fbpx
Wikipedia

Von Staudt–Clausen theorem

In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by Karl von Staudt (1840) and Thomas Clausen (1840).

Specifically, if n is a positive integer and we add 1/p to the Bernoulli number B2n for every prime p such that p − 1 divides 2n, we obtain an integer, i.e.,

This fact immediately allows us to characterize the denominators of the non-zero Bernoulli numbers B2n as the product of all primes p such that p − 1 divides 2n; consequently the denominators are square-free and divisible by 6.

These denominators are

6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, ... (sequence A002445 in the OEIS).

The sequence of integers is

1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, ... (sequence A000146 in the OEIS).


Proof edit

A proof of the Von Staudt–Clausen theorem follows from an explicit formula for Bernoulli numbers which is:

 

and as a corollary:

 

where   are the Stirling numbers of the second kind.

Furthermore the following lemmas are needed:
Let p be a prime number then,
1. If p-1 divides 2n then,

 

2. If p-1 does not divide 2n then,

 

Proof of (1) and (2): One has from Fermat's little theorem,

 

for  .
If p-1 divides 2n then one has,

 

for  .
Thereafter one has,

 

from which (1) follows immediately.
If p-1 does not divide 2n then after Fermat's theorem one has,

 

If one lets   (Greatest integer function) then after iteration one has,

 

for   and  .
Thereafter one has,

 

Lemma (2) now follows from the above and the fact that S(n,j)=0 for j>n.
(3). It is easy to deduce that for a>2 and b>2, ab divides (ab-1)!.
(4). Stirling numbers of second kind are integers.

Proof of the theorem: Now we are ready to prove Von-Staudt Clausen theorem,
If j+1 is composite and j>3 then from (3), j+1 divides j!.
For j=3,

 

If j+1 is prime then we use (1) and (2) and if j+1 is composite then we use (3) and (4) to deduce:

 

where   is an integer, which is the Von-Staudt Clausen theorem.[1][2]

See also edit

References edit

  1. ^ H. Rademacher, Analytic Number Theory, Springer-Verlag, New York, 1973.
  2. ^ T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • Clausen, Thomas (1840), "Theorem", Astronomische Nachrichten, 17 (22): 351–352, doi:10.1002/asna.18400172204
  • Rado, R. (1934), "A New Proof of a Theorem of V. Staudt", J. London Math. Soc., 9 (2): 85–88, doi:10.1112/jlms/s1-9.2.85
  • von Staudt, Ch. (1840), "Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend", Journal für die Reine und Angewandte Mathematik, 21: 372–374, ISSN 0075-4102, ERAM 021.0672cj

External links edit

staudt, clausen, theorem, number, theory, staudt, clausen, theorem, result, determining, fractional, part, bernoulli, numbers, found, independently, karl, staudt, 1840, thomas, clausen, 1840, specifically, positive, integer, bernoulli, number, every, prime, su. In number theory the von Staudt Clausen theorem is a result determining the fractional part of Bernoulli numbers found independently by Karl von Staudt 1840 and Thomas Clausen 1840 Specifically if n is a positive integer and we add 1 p to the Bernoulli number B2n for every prime p such that p 1 divides 2n we obtain an integer i e B2n p 1 2n1p Z displaystyle B 2n sum p 1 2n frac 1 p in mathbb Z This fact immediately allows us to characterize the denominators of the non zero Bernoulli numbers B2n as the product of all primes p such that p 1 divides 2n consequently the denominators are square free and divisible by 6 These denominators are 6 30 42 30 66 2730 6 510 798 330 138 2730 6 870 14322 510 6 1919190 6 13530 sequence A002445 in the OEIS The sequence of integers B2n p 1 2n1p displaystyle B 2n sum p 1 2n frac 1 p is 1 1 1 1 1 1 2 6 56 528 6193 86579 1425518 27298230 sequence A000146 in the OEIS Contents 1 Proof 2 See also 3 References 4 External linksProof editA proof of the Von Staudt Clausen theorem follows from an explicit formula for Bernoulli numbers which is B2n j 02n1j 1 m 0j 1 m jm m2n displaystyle B 2n sum j 0 2n frac 1 j 1 sum m 0 j 1 m j choose m m 2n nbsp and as a corollary B2n j 02nj j 1 1 jS 2n j displaystyle B 2n sum j 0 2n frac j j 1 1 j S 2n j nbsp where S n j displaystyle S n j nbsp are the Stirling numbers of the second kind Furthermore the following lemmas are needed Let p be a prime number then 1 If p 1 divides 2n then m 0p 1 1 m p 1m m2n 1 modp displaystyle sum m 0 p 1 1 m p 1 choose m m 2n equiv 1 pmod p nbsp 2 If p 1 does not divide 2n then m 0p 1 1 m p 1m m2n 0 modp displaystyle sum m 0 p 1 1 m p 1 choose m m 2n equiv 0 pmod p nbsp Proof of 1 and 2 One has from Fermat s little theorem mp 1 1 modp displaystyle m p 1 equiv 1 pmod p nbsp for m 1 2 p 1 displaystyle m 1 2 p 1 nbsp If p 1 divides 2n then one has m2n 1 modp displaystyle m 2n equiv 1 pmod p nbsp for m 1 2 p 1 displaystyle m 1 2 p 1 nbsp Thereafter one has m 1p 1 1 m p 1m m2n m 1p 1 1 m p 1m modp displaystyle sum m 1 p 1 1 m p 1 choose m m 2n equiv sum m 1 p 1 1 m p 1 choose m pmod p nbsp from which 1 follows immediately If p 1 does not divide 2n then after Fermat s theorem one has m2n m2n p 1 modp displaystyle m 2n equiv m 2n p 1 pmod p nbsp If one lets 2np 1 displaystyle wp frac 2n p 1 nbsp Greatest integer function then after iteration one has m2n m2n p 1 modp displaystyle m 2n equiv m 2n wp p 1 pmod p nbsp for m 1 2 p 1 displaystyle m 1 2 p 1 nbsp and 0 lt 2n p 1 lt p 1 displaystyle 0 lt 2n wp p 1 lt p 1 nbsp Thereafter one has m 0p 1 1 m p 1m m2n m 0p 1 1 m p 1m m2n p 1 modp displaystyle sum m 0 p 1 1 m p 1 choose m m 2n equiv sum m 0 p 1 1 m p 1 choose m m 2n wp p 1 pmod p nbsp Lemma 2 now follows from the above and the fact that S n j 0 for j gt n 3 It is easy to deduce that for a gt 2 and b gt 2 ab divides ab 1 4 Stirling numbers of second kind are integers Proof of the theorem Now we are ready to prove Von Staudt Clausen theorem If j 1 is composite and j gt 3 then from 3 j 1 divides j For j 3 m 03 1 m 3m m2n 3 22n 32n 3 0 mod4 displaystyle sum m 0 3 1 m 3 choose m m 2n 3 cdot 2 2n 3 2n 3 equiv 0 pmod 4 nbsp If j 1 is prime then we use 1 and 2 and if j 1 is composite then we use 3 and 4 to deduce B2n In p 1 2n1p displaystyle B 2n I n sum p 1 2n frac 1 p nbsp where In displaystyle I n nbsp is an integer which is the Von Staudt Clausen theorem 1 2 See also editKummer s congruenceReferences edit H Rademacher Analytic Number Theory Springer Verlag New York 1973 T M Apostol Introduction to Analytic Number Theory Springer Verlag 1976 Clausen Thomas 1840 Theorem Astronomische Nachrichten 17 22 351 352 doi 10 1002 asna 18400172204 Rado R 1934 A New Proof of a Theorem of V Staudt J London Math Soc 9 2 85 88 doi 10 1112 jlms s1 9 2 85 von Staudt Ch 1840 Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend Journal fur die Reine und Angewandte Mathematik 21 372 374 ISSN 0075 4102 ERAM 021 0672cjExternal links editWeisstein Eric W von Staudt Clausen Theorem MathWorld Retrieved from https en wikipedia org w index php title Von Staudt Clausen theorem amp oldid 1079651232, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.