fbpx
Wikipedia

Ultrasonic flow meter

An ultrasonic flow meter is a type of flow meter that measures the velocity of a fluid with ultrasound to calculate volume flow. Using ultrasonic transducers, the flow meter can measure the average velocity along the path of an emitted beam of ultrasound, by averaging the difference in measured transit time between the pulses of ultrasound propagating into and against the direction of the flow or by measuring the frequency shift from the Doppler effect. Ultrasonic flow meters are affected by the acoustic properties of the fluid and can be impacted by temperature, density, viscosity and suspended particulates depending on the exact flow meter. They vary greatly in purchase price but are often inexpensive to use and maintain because they do not use moving parts, unlike mechanical flow meters.

Schematic view of a flow sensor.

Means of operation edit

There are three different types of ultrasonic flow meters. Transmission (or contrapropagating transit-time) flow meters can be distinguished into in-line (intrusive, wetted) and clamp-on (non-intrusive) varieties. Ultrasonic flow meters that use the Doppler shift are called reflection or Doppler flow meters. The third type is the open-channel flow meter.[1]

Principle edit

Time transit flow meter edit

Ultrasonic flow meters measure the difference between the transit time of ultrasonic pulses propagating with and against the flow direction. This time difference is a measure for the average velocity of the fluid along the path of the ultrasonic beam. By using the absolute transit times   and  , both the averaged fluid velocity   and the speed of sound   can be calculated. Using these two transit times, the distance between receiving and transmitting transducers   and the inclination angle  , if we assume that sound has to go against the flow when going up and along the flow when returning down, then one can write the following equations from the definition of velocity:

  and  

By adding and subtracting the above equations we get,

  and  

where   is the average velocity of the fluid along the sound path and   is the speed of sound.

Doppler shift flow meters edit

Another method in ultrasonic flow metering is the use of the Doppler shift that results from the reflection of an ultrasonic beam off sonically reflective materials, such as solid particles or entrained air bubbles in a flowing fluid, or the turbulence of the fluid itself, if the liquid is clean.

Doppler flowmeters are used for slurries, liquids with bubbles, gases with sound-reflecting particles.

This type of flow meter can also be used to measure the rate of blood flow, by passing an ultrasonic beam through the tissues, bouncing it off a reflective plate, then reversing the direction of the beam and repeating the measurement, the volume of blood flow can be estimated. The frequency of the transmitted beam is affected by the movement of blood in the vessel and by comparing the frequency of the upstream beam versus downstream the flow of blood through the vessel can be measured. The difference between the two frequencies is a measure of true volume flow. A wide-beam sensor can also be used to measure flow independent of the cross-sectional area of the blood vessel.

Open channel flow meters edit

In this case, the ultrasonic element is actually measuring the height of the water in the open channel; based on the geometry of the channel, the flow can be determined from the height. The ultrasonic sensor usually also has a temperature sensor with it because the speed of sound in air is affected by the temperature.

See also edit

References edit

  1. ^ "How Does an Ultrasonic Flow Meter Work".
  • Lipták, Béla G.: Process Measurement and Analysis, Volume 1. CRC Press (2003), ISBN 0-8493-1083-0 (v. 1)
  • Ultrasonic Acoustic Sensing Brown University
  • Lynnworth, L.C.: Ultrasonic Measurements for Process Control. Academic Press, Inc. San Diego. ISBN 0-12-460585-0

External links edit

  • Doppler Shift for Sound and Light at MathPages
  • Advantages of Ultrasonic Flowmeters

ultrasonic, flow, meter, ultrasonic, flow, meter, type, flow, meter, that, measures, velocity, fluid, with, ultrasound, calculate, volume, flow, using, ultrasonic, transducers, flow, meter, measure, average, velocity, along, path, emitted, beam, ultrasound, av. An ultrasonic flow meter is a type of flow meter that measures the velocity of a fluid with ultrasound to calculate volume flow Using ultrasonic transducers the flow meter can measure the average velocity along the path of an emitted beam of ultrasound by averaging the difference in measured transit time between the pulses of ultrasound propagating into and against the direction of the flow or by measuring the frequency shift from the Doppler effect Ultrasonic flow meters are affected by the acoustic properties of the fluid and can be impacted by temperature density viscosity and suspended particulates depending on the exact flow meter They vary greatly in purchase price but are often inexpensive to use and maintain because they do not use moving parts unlike mechanical flow meters Schematic view of a flow sensor Contents 1 Means of operation 2 Principle 2 1 Time transit flow meter 2 2 Doppler shift flow meters 2 3 Open channel flow meters 3 See also 4 References 5 External linksMeans of operation editThere are three different types of ultrasonic flow meters Transmission or contrapropagating transit time flow meters can be distinguished into in line intrusive wetted and clamp on non intrusive varieties Ultrasonic flow meters that use the Doppler shift are called reflection or Doppler flow meters The third type is the open channel flow meter 1 Principle editTime transit flow meter edit Ultrasonic flow meters measure the difference between the transit time of ultrasonic pulses propagating with and against the flow direction This time difference is a measure for the average velocity of the fluid along the path of the ultrasonic beam By using the absolute transit times t u p displaystyle t up nbsp and t d o w n displaystyle t down nbsp both the averaged fluid velocity v displaystyle v nbsp and the speed of sound c displaystyle c nbsp can be calculated Using these two transit times the distance between receiving and transmitting transducers L displaystyle L nbsp and the inclination angle a displaystyle alpha nbsp if we assume that sound has to go against the flow when going up and along the flow when returning down then one can write the following equations from the definition of velocity c v cos a L t u p displaystyle c v cos alpha frac L t up nbsp and c v cos a L t d o w n displaystyle c v cos alpha frac L t down nbsp By adding and subtracting the above equations we get v L 2 cos a t u p t d o w n t u p t d o w n displaystyle v frac L 2 cos left alpha right frac t up t down t up t down nbsp and c L 2 t u p t d o w n t u p t d o w n displaystyle c frac L 2 frac t up t down t up t down nbsp where v displaystyle v nbsp is the average velocity of the fluid along the sound path and c displaystyle c nbsp is the speed of sound Doppler shift flow meters edit Another method in ultrasonic flow metering is the use of the Doppler shift that results from the reflection of an ultrasonic beam off sonically reflective materials such as solid particles or entrained air bubbles in a flowing fluid or the turbulence of the fluid itself if the liquid is clean Doppler flowmeters are used for slurries liquids with bubbles gases with sound reflecting particles This type of flow meter can also be used to measure the rate of blood flow by passing an ultrasonic beam through the tissues bouncing it off a reflective plate then reversing the direction of the beam and repeating the measurement the volume of blood flow can be estimated The frequency of the transmitted beam is affected by the movement of blood in the vessel and by comparing the frequency of the upstream beam versus downstream the flow of blood through the vessel can be measured The difference between the two frequencies is a measure of true volume flow A wide beam sensor can also be used to measure flow independent of the cross sectional area of the blood vessel Open channel flow meters edit In this case the ultrasonic element is actually measuring the height of the water in the open channel based on the geometry of the channel the flow can be determined from the height The ultrasonic sensor usually also has a temperature sensor with it because the speed of sound in air is affected by the temperature See also editFlow measurement Magnetic flow meter Turbine flow meterReferences edit How Does an Ultrasonic Flow Meter Work Liptak Bela G Process Measurement and Analysis Volume 1 CRC Press 2003 ISBN 0 8493 1083 0 v 1 Ultrasonic Acoustic Sensing Brown University Lynnworth L C Ultrasonic Measurements for Process Control Academic Press Inc San Diego ISBN 0 12 460585 0External links edit nbsp Wikimedia Commons has media related to Ultrasonic flow meters Doppler Shift for Sound and Light at MathPages The Doppler Effect and Sonic Booms D A Russell Kettering University Advantages of Ultrasonic Flowmeters Retrieved from https en wikipedia org w index php title Ultrasonic flow meter amp oldid 1189460684, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.