fbpx
Wikipedia

Tower of Hanoi

The Tower of Hanoi (also called The problem of Benares Temple[1] or Tower of Brahma or Lucas' Tower[2] and sometimes pluralized as Towers, or simply pyramid puzzle[3]) is a mathematical game or puzzle consisting of three rods and a number of disks of various diameters, which can slide onto any rod. The puzzle begins with the disks stacked on one rod in order of decreasing size, the smallest at the top, thus approximating a conical shape. The objective of the puzzle is to move the entire stack to the last rod, obeying the following rules:

  1. Only one disk may be moved at a time.
  2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  3. No disk may be placed on top of a disk that is smaller than it.
A model set of the Tower of Hanoi (with 8 disks)
An animated solution of the Tower of Hanoi puzzle for T(4, 3)
Tower of Hanoi interactive display at Mexico City's Universum Museum

With 3 disks, the puzzle can be solved in 7 moves. The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where n is the number of disks.

Origins Edit

The puzzle was invented by the French mathematician Édouard Lucas in 1883. Numerous myths regarding the ancient and mystical nature of the puzzle popped up almost immediately,[4] including a myth about an Indian temple in Kashi Vishwanath containing a large room with three time-worn posts in it, surrounded by 64 golden disks. But, this story of Indian Kashi Vishwanath temple was spread tongue-in-cheek by a friend of Édouard Lucas.[5]

If the legend were true, and if the priests were able to move disks at a rate of one per second, using the smallest number of moves, it would take them 264 − 1 seconds or roughly 585 billion years to finish,[6] which is about 42 times the estimated current age of the universe.

There are many variations on this legend. For instance, in some tellings, the temple is a monastery, and the priests are monks. The temple or monastery may be in various locales including Hanoi, and may be associated with any religion. In some versions, other elements are introduced, such as the fact that the tower was created at the beginning of the world, or that the priests or monks may make only one move per day.

Solution Edit

The puzzle can be played with any number of disks, although many toy versions have around 7 to 9 of them. The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where n is the number of disks.[7] This is precisely the nth Mersenne number without primality requirements.[1]

Iterative solution Edit

 
Animation of an iterative algorithm solving 6-disk problem

A simple solution for the toy puzzle is to alternate moves between the smallest piece and a non-smallest piece. When moving the smallest piece, always move it to the next position in the same direction (to the right if the starting number of pieces is even, to the left if the starting number of pieces is odd). If there is no tower position in the chosen direction, move the piece to the opposite end, but then continue to move in the correct direction. For example, if you started with three pieces, you would move the smallest piece to the opposite end, then continue in the left direction after that. When the turn is to move the non-smallest piece, there is only one legal move. Doing this will complete the puzzle in the fewest moves.[8]

Simpler statement of iterative solution Edit

For an even number of disks:

  • Make the legal move between pegs A and B (in either direction),
  • Make the legal move between pegs A and C (in either direction),
  • Make the legal move between pegs B and C (in either direction),
  • Repeat until complete.

For an odd number of disks:

  • Make the legal move between pegs A and C (in either direction),
  • Make the legal move between pegs A and B (in either direction),
  • Make the legal move between pegs B and C (in either direction),
  • Repeat until complete.

After each move check if the C peg is complete. In each case, a total of 2n − 1 moves are made.

Equivalent iterative solution Edit

Another way to generate the unique optimal iterative solution:

Number the disks 1 through n (largest to smallest).

  • If n is odd, the first move is from peg A to peg C.
  • If n is even, the first move is from peg A to peg B.

Now, add these constraints:

  • No odd disk may be placed directly on an odd disk.
  • No even disk may be placed directly on an even disk.
  • There will sometimes be two possible pegs: one will have disks, and the other will be empty. Place the disk on the non-empty peg.
  • Never move a disk twice in succession.

Considering those constraints after the first move, there is only one legal move at every subsequent turn.

The sequence of these unique moves is an optimal solution to the problem equivalent to the iterative solution described above.[9]

Recursive solution Edit

 
Illustration of a recursive solution for the Towers of Hanoi puzzle with 4 disks. In the SVG file, click a grey button to expand or collapse it

The key to solving a problem recursively is to recognize that it can be broken down into a collection of smaller sub-problems, to each of which that same general solving procedure that we are seeking applies, and the total solution is then found in some simple way from those sub-problems' solutions. Each of these created sub-problems being "smaller" guarantees that the base case(s) will eventually be reached. Thence, for the Towers of Hanoi:

  • label the pegs A, B, C,
  • let n be the total number of disks,
  • number the disks from 1 (smallest, topmost) to n (largest, bottom-most).

Assuming all n disks are distributed in valid arrangements among the pegs; assuming there are m top disks on a source peg, and all the rest of the disks are larger than m, so they can be safely ignored; to move m disks from a source peg to a target peg using a spare peg, without violating the rules:

  1. Move m − 1 disks from the source to the spare peg, by the same general solving procedure. Rules are not violated, by assumption. This leaves the disk m as a top disk on the source peg.
  2. Move the disk m from the source to the target peg, which is guaranteed to be a valid move, by the assumptions — a simple step.
  3. Move the m − 1 disks that we have just placed on the spare, from the spare to the target peg by the same general solving procedure, so they are placed on top of the disk m without violating the rules.
  4. The base case is to move 0 disks (in steps 1 and 3), that is, do nothing – which obviously doesn't violate the rules.

The full Tower of Hanoi solution then consists of moving n disks from the source peg A to the target peg C, using B as the spare peg.

This approach can be given a rigorous mathematical proof with mathematical induction and is often used as an example of recursion when teaching programming.

Logical analysis of the recursive solution Edit

As in many mathematical puzzles, finding a solution is made easier by solving a slightly more general problem: how to move a tower of h (height) disks from a starting peg f = A (from) onto a destination peg t = C (to), B being the remaining third peg and assuming tf. First, observe that the problem is symmetric for permutations of the names of the pegs (symmetric group S3). If a solution is known moving from peg A to peg C, then, by renaming the pegs, the same solution can be used for every other choice of starting and destination peg. If there is only one disk (or even none at all), the problem is trivial. If h = 1, then simply move the disk from peg A to peg C. If h > 1, then somewhere along the sequence of moves, the largest disk must be moved from peg A to another peg, preferably to peg C. The only situation that allows this move is when all smaller h − 1 disks are on peg B. Hence, first all h − 1 smaller disks must go from A to B. Then move the largest disk and finally move the h − 1 smaller disks from peg B to peg C. The presence of the largest disk does not impede any move of the h − 1 smaller disks and can be temporarily ignored. Now the problem is reduced to moving h − 1 disks from one peg to another one, first from A to B and subsequently from B to C, but the same method can be used both times by renaming the pegs. The same strategy can be used to reduce the h − 1 problem to h − 2, h − 3, and so on until only one disk is left. This is called recursion. This algorithm can be schematized as follows.

Identify the disks in order of increasing size by the natural numbers from 0 up to but not including h. Hence disk 0 is the smallest one, and disk h − 1 the largest one.

The following is a procedure for moving a tower of h disks from a peg A onto a peg C, with B being the remaining third peg:

  1. If h > 1, then first use this procedure to move the h − 1 smaller disks from peg A to peg B.
  2. Now the largest disk, i.e. disk h can be moved from peg A to peg C.
  3. If h > 1, then again use this procedure to move the h − 1 smaller disks from peg B to peg C.

By means of mathematical induction, it is easily proven that the above procedure requires the minimal number of moves possible and that the produced solution is the only one with this minimal number of moves. Using recurrence relations, the exact number of moves that this solution requires can be calculated by:  . This result is obtained by noting that steps 1 and 3 take   moves, and step 2 takes one move, giving  .

Recursive implementation Edit

The following C function demonstrates the recursive solution. It will print out a list of move instructions. Output from a call for 3 disks is shown.

#include <stdio.h> void hanoi(int disks, char src, char dest, char temp) {  if (disks > 0) {  hanoi(disks - 1, src, temp, dest);  printf("move disc from %c to %c\n", src, dest);  hanoi(disks - 1, temp, dest, src);  } } int main() {  hanoi(3, 'A', 'C', 'B'); } move disc from A to C move disc from A to B move disc from C to B move disc from A to C move disc from B to A move disc from B to C move disc from A to C 

Non-recursive solution Edit

The list of moves for a tower being carried from one peg onto another one, as produced by the recursive algorithm, has many regularities. When counting the moves starting from 1, the ordinal of the disk to be moved during move m is the number of times m can be divided by 2. Hence every odd move involves the smallest disk. It can also be observed that the smallest disk traverses the pegs f, t, r, f, t, r, etc. for odd height of the tower and traverses the pegs f, r, t, f, r, t, etc. for even height of the tower. This provides the following algorithm, which is easier, carried out by hand, than the recursive algorithm.

In alternate moves:

  • Move the smallest disk to the peg it has not recently come from.
  • Move another disk legally (there will be only one possibility).

For the very first move, the smallest disk goes to peg t if h is odd and to peg r if h is even.

Also observe that:

  • Disks whose ordinals have even parity move in the same sense as the smallest disk.
  • Disks whose ordinals have odd parity move in opposite sense.
  • If h is even, the remaining third peg during successive moves is t, r, f, t, r, f, etc.
  • If h is odd, the remaining third peg during successive moves is r, t, f, r, t, f, etc.

With this knowledge, a set of disks in the middle of an optimal solution can be recovered with no more state information than the positions of each disk:

  • Call the moves detailed above a disk's "natural" move.
  • Examine the smallest top disk that is not disk 0, and note what its only (legal) move would be: if there is no such disk, then we are either at the first or last move.
  • If that move is the disk's "natural" move, then the disk has not been moved since the last disk 0 move, and that move should be taken.
  • If that move is not the disk's "natural" move, then move disk 0.

Binary solution Edit

Disk positions may be determined more directly from the binary (base-2) representation of the move number (the initial state being move #0, with all digits 0, and the final state being with all digits 1), using the following rules:

  • There is one binary digit (bit) for each disk.
  • The most significant (leftmost) bit represents the largest disk. A value of 0 indicates that the largest disk is on the initial peg, while a 1 indicates that it's on the final peg (right peg if number of disks is odd and middle peg otherwise).
  • The bitstring is read from left to right, and each bit can be used to determine the location of the corresponding disk.
  • A bit with the same value as the previous one means that the corresponding disk is stacked on top of the previous disk on the same peg.
    (That is to say: a straight sequence of 1s or 0s means that the corresponding disks are all on the same peg.)
  • A bit with a different value to the previous one means that the corresponding disk is one position to the left or right of the previous one. Whether it is left or right is determined by this rule:
    • Assume that the initial peg is on the left.
    • Also assume "wrapping" – so the right peg counts as one peg "left" of the left peg, and vice versa.
    • Let n be the number of greater disks that are located on the same peg as their first greater disk and add 1 if the largest disk is on the left peg. If n is even, the disk is located one peg to the right, if n is odd, the disk located one peg to the left (in case of even number of disks and vice versa otherwise).

For example, in an 8-disk Hanoi:

  • Move 0 = 00000000.
    • The largest disk is 0, so it is on the left (initial) peg.
    • All other disks are 0 as well, so they are stacked on top of it. Hence all disks are on the initial peg.
  • Move 28 − 1 = 11111111.
    • The largest disk is 1, so it is on the middle (final) peg.
    • All other disks are 1 as well, so they are stacked on top of it. Hence all disks are on the final peg and the puzzle is complete.
  • Move 21610 = 11011000.
    • The largest disk is 1, so it is on the middle (final) peg.
    • Disk two is also 1, so it is stacked on top of it, on the middle peg.
    • Disk three is 0, so it is on another peg. Since n is odd (n = 1), it is one peg to the left, i.e. on the left peg.
    • Disk four is 1, so it is on another peg. Since n is odd (n = 1), it is one peg to the left, i.e. on the right peg.
    • Disk five is also 1, so it is stacked on top of it, on the right peg.
    • Disk six is 0, so it is on another peg. Since n is even (n = 2), the disk is one peg to the right, i.e. on the left peg.
    • Disks seven and eight are also 0, so they are stacked on top of it, on the left peg.

The source and destination pegs for the mth move can also be found elegantly from the binary representation of m using bitwise operations. To use the syntax of the C programming language, move m is from peg (m & m - 1) % 3 to peg ((m | m - 1) + 1) % 3, where the disks begin on peg 0 and finish on peg 1 or 2 according as whether the number of disks is even or odd. Another formulation is from peg (m - (m & -m)) % 3 to peg (m + (m & -m)) % 3.

Furthermore, the disk to be moved is determined by the number of times the move count (m) can be divided by 2 (i.e. the number of zero bits at the right), counting the first move as 1 and identifying the disks by the numbers 0, 1, 2, etc. in order of increasing size. This permits a very fast non-recursive computer implementation to find the positions of the disks after m moves without reference to any previous move or distribution of disks.

The operation, which counts the number of consecutive zeros at the end of a binary number, gives a simple solution to the problem: the disks are numbered from zero, and at move m, disk number count trailing zeros is moved the minimal possible distance to the right (circling back around to the left as needed).[10]

Gray-code solution Edit

The binary numeral system of Gray codes gives an alternative way of solving the puzzle. In the Gray system, numbers are expressed in a binary combination of 0s and 1s, but rather than being a standard positional numeral system, the Gray code operates on the premise that each value differs from its predecessor by only one (and exactly one) bit changed.

If one counts in Gray code of a bit size equal to the number of disks in a particular Tower of Hanoi, begins at zero and counts up, then the bit changed each move corresponds to the disk to move, where the least-significant bit is the smallest disk, and the most-significant bit is the largest.

Counting moves from 1 and identifying the disks by numbers starting from 0 in order of increasing size, the ordinal of the disk to be moved during move m is the number of times m can be divided by 2.

This technique identifies which disk to move, but not where to move it to. For the smallest disk, there are always two possibilities. For the other disks there is always one possibility, except when all disks are on the same peg, but in that case either it is the smallest disk that must be moved or the objective has already been achieved. Luckily, there is a rule that does say where to move the smallest disk to. Let f be the starting peg, t the destination peg, and r the remaining third peg. If the number of disks is odd, the smallest disk cycles along the pegs in the order ftrftr, etc. If the number of disks is even, this must be reversed: frtfrt, etc.[11]

The position of the bit change in the Gray code solution gives the size of the disk moved at each step: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, ... (sequence A001511 in the OEIS),[12] a sequence also known as the ruler function, or one more than the power of 2 within the move number. In the Wolfram Language, IntegerExponent[Range[2^8 - 1], 2] + 1 gives moves for the 8-disk puzzle.

Graphical representation Edit

The game can be represented by an undirected graph, the nodes representing distributions of disks and the edges representing moves. For one disk, the graph is a triangle:

 

The graph for two disks is three triangles connected to form the corners of a larger triangle.

A second letter is added to represent the larger disk. Clearly, it cannot initially be moved.

The topmost small triangle now represents the one-move possibilities with two disks:

 

The nodes at the vertices of the outermost triangle represent distributions with all disks on the same peg.

For h + 1 disks, take the graph of h disks and replace each small triangle with the graph for two disks.

For three disks the graph is:

 
 
The game graph of level 7 shows the relatedness to the Sierpiński triangle.
  • call the pegs a, b, and c
  • list disk positions from left to right in order of increasing size

The sides of the outermost triangle represent the shortest ways of moving a tower from one peg to another one. The edge in the middle of the sides of the largest triangle represents a move of the largest disk. The edge in the middle of the sides of each next smaller triangle represents a move of each next smaller disk. The sides of the smallest triangles represent moves of the smallest disk.

In general, for a puzzle with n disks, there are 3n nodes in the graph; every node has three edges to other nodes, except the three corner nodes, which have two: it is always possible to move the smallest disk to one of the two other pegs, and it is possible to move one disk between those two pegs except in the situation where all disks are stacked on one peg. The corner nodes represent the three cases where all the disks are stacked on one peg. The diagram for n + 1 disks is obtained by taking three copies of the n-disk diagram—each one representing all the states and moves of the smaller disks for one particular position of the new largest disk—and joining them at the corners with three new edges, representing the only three opportunities to move the largest disk. The resulting figure thus has 3n+1 nodes and still has three corners remaining with only two edges.

As more disks are added, the graph representation of the game will resemble a fractal figure, the Sierpiński triangle. It is clear that the great majority of positions in the puzzle will never be reached when using the shortest possible solution; indeed, if the priests of the legend are using the longest possible solution (without re-visiting any position), it will take them 364 − 1 moves, or more than 1023 years.

The longest non-repetitive way for three disks can be visualized by erasing the unused edges:

 

Incidentally, this longest non-repetitive path can be obtained by forbidding all moves from a to c.

The Hamiltonian cycle for three disks is:

 

The graphs clearly show that:

  • From every arbitrary distribution of disks, there is exactly one shortest way to move all disks onto one of the three pegs.
  • Between every pair of arbitrary distributions of disks there are one or two different shortest paths.
  • From every arbitrary distribution of disks, there are one or two different longest non selfcrossing paths to move all disks to one of the three pegs.
  • Between every pair of arbitrary distributions of disks there are one or two different longest non self-crossing paths.
  • Let Nh be the number of non-self-crossing paths for moving a tower of h disks from one peg to another one. Then:
    • N1 = 2
    • Nh+1 = (Nh)2 + (Nh)3

This gives Nh to be 2, 12, 1872, 6563711232, ... (sequence A125295 in the OEIS)

Variations Edit

Linear Hanoi Edit

If all moves must be between adjacent pegs (i.e. given pegs A, B, C, one cannot move directly between pegs A and C), then moving a stack of n disks from peg A to peg C takes 3n − 1 moves. The solution uses all 3n valid positions, always taking the unique move that does not undo the previous move. The position with all disks at peg B is reached halfway, i.e. after (3n − 1) / 2 moves.[13][14]

Cyclic Hanoi Edit

In Cyclic Hanoi, we are given three pegs (A, B, C), which are arranged as a circle with the clockwise and the counterclockwise directions being defined as A – B – C – A and A – C – B – A respectively. The moving direction of the disk must be clockwise.[15] It suffices to represent the sequence of disks to be moved. The solution can be found using two mutually recursive procedures:

To move n disks counterclockwise to the neighbouring target peg:

  1. move n − 1 disks counterclockwise to the target peg
  2. move disk #n one step clockwise
  3. move n − 1 disks clockwise to the start peg
  4. move disk #n one step clockwise
  5. move n − 1 disks counterclockwise to the target peg

To move n disks clockwise to the neighbouring target peg:

  1. move n − 1 disks counterclockwise to a spare peg
  2. move disk #n one step clockwise
  3. move n − 1 disks counterclockwise to the target peg

Let C(n) and A(n) represent moving n disks clockwise and counterclockwise, then we can write down both formulas:

 C(n) = A(n-1) n A(n-1) and A(n) = A(n-1) n C(n-1) n A(n-1). 
Thus C(1) = 1 and A(1) = 1 1, C(2) = 1 1 2 1 1 and A(2) = 1 1 2 1 2 1 1. 

The solution for the Cyclic Hanoi has some interesting properties:

1)The move-patterns of transferring a tower of disks from a peg to another peg are symmetric with respect to the center points.

2)The smallest disk is the first and last disk to move.

3)Groups of the smallest disk moves alternate with single moves of other disks.

4)The number of disks moves specified by C(n) and A(n) are minimal.

With four pegs and beyond Edit

Although the three-peg version has a simple recursive solution long been known, the optimal solution for the Tower of Hanoi problem with four pegs (called Reve's puzzle) was not verified until 2014, by Bousch.[16]

However, in case of four or more pegs, the Frame–Stewart algorithm is known without proof of optimality since 1941.[17]

For the formal derivation of the exact number of minimal moves required to solve the problem by applying the Frame–Stewart algorithm (and other equivalent methods), see the following paper.[18]

For other variants of the four-peg Tower of Hanoi problem, see Paul Stockmeyer's survey paper.[19]

The so-called Towers of Bucharest and Towers of Klagenfurt game configurations yield ternary and pentary Gray codes.[20]

Frame–Stewart algorithm Edit

The Frame–Stewart algorithm is described below:

  • Let   be the number of disks.
  • Let   be the number of pegs.
  • Define   to be the minimum number of moves required to transfer n disks using r pegs.

The algorithm can be described recursively:

  1. For some  ,  , transfer the top   disks to a single peg other than the start or destination pegs, taking   moves.
  2. Without disturbing the peg that now contains the top   disks, transfer the remaining   disks to the destination peg, using only the remaining   pegs, taking   moves.
  3. Finally, transfer the top   disks to the destination peg, taking   moves.

The entire process takes   moves. Therefore, the count   should be picked for which this quantity is minimum. In the 4-peg case, the optimal   equals  , where   is the nearest integer function.[21] For example, in the UPenn CIS 194 course on Haskell, the first assignment page[22] lists the optimal solution for the 15-disk and 4-peg case as 129 steps, which is obtained for the above value of k.

This algorithm is presumed to be optimal for any number of pegs; its number of moves is 2Θ(n1/(r−2)) (for fixed r).

General shortest paths and the number 466/885 Edit

A curious generalization of the original goal of the puzzle is to start from a given configuration of the disks where all disks are not necessarily on the same peg and to arrive in a minimal number of moves at another given configuration. In general, it can be quite difficult to compute a shortest sequence of moves to solve this problem. A solution was proposed by Andreas Hinz and is based on the observation that in a shortest sequence of moves, the largest disk that needs to be moved (obviously one may ignore all of the largest disks that will occupy the same peg in both the initial and final configurations) will move either exactly once or exactly twice.

The mathematics related to this generalized problem becomes even more interesting when one considers the average number of moves in a shortest sequence of moves between two initial and final disk configurations that are chosen at random. Hinz and Chan Tat-Hung independently discovered[23][24] (see also [25]: Chapter 1, p. 14 ) that the average number of moves in an n-disk Tower is given by the following exact formula:

 

For large enough n, only the first and second terms do not converge to zero, so we get an asymptotic expression:  , as  . Thus intuitively, we could interpret the fraction of   as representing the ratio of the labor one has to perform when going from a randomly chosen configuration to another randomly chosen configuration, relative to the difficulty of having to cross the "most difficult" path of length   which involves moving all the disks from one peg to another. An alternative explanation for the appearance of the constant 466/885, as well as a new and somewhat improved algorithm for computing the shortest path, was given by Romik.[26]

Magnetic Hanoi Edit

In Magnetic Tower of Hanoi, each disk has two distinct sides North and South (typically colored "red" and "blue"). Disks must not be placed with the similar poles together—magnets in each disk prevent this illegal move. Also, each disk must be flipped as it is moved.

 
Initial configuration of bicolor Towers of Hanoi (n=4)

Bicolor Towers of Hanoi Edit

This variation of the famous Tower of Hanoi puzzle was offered to grade 3–6 students at 2ème Championnat de France des Jeux Mathématiques et Logiques held in July 1988.[27]

 
Final configuration of bicolor Towers of Hanoi (n=4)

The rules of the puzzle are essentially the same: disks are transferred between pegs one at a time. At no time may a bigger disk be placed on top of a smaller one. The difference is that now for every size there are two disks: one black and one white. Also, there are now two towers of disks of alternating colors. The goal of the puzzle is to make the towers monochrome (same color). The biggest disks at the bottom of the towers are assumed to swap positions.

Tower of Hanoy Edit

A variation of the puzzle has been adapted as a solitaire game with nine playing cards under the name Tower of Hanoy.[28][29] It is not known whether the altered spelling of the original name is deliberate or accidental.[30]

Applications Edit

 
3D AFM topographic image of multilayered palladium nanosheet on silicon wafer, with Tower of Hanoi-like structure.[31]

The Tower of Hanoi is frequently used in psychological research on problem-solving. There also exists a variant of this task called Tower of London for neuropsychological diagnosis and treatment of disorders of executive function.[citation needed]

Zhang and Norman[32] used several isomorphic (equivalent) representations of the game to study the impact of representational effect in task design. They demonstrated an impact on user performance by changing the way that the rules of the game are represented, using variations in the physical design of the game components. This knowledge has impacted on the development of the TURF framework[33] for the representation of human–computer interaction.

The Tower of Hanoi is also used as a backup rotation scheme when performing computer data backups where multiple tapes/media are involved.[citation needed]

As mentioned above, the Tower of Hanoi is popular for teaching recursive algorithms to beginning programming students. A pictorial version of this puzzle is programmed into the emacs editor, accessed by typing M-x hanoi. There is also a sample algorithm written in Prolog.[citation needed]

The Tower of Hanoi is also used as a test by neuropsychologists trying to evaluate frontal lobe deficits.[34]

In 2010, researchers published the results of an experiment that found that the ant species Linepithema humile were successfully able to solve the 3-disk version of the Tower of Hanoi problem through non-linear dynamics and pheromone signals.[35]

In 2014, scientists synthesized multilayered palladium nanosheets with a Tower of Hanoi like structure.[31]

In popular culture Edit

In the science fiction story "Now Inhale", by Eric Frank Russell, a human is held prisoner on a planet where the local custom is to make the prisoner play a game until it is won or lost before his execution. The protagonist knows that a rescue ship might take a year or more to arrive, so he chooses to play Towers of Hanoi with 64 disks. This story makes reference to the legend about the Buddhist monks playing the game until the end of the world.[36][37][38]

In the 1966 Doctor Who story The Celestial Toymaker, the eponymous villain forces the Doctor to play a ten-piece 1,023-move Tower of Hanoi game entitled The Trilogic Game with the pieces forming a pyramid shape when stacked.[37][39]

In 2007, the concept of the Towers Of Hanoi problem was used in Professor Layton and the Diabolical Box in puzzles 6, 83, and 84, but the disks had been changed to pancakes. The puzzle was based around a dilemma where the chef of a restaurant had to move a pile of pancakes from one plate to the other with the basic principles of the original puzzle (i.e. three plates that the pancakes could be moved onto, not being able to put a larger pancake onto a smaller one, etc.)

In the film Rise of the Planet of the Apes (2011), this puzzle, called in the film the "Lucas Tower", is used as a test to study the intelligence of apes.[37]

The puzzle is featured regularly in adventure and puzzle games. Since it is easy to implement, and easily recognised, it is well-suited to use as a puzzle in a larger graphical game (e.g. Star Wars: Knights of the Old Republic and Mass Effect).[40] Some implementations use straight disks, but others disguise the puzzle in some other form. There is an arcade version by Sega.[41]

A 15-disk version of the puzzle appears in the game Sunless Sea as a lock to a tomb. The player has the option to click through each move of the puzzle in order to solve it, but the game notes that it will take 32767 moves to complete. If an especially dedicated player does click through to the end of the puzzle, it is revealed that completing the puzzle does not unlock the door.

In Yu-Gi-Oh! VRAINS, a hacking group called "Knight of Hanoi" create a structure named "Tower of Hanoi" within the eponymous VRAINS virtual reality network.

This was first used as a challenge in Survivor Thailand in 2002 but rather than rings, the pieces were made to resemble a temple. Sook Jai threw the challenge to get rid of Jed even though Shii-Ann knew full well how to complete the puzzle. The problem is featured as part of a reward challenge in a 2011 episode of the American version of the Survivor TV series. Both players (Ozzy Lusth and Benjamin "Coach" Wade) struggled to understand how to solve the puzzle and are aided by their fellow tribe members.

In Genshin Impact, this puzzle is shown in Faruzan's hangout quest, "Early Learning Mechanism", where she mentions seeing it as a mechanism and uses it to make a toy prototype for children. She calls it Pagoda stacks.

See also Edit

Notes Edit

  1. ^ a b "A000225 - OEIS". oeis.org. Retrieved 2021-09-03.
  2. ^ Hofstadter, Douglas R. (1985). Metamagical Themas : Questing for the Essence of Mind and Pattern. New York: Basic Books. ISBN 978-0-465-04540-2.
  3. ^ Cohn, Ernst M. (1963). "A device for demonstrating some elementary properties of integers". The Mathematics Teacher. National Council of Teachers of Mathematics. 56 (2): 84. doi:10.5951/MT.56.2.0084. ISSN 0025-5769. Retrieved 9 March 2021.
  4. ^ Hinz, Andreas M.; Klavžar, Sandi; Milutinović, Uroš; Petr, Ciril (2013-01-31). The Tower of Hanoi – Myths and Maths. ISBN 978-3034802369.
  5. ^ Spitznagel, Edward L. (1971). Selected topics in mathematics. Holt, Rinehart and Winston. p. 137. ISBN 978-0-03-084693-9.
  6. ^ Moscovich, Ivan (2001). 1000 playthinks: puzzles, paradoxes, illusions & games. Workman. ISBN 978-0-7611-1826-8.
  7. ^ Petković, Miodrag (2009). Famous Puzzles of Great Mathematicians. AMS Bookstore. p. 197. ISBN 978-0-8218-4814-2.
  8. ^ Troshkin, M. "Doomsday Comes: A Nonrecursive Analysis of the Recursive Towers-of-Hanoi Problem". Focus (in Russian). 95 (2): 10–14.
  9. ^ Mayer, Herbert; Perkins, Don (1984). "Towers of Hanoi Revisited". SIGPLAN Notices. 19 (2): 80–84. doi:10.1145/948566.948573. S2CID 2304761.
  10. ^ Warren, Henry S. (2003). "Section 5-4: Counting Trailing 0's.". Hacker's delight (1st ed.). Boston MA: Addison-Wesley. ISBN 978-0-201-91465-8.
  11. ^ Miller, Charles D. (2000). "Ch. 4: Binary Numbers and the Standard Gray Code". (9 ed.). Addison Wesley Longman. ISBN 978-0-321-07607-6 . Archived from the original on 2004-08-21. {{cite book}}: Missing or empty |title= (help)
  12. ^ Gros, L. (1872). Théorie du Baguenodier. Lyon: Aimé Vingtrinier.
  13. ^ "Question Corner -- Generalizing the Towers of Hanoi Problem". www.math.toronto.edu. Retrieved 2023-07-28.
  14. ^ Hinz, Andreas M.; Klavzar, Sandi; Milutinovic, Uros; Petr, Ciril; Stewart, Ian (2013). The Tower of Hanoi – Myths and Maths (1st ed.). Basel: Springer Science+Business Media. pp. 241–259. ISBN 9783034802369.
  15. ^ Gedeon, T. D. (1996). "The Cyclic Towers of Hanoi: An Iterative Solution Produced by Transformation". The Computer Journal. 39 (4): 353–356. doi:10.1093/comjnl/39.4.353.
  16. ^ Bousch, T. (2014). (PDF). Bull. Belg. Math. Soc. Simon Stevin. 21 (5): 895–912. doi:10.36045/bbms/1420071861. S2CID 14243013. Archived from the original (PDF) on 2017-09-21.
  17. ^ Stewart, B. M.; Frame, J. S. (March 1941). "Solution to advanced problem 3819". American Mathematical Monthly. 48 (3): 216–9. doi:10.2307/2304268. JSTOR 2304268.
  18. ^ Klavzar, Sandi; Milutinovi, Uro; Petrb, Ciril (2002). "Variations on the Four-Post Tower of Hanoi Puzzle" (Postscript). Congressus Numerantium. 102.
  19. ^ Stockmeyer, Paul (1994). "Variations on the Four-Post Tower of Hanoi Puzzle" (Postscript). Congressus Numerantium. 102: 3–12.
  20. ^ Herter, Felix; Rote, Günter (2018-11-14) [2018-08-09, 2017-12, 2017-08-09, 2016-04-22]. "Loopless Gray Code Enumeration and the Tower of Bucharest" (PDF). Theoretical Computer Science. Berlin, Germany. 748: 40–54. arXiv:1604.06707. doi:10.1016/j.tcs.2017.11.017. ISSN 0304-3975. S2CID 4014870. (PDF) from the original on 2020-12-16. Retrieved 2020-12-16. (15/18/19/24 pages)
  21. ^ "University of Toronto CSC148 Slog". April 5, 2014. Retrieved July 22, 2015.
  22. ^ "UPenn CIS 194 Introduction to Haskell Assignment 1" (PDF). Retrieved January 31, 2016.
  23. ^ Hinz, A. (1989). "The Tower of Hanoi". L'Enseignement Mathématique. 35: 289–321. doi:10.5169/seals-57378.
  24. ^ Chan, T. (1988). "A statistical analysis of the towers of Hanoi problem". Internat. J. Comput. Math. 28 (1–4): 57–65. doi:10.1080/00207168908803728.
  25. ^ Stewart, Ian (2004). Another Fine Math You've Got Me Into... Courier Dover. ISBN 978-0-7167-2342-4.
  26. ^ Romik, D. (2006). "Shortest paths in the Tower of Hanoi graph and finite automata". SIAM Journal on Discrete Mathematics. 20 (3): 610–622. arXiv:math/0310109. doi:10.1137/050628660. S2CID 8342396.
  27. ^ Prasad Vithal Chaugule (2015). "A Recursive Solution to Bicolor Towers of Hanoi Problem" (PDF). Recreational Mathematics Magazine (4): 37–48. ISSN 2182-1976.
  28. ^ Arnold, Peter (2003-05-28). Card Games for One. Sterling Publishing Company. ISBN 978-0-600-60727-4.
  29. ^ Hedges, Sid G. (2018-03-06). Everybody's Book of Hobbies. Read Books Ltd. ISBN 978-1-5287-8344-6.
  30. ^ "Tower Of Hanoy Patience (AKA Tower Of Hanoi Patience)". bbcmicro.co.uk. Retrieved 2020-10-17.
  31. ^ a b Yin, Xi; Liu, Xinhong; Pan, Yung-Tin; Walsh, Kathleen A.; Yang, Hong (November 4, 2014). "Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets". Nano Letters. 14 (12): 7188–94. Bibcode:2014NanoL..14.7188Y. doi:10.1021/nl503879a. PMID 25369350.
  32. ^ Zhang, J (1994). "Representations in distributed cognitive tasks" (PDF). Cognitive Science. 18: 87–122. doi:10.1016/0364-0213(94)90021-3.
  33. ^ Zhang, Jiajie; Walji, Muhammad F. (2011). "TURF: Toward a unified framework of EHR usability". Journal of Biomedical Informatics. 44 (6): 1056–67. doi:10.1016/j.jbi.2011.08.005. PMID 21867774.
  34. ^ Beers, S. R.; Rosenberg, D. R.; Dick, E. L.; Williams, T.; O'Hearn, K. M.; Birmaher, B.; Ryan, C. M. (1999). "Neuropsychological study of frontal lobe function in psychotropic-naive children with obsessive-compulsive disorder". The American Journal of Psychiatry. 156 (5): 777–9. doi:10.1176/ajp.156.5.777. PMID 10327915. S2CID 21359382.
  35. ^ Reid, C.R.; Sumpter, D.J.; Beekman, M. (January 2011). "Optimisation in a natural system: Argentine ants solve the Towers of Hanoi". J. Exp. Biol. 214 (Pt 1): 50–8. CiteSeerX 10.1.1.231.9201. doi:10.1242/jeb.048173. PMID 21147968. S2CID 18819977.
  36. ^ Russell, Eric Frank (April 1959). "Now Inhale". Novelettes. Astounding Science Fiction. Vol. 63, no. 2. pp. 31–77.
    • Reprinted: Russell, Eric Frank (2000). "Now Inhale". In Katze, Rick (ed.). Major Ingredients: The Selected Short Stories of Eric Frank Russell. Framingham, Mass.: NESFA Press. pp. 399–417. ISBN 978-1-886778-10-8.
  37. ^ a b c Bonanome, Marianna C.; Dean, Margaret H.; Dean, Judith Putnam (2018). "Self-Similar Groups". A Sampling of Remarkable Groups: Thompson's, Self-similar, Lamplighter, and Baumslag-Solitar. Compact Textbooks in Mathematics. Cham, Switzerland: Springer. p. 96. doi:10.1007/978-3-030-01978-5_3. ISBN 978-3-030-01976-1.
  38. ^ Birtwistle, Graham (January 1985). "The coroutines of Hanoi". ACM SIGPLAN Notices. 20 (1): 9–10. doi:10.1145/988284.988286. S2CID 7310661.
  39. ^ "The Fourth Dimension: The Celestial Toymaker". Doctor Who. BBC One. Retrieved April 2, 2021.
  40. ^ "Tower of Hanoi (video game concept)". Giantbomb.com. Retrieved 2010-12-05.
  41. ^ . Sega Amusements. Archived from the original on 2012-03-01. Retrieved 2012-02-26.

External links Edit

tower, hanoi, this, article, about, mathematical, disk, game, card, game, tower, hanoy, vietnamese, skyscraper, keangnam, hanoi, landmark, tower, also, called, problem, benares, temple, tower, brahma, lucas, tower, sometimes, pluralized, towers, simply, pyrami. This article is about the mathematical disk game For the card game see Tower of Hanoy For the Vietnamese skyscraper see Keangnam Hanoi Landmark Tower The Tower of Hanoi also called The problem of Benares Temple 1 or Tower of Brahma or Lucas Tower 2 and sometimes pluralized as Towers or simply pyramid puzzle 3 is a mathematical game or puzzle consisting of three rods and a number of disks of various diameters which can slide onto any rod The puzzle begins with the disks stacked on one rod in order of decreasing size the smallest at the top thus approximating a conical shape The objective of the puzzle is to move the entire stack to the last rod obeying the following rules Only one disk may be moved at a time Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod No disk may be placed on top of a disk that is smaller than it A model set of the Tower of Hanoi with 8 disks An animated solution of the Tower of Hanoi puzzle for T 4 3 Tower of Hanoi interactive display at Mexico City s Universum Museum With 3 disks the puzzle can be solved in 7 moves The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n 1 where n is the number of disks Contents 1 Origins 2 Solution 2 1 Iterative solution 2 1 1 Simpler statement of iterative solution 2 1 2 Equivalent iterative solution 2 2 Recursive solution 2 2 1 Logical analysis of the recursive solution 2 2 2 Recursive implementation 2 3 Non recursive solution 2 4 Binary solution 2 5 Gray code solution 3 Graphical representation 4 Variations 4 1 Linear Hanoi 4 2 Cyclic Hanoi 4 3 With four pegs and beyond 4 3 1 Frame Stewart algorithm 4 4 General shortest paths and the number 466 885 4 5 Magnetic Hanoi 4 6 Bicolor Towers of Hanoi 4 7 Tower of Hanoy 5 Applications 6 In popular culture 7 See also 8 Notes 9 External linksOrigins EditThe puzzle was invented by the French mathematician Edouard Lucas in 1883 Numerous myths regarding the ancient and mystical nature of the puzzle popped up almost immediately 4 including a myth about an Indian temple in Kashi Vishwanath containing a large room with three time worn posts in it surrounded by 64 golden disks But this story of Indian Kashi Vishwanath temple was spread tongue in cheek by a friend of Edouard Lucas 5 If the legend were true and if the priests were able to move disks at a rate of one per second using the smallest number of moves it would take them 264 1 seconds or roughly 585 billion years to finish 6 which is about 42 times the estimated current age of the universe There are many variations on this legend For instance in some tellings the temple is a monastery and the priests are monks The temple or monastery may be in various locales including Hanoi and may be associated with any religion In some versions other elements are introduced such as the fact that the tower was created at the beginning of the world or that the priests or monks may make only one move per day Solution EditThe puzzle can be played with any number of disks although many toy versions have around 7 to 9 of them The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n 1 where n is the number of disks 7 This is precisely the nth Mersenne number without primality requirements 1 Iterative solution Edit nbsp Animation of an iterative algorithm solving 6 disk problemA simple solution for the toy puzzle is to alternate moves between the smallest piece and a non smallest piece When moving the smallest piece always move it to the next position in the same direction to the right if the starting number of pieces is even to the left if the starting number of pieces is odd If there is no tower position in the chosen direction move the piece to the opposite end but then continue to move in the correct direction For example if you started with three pieces you would move the smallest piece to the opposite end then continue in the left direction after that When the turn is to move the non smallest piece there is only one legal move Doing this will complete the puzzle in the fewest moves 8 Simpler statement of iterative solution Edit For an even number of disks Make the legal move between pegs A and B in either direction Make the legal move between pegs A and C in either direction Make the legal move between pegs B and C in either direction Repeat until complete For an odd number of disks Make the legal move between pegs A and C in either direction Make the legal move between pegs A and B in either direction Make the legal move between pegs B and C in either direction Repeat until complete After each move check if the C peg is complete In each case a total of 2n 1 moves are made Equivalent iterative solution Edit Another way to generate the unique optimal iterative solution Number the disks 1 through n largest to smallest If n is odd the first move is from peg A to peg C If n is even the first move is from peg A to peg B Now add these constraints No odd disk may be placed directly on an odd disk No even disk may be placed directly on an even disk There will sometimes be two possible pegs one will have disks and the other will be empty Place the disk on the non empty peg Never move a disk twice in succession Considering those constraints after the first move there is only one legal move at every subsequent turn The sequence of these unique moves is an optimal solution to the problem equivalent to the iterative solution described above 9 Recursive solution Edit nbsp Illustration of a recursive solution for the Towers of Hanoi puzzle with 4 disks In the SVG file click a grey button to expand or collapse itThe key to solving a problem recursively is to recognize that it can be broken down into a collection of smaller sub problems to each of which that same general solving procedure that we are seeking applies and the total solution is then found in some simple way from those sub problems solutions Each of these created sub problems being smaller guarantees that the base case s will eventually be reached Thence for the Towers of Hanoi label the pegs A B C let n be the total number of disks number the disks from 1 smallest topmost to n largest bottom most Assuming all n disks are distributed in valid arrangements among the pegs assuming there are m top disks on a source peg and all the rest of the disks are larger than m so they can be safely ignored to move m disks from a source peg to a target peg using a spare peg without violating the rules Move m 1 disks from the source to the spare peg by the same general solving procedure Rules are not violated by assumption This leaves the disk m as a top disk on the source peg Move the disk m from the source to the target peg which is guaranteed to be a valid move by the assumptions a simple step Move the m 1 disks that we have just placed on the spare from the spare to the target peg by the same general solving procedure so they are placed on top of the disk m without violating the rules The base case is to move 0 disks in steps 1 and 3 that is do nothing which obviously doesn t violate the rules The full Tower of Hanoi solution then consists of moving n disks from the source peg A to the target peg C using B as the spare peg This approach can be given a rigorous mathematical proof with mathematical induction and is often used as an example of recursion when teaching programming Logical analysis of the recursive solution Edit As in many mathematical puzzles finding a solution is made easier by solving a slightly more general problem how to move a tower of h height disks from a starting peg f A from onto a destination peg t C to B being the remaining third peg and assuming t f First observe that the problem is symmetric for permutations of the names of the pegs symmetric group S3 If a solution is known moving from peg A to peg C then by renaming the pegs the same solution can be used for every other choice of starting and destination peg If there is only one disk or even none at all the problem is trivial If h 1 then simply move the disk from peg A to peg C If h gt 1 then somewhere along the sequence of moves the largest disk must be moved from peg A to another peg preferably to peg C The only situation that allows this move is when all smaller h 1 disks are on peg B Hence first all h 1 smaller disks must go from A to B Then move the largest disk and finally move the h 1 smaller disks from peg B to peg C The presence of the largest disk does not impede any move of the h 1 smaller disks and can be temporarily ignored Now the problem is reduced to moving h 1 disks from one peg to another one first from A to B and subsequently from B to C but the same method can be used both times by renaming the pegs The same strategy can be used to reduce the h 1 problem to h 2 h 3 and so on until only one disk is left This is called recursion This algorithm can be schematized as follows Identify the disks in order of increasing size by the natural numbers from 0 up to but not including h Hence disk 0 is the smallest one and disk h 1 the largest one The following is a procedure for moving a tower of h disks from a peg A onto a peg C with B being the remaining third peg If h gt 1 then first use this procedure to move the h 1 smaller disks from peg A to peg B Now the largest disk i e disk h can be moved from peg A to peg C If h gt 1 then again use this procedure to move the h 1 smaller disks from peg B to peg C By means of mathematical induction it is easily proven that the above procedure requires the minimal number of moves possible and that the produced solution is the only one with this minimal number of moves Using recurrence relations the exact number of moves that this solution requires can be calculated by 2 h 1 displaystyle 2 h 1 nbsp This result is obtained by noting that steps 1 and 3 take T h 1 displaystyle T h 1 nbsp moves and step 2 takes one move giving T h 2 T h 1 1 displaystyle T h 2T h 1 1 nbsp Recursive implementation Edit The following C function demonstrates the recursive solution It will print out a list of move instructions Output from a call for 3 disks is shown include lt stdio h gt void hanoi int disks char src char dest char temp if disks gt 0 hanoi disks 1 src temp dest printf move disc from c to c n src dest hanoi disks 1 temp dest src int main hanoi 3 A C B move disc from A to C move disc from A to B move disc from C to B move disc from A to C move disc from B to A move disc from B to C move disc from A to C Non recursive solution Edit The list of moves for a tower being carried from one peg onto another one as produced by the recursive algorithm has many regularities When counting the moves starting from 1 the ordinal of the disk to be moved during move m is the number of times m can be divided by 2 Hence every odd move involves the smallest disk It can also be observed that the smallest disk traverses the pegs f t r f t r etc for odd height of the tower and traverses the pegs f r t f r t etc for even height of the tower This provides the following algorithm which is easier carried out by hand than the recursive algorithm In alternate moves Move the smallest disk to the peg it has not recently come from Move another disk legally there will be only one possibility For the very first move the smallest disk goes to peg t if h is odd and to peg r if h is even Also observe that Disks whose ordinals have even parity move in the same sense as the smallest disk Disks whose ordinals have odd parity move in opposite sense If h is even the remaining third peg during successive moves is t r f t r f etc If h is odd the remaining third peg during successive moves is r t f r t f etc With this knowledge a set of disks in the middle of an optimal solution can be recovered with no more state information than the positions of each disk Call the moves detailed above a disk s natural move Examine the smallest top disk that is not disk 0 and note what its only legal move would be if there is no such disk then we are either at the first or last move If that move is the disk s natural move then the disk has not been moved since the last disk 0 move and that move should be taken If that move is not the disk s natural move then move disk 0 Binary solution Edit Disk positions may be determined more directly from the binary base 2 representation of the move number the initial state being move 0 with all digits 0 and the final state being with all digits 1 using the following rules There is one binary digit bit for each disk The most significant leftmost bit represents the largest disk A value of 0 indicates that the largest disk is on the initial peg while a 1 indicates that it s on the final peg right peg if number of disks is odd and middle peg otherwise The bitstring is read from left to right and each bit can be used to determine the location of the corresponding disk A bit with the same value as the previous one means that the corresponding disk is stacked on top of the previous disk on the same peg That is to say a straight sequence of 1s or 0s means that the corresponding disks are all on the same peg A bit with a different value to the previous one means that the corresponding disk is one position to the left or right of the previous one Whether it is left or right is determined by this rule Assume that the initial peg is on the left Also assume wrapping so the right peg counts as one peg left of the left peg and vice versa Let n be the number of greater disks that are located on the same peg as their first greater disk and add 1 if the largest disk is on the left peg If n is even the disk is located one peg to the right if n is odd the disk located one peg to the left in case of even number of disks and vice versa otherwise For example in an 8 disk Hanoi Move 0 00000000 The largest disk is 0 so it is on the left initial peg All other disks are 0 as well so they are stacked on top of it Hence all disks are on the initial peg Move 28 1 11111111 The largest disk is 1 so it is on the middle final peg All other disks are 1 as well so they are stacked on top of it Hence all disks are on the final peg and the puzzle is complete Move 21610 11011000 The largest disk is 1 so it is on the middle final peg Disk two is also 1 so it is stacked on top of it on the middle peg Disk three is 0 so it is on another peg Since n is odd n 1 it is one peg to the left i e on the left peg Disk four is 1 so it is on another peg Since n is odd n 1 it is one peg to the left i e on the right peg Disk five is also 1 so it is stacked on top of it on the right peg Disk six is 0 so it is on another peg Since n is even n 2 the disk is one peg to the right i e on the left peg Disks seven and eight are also 0 so they are stacked on top of it on the left peg The source and destination pegs for the mth move can also be found elegantly from the binary representation of m using bitwise operations To use the syntax of the C programming language move m is from peg m amp m 1 3 to peg m m 1 1 3 where the disks begin on peg 0 and finish on peg 1 or 2 according as whether the number of disks is even or odd Another formulation is from peg m m amp m 3 to peg m m amp m 3 Furthermore the disk to be moved is determined by the number of times the move count m can be divided by 2 i e the number of zero bits at the right counting the first move as 1 and identifying the disks by the numbers 0 1 2 etc in order of increasing size This permits a very fast non recursive computer implementation to find the positions of the disks after m moves without reference to any previous move or distribution of disks The operation which counts the number of consecutive zeros at the end of a binary number gives a simple solution to the problem the disks are numbered from zero and at move m disk number count trailing zeros is moved the minimal possible distance to the right circling back around to the left as needed 10 Gray code solution Edit The binary numeral system of Gray codes gives an alternative way of solving the puzzle In the Gray system numbers are expressed in a binary combination of 0s and 1s but rather than being a standard positional numeral system the Gray code operates on the premise that each value differs from its predecessor by only one and exactly one bit changed If one counts in Gray code of a bit size equal to the number of disks in a particular Tower of Hanoi begins at zero and counts up then the bit changed each move corresponds to the disk to move where the least significant bit is the smallest disk and the most significant bit is the largest Counting moves from 1 and identifying the disks by numbers starting from 0 in order of increasing size the ordinal of the disk to be moved during move m is the number of times m can be divided by 2 This technique identifies which disk to move but not where to move it to For the smallest disk there are always two possibilities For the other disks there is always one possibility except when all disks are on the same peg but in that case either it is the smallest disk that must be moved or the objective has already been achieved Luckily there is a rule that does say where to move the smallest disk to Let f be the starting peg t the destination peg and r the remaining third peg If the number of disks is odd the smallest disk cycles along the pegs in the order f t r f t r etc If the number of disks is even this must be reversed f r t f r t etc 11 The position of the bit change in the Gray code solution gives the size of the disk moved at each step 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 sequence A001511 in the OEIS 12 a sequence also known as the ruler function or one more than the power of 2 within the move number In the Wolfram Language IntegerExponent Range 2 8 1 2 1 gives moves for the 8 disk puzzle Graphical representation EditMain article Hanoi graph The game can be represented by an undirected graph the nodes representing distributions of disks and the edges representing moves For one disk the graph is a triangle nbsp The graph for two disks is three triangles connected to form the corners of a larger triangle A second letter is added to represent the larger disk Clearly it cannot initially be moved The topmost small triangle now represents the one move possibilities with two disks nbsp The nodes at the vertices of the outermost triangle represent distributions with all disks on the same peg For h 1 disks take the graph of h disks and replace each small triangle with the graph for two disks For three disks the graph is nbsp nbsp The game graph of level 7 shows the relatedness to the Sierpinski triangle call the pegs a b and c list disk positions from left to right in order of increasing sizeThe sides of the outermost triangle represent the shortest ways of moving a tower from one peg to another one The edge in the middle of the sides of the largest triangle represents a move of the largest disk The edge in the middle of the sides of each next smaller triangle represents a move of each next smaller disk The sides of the smallest triangles represent moves of the smallest disk In general for a puzzle with n disks there are 3n nodes in the graph every node has three edges to other nodes except the three corner nodes which have two it is always possible to move the smallest disk to one of the two other pegs and it is possible to move one disk between those two pegs except in the situation where all disks are stacked on one peg The corner nodes represent the three cases where all the disks are stacked on one peg The diagram for n 1 disks is obtained by taking three copies of the n disk diagram each one representing all the states and moves of the smaller disks for one particular position of the new largest disk and joining them at the corners with three new edges representing the only three opportunities to move the largest disk The resulting figure thus has 3n 1 nodes and still has three corners remaining with only two edges As more disks are added the graph representation of the game will resemble a fractal figure the Sierpinski triangle It is clear that the great majority of positions in the puzzle will never be reached when using the shortest possible solution indeed if the priests of the legend are using the longest possible solution without re visiting any position it will take them 364 1 moves or more than 1023 years The longest non repetitive way for three disks can be visualized by erasing the unused edges nbsp Incidentally this longest non repetitive path can be obtained by forbidding all moves from a to c The Hamiltonian cycle for three disks is nbsp The graphs clearly show that From every arbitrary distribution of disks there is exactly one shortest way to move all disks onto one of the three pegs Between every pair of arbitrary distributions of disks there are one or two different shortest paths From every arbitrary distribution of disks there are one or two different longest non selfcrossing paths to move all disks to one of the three pegs Between every pair of arbitrary distributions of disks there are one or two different longest non self crossing paths Let Nh be the number of non self crossing paths for moving a tower of h disks from one peg to another one Then N1 2 Nh 1 Nh 2 Nh 3This gives Nh to be 2 12 1872 6563711232 sequence A125295 in the OEIS Variations EditLinear Hanoi Edit If all moves must be between adjacent pegs i e given pegs A B C one cannot move directly between pegs A and C then moving a stack of n disks from peg A to peg C takes 3n 1 moves The solution uses all 3n valid positions always taking the unique move that does not undo the previous move The position with all disks at peg B is reached halfway i e after 3n 1 2 moves 13 14 Cyclic Hanoi Edit In Cyclic Hanoi we are given three pegs A B C which are arranged as a circle with the clockwise and the counterclockwise directions being defined as A B C A and A C B A respectively The moving direction of the disk must be clockwise 15 It suffices to represent the sequence of disks to be moved The solution can be found using two mutually recursive procedures To move n disks counterclockwise to the neighbouring target peg move n 1 disks counterclockwise to the target peg move disk n one step clockwise move n 1 disks clockwise to the start peg move disk n one step clockwise move n 1 disks counterclockwise to the target pegTo move n disks clockwise to the neighbouring target peg move n 1 disks counterclockwise to a spare peg move disk n one step clockwise move n 1 disks counterclockwise to the target pegLet C n and A n represent moving n disks clockwise and counterclockwise then we can write down both formulas C n A n 1 n A n 1 and A n A n 1 n C n 1 n A n 1 Thus C 1 1 and A 1 1 1 C 2 1 1 2 1 1 and A 2 1 1 2 1 2 1 1 The solution for the Cyclic Hanoi has some interesting properties 1 The move patterns of transferring a tower of disks from a peg to another peg are symmetric with respect to the center points 2 The smallest disk is the first and last disk to move 3 Groups of the smallest disk moves alternate with single moves of other disks 4 The number of disks moves specified by C n and A n are minimal With four pegs and beyond Edit Although the three peg version has a simple recursive solution long been known the optimal solution for the Tower of Hanoi problem with four pegs called Reve s puzzle was not verified until 2014 by Bousch 16 However in case of four or more pegs the Frame Stewart algorithm is known without proof of optimality since 1941 17 For the formal derivation of the exact number of minimal moves required to solve the problem by applying the Frame Stewart algorithm and other equivalent methods see the following paper 18 For other variants of the four peg Tower of Hanoi problem see Paul Stockmeyer s survey paper 19 The so called Towers of Bucharest and Towers of Klagenfurt game configurations yield ternary and pentary Gray codes 20 Frame Stewart algorithm Edit The Frame Stewart algorithm is described below Let n displaystyle n nbsp be the number of disks Let r displaystyle r nbsp be the number of pegs Define T n r displaystyle T n r nbsp to be the minimum number of moves required to transfer n disks using r pegs The algorithm can be described recursively For some k displaystyle k nbsp 1 k lt n displaystyle 1 leq k lt n nbsp transfer the top k displaystyle k nbsp disks to a single peg other than the start or destination pegs taking T k r displaystyle T k r nbsp moves Without disturbing the peg that now contains the top k displaystyle k nbsp disks transfer the remaining n k displaystyle n k nbsp disks to the destination peg using only the remaining r 1 displaystyle r 1 nbsp pegs taking T n k r 1 displaystyle T n k r 1 nbsp moves Finally transfer the top k displaystyle k nbsp disks to the destination peg taking T k r displaystyle T k r nbsp moves The entire process takes 2 T k r T n k r 1 displaystyle 2T k r T n k r 1 nbsp moves Therefore the count k displaystyle k nbsp should be picked for which this quantity is minimum In the 4 peg case the optimal k displaystyle k nbsp equals n 2 n 1 1 displaystyle n left lfloor sqrt 2n 1 right rceil 1 nbsp where displaystyle left lfloor cdot right rceil nbsp is the nearest integer function 21 For example in the UPenn CIS 194 course on Haskell the first assignment page 22 lists the optimal solution for the 15 disk and 4 peg case as 129 steps which is obtained for the above value of k This algorithm is presumed to be optimal for any number of pegs its number of moves is 28 n1 r 2 for fixed r General shortest paths and the number 466 885 Edit A curious generalization of the original goal of the puzzle is to start from a given configuration of the disks where all disks are not necessarily on the same peg and to arrive in a minimal number of moves at another given configuration In general it can be quite difficult to compute a shortest sequence of moves to solve this problem A solution was proposed by Andreas Hinz and is based on the observation that in a shortest sequence of moves the largest disk that needs to be moved obviously one may ignore all of the largest disks that will occupy the same peg in both the initial and final configurations will move either exactly once or exactly twice The mathematics related to this generalized problem becomes even more interesting when one considers the average number of moves in a shortest sequence of moves between two initial and final disk configurations that are chosen at random Hinz and Chan Tat Hung independently discovered 23 24 see also 25 Chapter 1 p 14 that the average number of moves in an n disk Tower is given by the following exact formula 466 885 2 n 1 3 3 5 1 3 n 12 59 18 1003 17 5 17 18 n 12 59 18 1003 17 5 17 18 n displaystyle frac 466 885 cdot 2 n frac 1 3 frac 3 5 cdot left frac 1 3 right n left frac 12 59 frac 18 1003 sqrt 17 right left frac 5 sqrt 17 18 right n left frac 12 59 frac 18 1003 sqrt 17 right left frac 5 sqrt 17 18 right n nbsp For large enough n only the first and second terms do not converge to zero so we get an asymptotic expression 466 885 2 n 1 3 o 1 displaystyle 466 885 cdot 2 n 1 3 o 1 nbsp as n displaystyle n to infty nbsp Thus intuitively we could interpret the fraction of 466 885 52 6 displaystyle 466 885 approx 52 6 nbsp as representing the ratio of the labor one has to perform when going from a randomly chosen configuration to another randomly chosen configuration relative to the difficulty of having to cross the most difficult path of length 2 n 1 displaystyle 2 n 1 nbsp which involves moving all the disks from one peg to another An alternative explanation for the appearance of the constant 466 885 as well as a new and somewhat improved algorithm for computing the shortest path was given by Romik 26 Magnetic Hanoi Edit Main article Magnetic Tower of Hanoi In Magnetic Tower of Hanoi each disk has two distinct sides North and South typically colored red and blue Disks must not be placed with the similar poles together magnets in each disk prevent this illegal move Also each disk must be flipped as it is moved nbsp Initial configuration of bicolor Towers of Hanoi n 4 Bicolor Towers of Hanoi Edit This variation of the famous Tower of Hanoi puzzle was offered to grade 3 6 students at 2eme Championnat de France des Jeux Mathematiques et Logiques held in July 1988 27 nbsp Final configuration of bicolor Towers of Hanoi n 4 The rules of the puzzle are essentially the same disks are transferred between pegs one at a time At no time may a bigger disk be placed on top of a smaller one The difference is that now for every size there are two disks one black and one white Also there are now two towers of disks of alternating colors The goal of the puzzle is to make the towers monochrome same color The biggest disks at the bottom of the towers are assumed to swap positions Tower of Hanoy Edit A variation of the puzzle has been adapted as a solitaire game with nine playing cards under the name Tower of Hanoy 28 29 It is not known whether the altered spelling of the original name is deliberate or accidental 30 Applications Edit nbsp 3D AFM topographic image of multilayered palladium nanosheet on silicon wafer with Tower of Hanoi like structure 31 The Tower of Hanoi is frequently used in psychological research on problem solving There also exists a variant of this task called Tower of London for neuropsychological diagnosis and treatment of disorders of executive function citation needed Zhang and Norman 32 used several isomorphic equivalent representations of the game to study the impact of representational effect in task design They demonstrated an impact on user performance by changing the way that the rules of the game are represented using variations in the physical design of the game components This knowledge has impacted on the development of the TURF framework 33 for the representation of human computer interaction The Tower of Hanoi is also used as a backup rotation scheme when performing computer data backups where multiple tapes media are involved citation needed As mentioned above the Tower of Hanoi is popular for teaching recursive algorithms to beginning programming students A pictorial version of this puzzle is programmed into the emacs editor accessed by typing M x hanoi There is also a sample algorithm written in Prolog citation needed The Tower of Hanoi is also used as a test by neuropsychologists trying to evaluate frontal lobe deficits 34 In 2010 researchers published the results of an experiment that found that the ant species Linepithema humile were successfully able to solve the 3 disk version of the Tower of Hanoi problem through non linear dynamics and pheromone signals 35 In 2014 scientists synthesized multilayered palladium nanosheets with a Tower of Hanoi like structure 31 In popular culture EditIn the science fiction story Now Inhale by Eric Frank Russell a human is held prisoner on a planet where the local custom is to make the prisoner play a game until it is won or lost before his execution The protagonist knows that a rescue ship might take a year or more to arrive so he chooses to play Towers of Hanoi with 64 disks This story makes reference to the legend about the Buddhist monks playing the game until the end of the world 36 37 38 In the 1966 Doctor Who story The Celestial Toymaker the eponymous villain forces the Doctor to play a ten piece 1 023 move Tower of Hanoi game entitled The Trilogic Game with the pieces forming a pyramid shape when stacked 37 39 In 2007 the concept of the Towers Of Hanoi problem was used in Professor Layton and the Diabolical Box in puzzles 6 83 and 84 but the disks had been changed to pancakes The puzzle was based around a dilemma where the chef of a restaurant had to move a pile of pancakes from one plate to the other with the basic principles of the original puzzle i e three plates that the pancakes could be moved onto not being able to put a larger pancake onto a smaller one etc In the film Rise of the Planet of the Apes 2011 this puzzle called in the film the Lucas Tower is used as a test to study the intelligence of apes 37 The puzzle is featured regularly in adventure and puzzle games Since it is easy to implement and easily recognised it is well suited to use as a puzzle in a larger graphical game e g Star Wars Knights of the Old Republic and Mass Effect 40 Some implementations use straight disks but others disguise the puzzle in some other form There is an arcade version by Sega 41 A 15 disk version of the puzzle appears in the game Sunless Sea as a lock to a tomb The player has the option to click through each move of the puzzle in order to solve it but the game notes that it will take 32767 moves to complete If an especially dedicated player does click through to the end of the puzzle it is revealed that completing the puzzle does not unlock the door In Yu Gi Oh VRAINS a hacking group called Knight of Hanoi create a structure named Tower of Hanoi within the eponymous VRAINS virtual reality network This was first used as a challenge in Survivor Thailand in 2002 but rather than rings the pieces were made to resemble a temple Sook Jai threw the challenge to get rid of Jed even though Shii Ann knew full well how to complete the puzzle The problem is featured as part of a reward challenge in a 2011 episode of the American version of the Survivor TV series Both players Ozzy Lusth and Benjamin Coach Wade struggled to understand how to solve the puzzle and are aided by their fellow tribe members In Genshin Impact this puzzle is shown in Faruzan s hangout quest Early Learning Mechanism where she mentions seeing it as a mechanism and uses it to make a toy prototype for children She calls it Pagoda stacks See also EditABACABA pattern Backup rotation scheme a TOH application Baguenaudier Recursion computer science Notes Edit a b A000225 OEIS oeis org Retrieved 2021 09 03 Hofstadter Douglas R 1985 Metamagical Themas Questing for the Essence of Mind and Pattern New York Basic Books ISBN 978 0 465 04540 2 Cohn Ernst M 1963 A device for demonstrating some elementary properties of integers The Mathematics Teacher National Council of Teachers of Mathematics 56 2 84 doi 10 5951 MT 56 2 0084 ISSN 0025 5769 Retrieved 9 March 2021 Hinz Andreas M Klavzar Sandi Milutinovic Uros Petr Ciril 2013 01 31 The Tower of Hanoi Myths and Maths ISBN 978 3034802369 Spitznagel Edward L 1971 Selected topics in mathematics Holt Rinehart and Winston p 137 ISBN 978 0 03 084693 9 Moscovich Ivan 2001 1000 playthinks puzzles paradoxes illusions amp games Workman ISBN 978 0 7611 1826 8 Petkovic Miodrag 2009 Famous Puzzles of Great Mathematicians AMS Bookstore p 197 ISBN 978 0 8218 4814 2 Troshkin M Doomsday Comes A Nonrecursive Analysis of the Recursive Towers of Hanoi Problem Focus in Russian 95 2 10 14 Mayer Herbert Perkins Don 1984 Towers of Hanoi Revisited SIGPLAN Notices 19 2 80 84 doi 10 1145 948566 948573 S2CID 2304761 Warren Henry S 2003 Section 5 4 Counting Trailing 0 s Hacker s delight 1st ed Boston MA Addison Wesley ISBN 978 0 201 91465 8 Miller Charles D 2000 Ch 4 Binary Numbers and the Standard Gray Code 9 ed Addison Wesley Longman ISBN 978 0 321 07607 6 https web archive org web 20040821062630 http occawlonline pearsoned com bookbind pubbooks miller2 awl chapter4 essay1 deluxe content html tower Archived from the original on 2004 08 21 a href Template Cite book html title Template Cite book cite book a Missing or empty title help Gros L 1872 Theorie du Baguenodier Lyon Aime Vingtrinier Question Corner Generalizing the Towers of Hanoi Problem www math toronto edu Retrieved 2023 07 28 Hinz Andreas M Klavzar Sandi Milutinovic Uros Petr Ciril Stewart Ian 2013 The Tower of Hanoi Myths and Maths 1st ed Basel Springer Science Business Media pp 241 259 ISBN 9783034802369 Gedeon T D 1996 The Cyclic Towers of Hanoi An Iterative Solution Produced by Transformation The Computer Journal 39 4 353 356 doi 10 1093 comjnl 39 4 353 Bousch T 2014 La quatrieme tour de Hanoi PDF Bull Belg Math Soc Simon Stevin 21 5 895 912 doi 10 36045 bbms 1420071861 S2CID 14243013 Archived from the original PDF on 2017 09 21 Stewart B M Frame J S March 1941 Solution to advanced problem 3819 American Mathematical Monthly 48 3 216 9 doi 10 2307 2304268 JSTOR 2304268 Klavzar Sandi Milutinovi Uro Petrb Ciril 2002 Variations on the Four Post Tower of Hanoi Puzzle Postscript Congressus Numerantium 102 Stockmeyer Paul 1994 Variations on the Four Post Tower of Hanoi Puzzle Postscript Congressus Numerantium 102 3 12 Herter Felix Rote Gunter 2018 11 14 2018 08 09 2017 12 2017 08 09 2016 04 22 Loopless Gray Code Enumeration and the Tower of Bucharest PDF Theoretical Computer Science Berlin Germany 748 40 54 arXiv 1604 06707 doi 10 1016 j tcs 2017 11 017 ISSN 0304 3975 S2CID 4014870 Archived PDF from the original on 2020 12 16 Retrieved 2020 12 16 1 15 18 19 24 pages University of Toronto CSC148 Slog April 5 2014 Retrieved July 22 2015 UPenn CIS 194 Introduction to Haskell Assignment 1 PDF Retrieved January 31 2016 Hinz A 1989 The Tower of Hanoi L Enseignement Mathematique 35 289 321 doi 10 5169 seals 57378 Chan T 1988 A statistical analysis of the towers of Hanoi problem Internat J Comput Math 28 1 4 57 65 doi 10 1080 00207168908803728 Stewart Ian 2004 Another Fine Math You ve Got Me Into Courier Dover ISBN 978 0 7167 2342 4 Romik D 2006 Shortest paths in the Tower of Hanoi graph and finite automata SIAM Journal on Discrete Mathematics 20 3 610 622 arXiv math 0310109 doi 10 1137 050628660 S2CID 8342396 Prasad Vithal Chaugule 2015 A Recursive Solution to Bicolor Towers of Hanoi Problem PDF Recreational Mathematics Magazine 4 37 48 ISSN 2182 1976 Arnold Peter 2003 05 28 Card Games for One Sterling Publishing Company ISBN 978 0 600 60727 4 Hedges Sid G 2018 03 06 Everybody s Book of Hobbies Read Books Ltd ISBN 978 1 5287 8344 6 Tower Of Hanoy Patience AKA Tower Of Hanoi Patience bbcmicro co uk Retrieved 2020 10 17 a b Yin Xi Liu Xinhong Pan Yung Tin Walsh Kathleen A Yang Hong November 4 2014 Hanoi Tower like Multilayered Ultrathin Palladium Nanosheets Nano Letters 14 12 7188 94 Bibcode 2014NanoL 14 7188Y doi 10 1021 nl503879a PMID 25369350 Zhang J 1994 Representations in distributed cognitive tasks PDF Cognitive Science 18 87 122 doi 10 1016 0364 0213 94 90021 3 Zhang Jiajie Walji Muhammad F 2011 TURF Toward a unified framework of EHR usability Journal of Biomedical Informatics 44 6 1056 67 doi 10 1016 j jbi 2011 08 005 PMID 21867774 Beers S R Rosenberg D R Dick E L Williams T O Hearn K M Birmaher B Ryan C M 1999 Neuropsychological study of frontal lobe function in psychotropic naive children with obsessive compulsive disorder The American Journal of Psychiatry 156 5 777 9 doi 10 1176 ajp 156 5 777 PMID 10327915 S2CID 21359382 Reid C R Sumpter D J Beekman M January 2011 Optimisation in a natural system Argentine ants solve the Towers of Hanoi J Exp Biol 214 Pt 1 50 8 CiteSeerX 10 1 1 231 9201 doi 10 1242 jeb 048173 PMID 21147968 S2CID 18819977 Russell Eric Frank April 1959 Now Inhale Novelettes Astounding Science Fiction Vol 63 no 2 pp 31 77 Reprinted Russell Eric Frank 2000 Now Inhale In Katze Rick ed Major Ingredients The Selected Short Stories of Eric Frank Russell Framingham Mass NESFA Press pp 399 417 ISBN 978 1 886778 10 8 a b c Bonanome Marianna C Dean Margaret H Dean Judith Putnam 2018 Self Similar Groups A Sampling of Remarkable Groups Thompson s Self similar Lamplighter and Baumslag Solitar Compact Textbooks in Mathematics Cham Switzerland Springer p 96 doi 10 1007 978 3 030 01978 5 3 ISBN 978 3 030 01976 1 Birtwistle Graham January 1985 The coroutines of Hanoi ACM SIGPLAN Notices 20 1 9 10 doi 10 1145 988284 988286 S2CID 7310661 The Fourth Dimension The Celestial Toymaker Doctor Who BBC One Retrieved April 2 2021 Tower of Hanoi video game concept Giantbomb com Retrieved 2010 12 05 Tower of Hanoi Andamiro Sega Amusements Archived from the original on 2012 03 01 Retrieved 2012 02 26 External links Edit nbsp Wikimedia Commons has media related to Tower of Hanoi Weisstein Eric W Tower of Hanoi MathWorld Retrieved from https en wikipedia org w index php title Tower of Hanoi amp oldid 1179656503, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.