fbpx
Wikipedia

Weil–Châtelet group

In arithmetic geometry, the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A, defined over K. John Tate (1958) named it for François Châtelet (1946) who introduced it for elliptic curves, and André Weil (1955), who introduced it for more general groups. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent.

It can be defined directly from Galois cohomology, as , where is the absolute Galois group of K. It is of particular interest for local fields and global fields, such as algebraic number fields. For K a finite field, Friedrich Karl Schmidt (1931) proved that the Weil–Châtelet group is trivial for elliptic curves, and Serge Lang (1956) proved that it is trivial for any connected algebraic group.

See also edit

The Tate–Shafarevich group of an abelian variety A defined over a number field K consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of K.

The Selmer group, named after Ernst S. Selmer, of A with respect to an isogeny   of abelian varieties is a related group which can be defined in terms of Galois cohomology as

 

where Av[f] denotes the f-torsion of Av and   is the local Kummer map

 .

References edit

  • Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups", Proceedings of the London Mathematical Society, Third Series, 12: 259–296, doi:10.1112/plms/s3-12.1.259, ISSN 0024-6115, MR 0163913
  • Cassels, John William Scott (1991), Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, doi:10.1017/CBO9781139172530, ISBN 978-0-521-41517-0, MR 1144763
  • Châtelet, François (1946), "Méthode galoisienne et courbes de genre un", Annales de l'Université de Lyon Sect. A. (3), 9: 40–49, MR 0020575
  • Hindry, Marc; Silverman, Joseph H. (2000), Diophantine geometry: an introduction, Graduate Texts in Mathematics, vol. 201, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98981-5
  • Greenberg, Ralph (1994), "Iwasawa Theory and p-adic Deformation of Motives", in Serre, Jean-Pierre; Jannsen, Uwe; Kleiman, Steven L. (eds.), Motives, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-1637-0
  • "Weil-Châtelet group", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Lang, Serge (1956), "Algebraic groups over finite fields", American Journal of Mathematics, 78 (3): 555–563, doi:10.2307/2372673, ISSN 0002-9327, JSTOR 2372673, MR 0086367
  • Lang, Serge; Tate, John (1958), "Principal homogeneous spaces over abelian varieties", American Journal of Mathematics, 80 (3): 659–684, doi:10.2307/2372778, ISSN 0002-9327, JSTOR 2372778, MR 0106226
  • Schmidt, Friedrich Karl (1931), "Analytische Zahlentheorie in Körpern der Charakteristik p", Mathematische Zeitschrift, 33: 1–32, doi:10.1007/BF01174341, ISSN 0025-5874
  • Shafarevich, Igor R. (1959), "The group of principal homogeneous algebraic manifolds", Doklady Akademii Nauk SSSR (in Russian), 124: 42–43, ISSN 0002-3264, MR 0106227 English translation in his collected mathematical papers.
  • Tate, John (1958), WC-groups over p-adic fields, Séminaire Bourbaki; 10e année: 1957/1958, vol. 13, Paris: Secrétariat Mathématique, MR 0105420
  • Weil, André (1955), "On algebraic groups and homogeneous spaces", American Journal of Mathematics, 77 (3): 493–512, doi:10.2307/2372637, ISSN 0002-9327, JSTOR 2372637, MR 0074084

weil, châtelet, group, confused, with, weil, group, arithmetic, geometry, group, algebraic, group, such, abelian, variety, defined, over, field, abelian, group, principal, homogeneous, spaces, defined, over, john, tate, 1958, named, françois, châtelet, 1946, i. Not to be confused with Weil group In arithmetic geometry the Weil Chatelet group or WC group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A defined over K John Tate 1958 named it for Francois Chatelet 1946 who introduced it for elliptic curves and Andre Weil 1955 who introduced it for more general groups It plays a basic role in the arithmetic of abelian varieties in particular for elliptic curves because of its connection with infinite descent It can be defined directly from Galois cohomology as H1 GK A displaystyle H 1 G K A where GK displaystyle G K is the absolute Galois group of K It is of particular interest for local fields and global fields such as algebraic number fields For K a finite field Friedrich Karl Schmidt 1931 proved that the Weil Chatelet group is trivial for elliptic curves and Serge Lang 1956 proved that it is trivial for any connected algebraic group See also editThe Tate Shafarevich group of an abelian variety A defined over a number field K consists of the elements of the Weil Chatelet group that become trivial in all of the completions of K The Selmer group named after Ernst S Selmer of A with respect to an isogeny f A B displaystyle f colon A to B nbsp of abelian varieties is a related group which can be defined in terms of Galois cohomology as Sel f A K vker H1 GK ker f H1 GKv Av f im kv displaystyle mathrm Sel f A K bigcap v mathrm ker H 1 G K mathrm ker f rightarrow H 1 G K v A v f mathrm im kappa v nbsp where Av f denotes the f torsion of Av and kv displaystyle kappa v nbsp is the local Kummer map Bv Kv f Av Kv H1 GKv Av f displaystyle B v K v f A v K v rightarrow H 1 G K v A v f nbsp References editCassels John William Scott 1962 Arithmetic on curves of genus 1 III The Tate Safarevic and Selmer groups Proceedings of the London Mathematical Society Third Series 12 259 296 doi 10 1112 plms s3 12 1 259 ISSN 0024 6115 MR 0163913 Cassels John William Scott 1991 Lectures on elliptic curves London Mathematical Society Student Texts vol 24 Cambridge University Press doi 10 1017 CBO9781139172530 ISBN 978 0 521 41517 0 MR 1144763 Chatelet Francois 1946 Methode galoisienne et courbes de genre un Annales de l Universite de Lyon Sect A 3 9 40 49 MR 0020575 Hindry Marc Silverman Joseph H 2000 Diophantine geometry an introduction Graduate Texts in Mathematics vol 201 Berlin New York Springer Verlag ISBN 978 0 387 98981 5 Greenberg Ralph 1994 Iwasawa Theory and p adic Deformation of Motives in Serre Jean Pierre Jannsen Uwe Kleiman Steven L eds Motives Providence R I American Mathematical Society ISBN 978 0 8218 1637 0 Weil Chatelet group Encyclopedia of Mathematics EMS Press 2001 1994 Lang Serge 1956 Algebraic groups over finite fields American Journal of Mathematics 78 3 555 563 doi 10 2307 2372673 ISSN 0002 9327 JSTOR 2372673 MR 0086367 Lang Serge Tate John 1958 Principal homogeneous spaces over abelian varieties American Journal of Mathematics 80 3 659 684 doi 10 2307 2372778 ISSN 0002 9327 JSTOR 2372778 MR 0106226 Schmidt Friedrich Karl 1931 Analytische Zahlentheorie in Korpern der Charakteristik p Mathematische Zeitschrift 33 1 32 doi 10 1007 BF01174341 ISSN 0025 5874 Shafarevich Igor R 1959 The group of principal homogeneous algebraic manifolds Doklady Akademii Nauk SSSR in Russian 124 42 43 ISSN 0002 3264 MR 0106227 English translation in his collected mathematical papers Tate John 1958 WC groups over p adic fields Seminaire Bourbaki 10e annee 1957 1958 vol 13 Paris Secretariat Mathematique MR 0105420 Weil Andre 1955 On algebraic groups and homogeneous spaces American Journal of Mathematics 77 3 493 512 doi 10 2307 2372637 ISSN 0002 9327 JSTOR 2372637 MR 0074084 Retrieved from https en wikipedia org w index php title Weil Chatelet group amp oldid 1045233515, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.