N systems References edit Reinhard F Werner 1989 Quantum states with Einstein Podolsky Rosen correlations admitting a hidden variable model Physical Review A 40 8 4277 4281 Bibcode 1989PhRvA 40 4277W doi 10 1103 PhysRevA 40 4277 PMID 9902666 Reinhard F Werner and Alexander S Holevo 2002 Counterexample to an additivity conjecture for output purity of quantum channels Journal of Mathematical Physics 43 9 4353 4357 arXiv quant ph 0203003 Bibcode 2002JMP 43 4353W doi 10 1063 1 1498491 S2CID 42832247 Fannes Mark Haegeman B Mosonyi Milan Vanpeteghem D 2004 Additivity of minimal entropy out put for a class of covariant channels unpublished arXiv quant ph 0410195 Bibcode 2004quant ph 10195F Debbie Leung and William Matthews 2015 On the power of PPT preserving and non signalling codes IEEE Transactions on Information Theory 61 8 4486 4499 arXiv 1406 7142 doi 10 1109 TIT 2015 2439953 S2CID 14083225 Eggeling Tilo Werner Reinhard 2001 Separability properties of tripartite states with UxUxU symmetry Physical Review A 63 042111 arXiv quant ph 0010096 doi 10 1103 PhysRevA 63 042111 S2CID 119350302 nbsp This quantum mechanics related article is a stub You can help Wikipedia by expanding it vte Retrieved from https en wikipedia org w index php title Werner state amp oldid 1190032722, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.