fbpx
Wikipedia

Sylver coinage

Sylver coinage is a mathematical game for two players, invented by John H. Conway.[1] The two players take turns naming positive integers greater than 1 that are not the sum of nonnegative multiples of previously named integers. The player who cannot name such a number loses. For instance, if player A opens with 2, B can win by naming 3.[2]

Sylver coinage is named after James Joseph Sylvester,[2][3] who proved that if a and b are relatively prime positive integers, then (a − 1)(b  − 1) − 1 is the largest number that is not a sum of nonnegative multiples of a and b.[4] Thus, if a and b are the first two moves in a game of sylver coinage, this formula gives the largest number that can still be played. More generally, if the greatest common divisor of the moves played so far is g, then only finitely many multiples of g can remain to be played, and after they are all played then g must decrease on the next move. Therefore, every game of sylver coinage must eventually end.[2] When a sylver coinage game has only a finite number of remaining moves, the largest number that can still be played is called the Frobenius number, and finding this number is called the coin problem.[5]

Example edit

A sample game between A and B:

  • A opens with 5. Now neither player can name 5, 10, 15, ....
  • B names 4. Now neither player can name 4, 5, 8, 9, 10, or any number greater than 11. (Example: 27 = 4·3 + 5·3)
  • A names 11. Now the only remaining numbers are 2, 3, 6, and 7.
  • B names 6. Now the only remaining numbers are 2, 3, and 7.
  • A names 7. Now the only remaining numbers are 2, and 3.
  • B names 2. Now the only remaining number is 3.
  • A names 3, leaving nothing for B, and wins.

Each of A's moves was to a winning position.

Analysis edit

Unlike many similar mathematical games, sylver coinage has not been completely solved, mainly because many positions have infinitely many possible moves. Furthermore, the main theorem that identifies a class of winning positions, due to R. L. Hutchings, guarantees that such a position has a winning strategy but does not identify the strategy. Hutchings's Theorem states that any of the prime numbers 5, 7, 11, 13, …, wins as a first move, but very little is known about the subsequent winning moves: these are the only winning openings known.[2][5]

When the greatest common divisor of the moves that have been made so far is 1, the remaining set of numbers that can be played will be a finite set, and can be described mathematically as the set of gaps of a numerical semigroup. Some of these finite positions, including all of the positions after the second player has responded to one of Hutchings' winning moves, allow a special move that Sicherman calls an "ender". An ender is a number that may only be played immediately: playing any other number would rule it out. If an ender exists, it is always the largest number that can still be played. For instance, after the moves (4,5), the largest number that can still be played is 11. Playing 11 cannot rule out any smaller numbers, but playing any of the smaller available numbers (1, 2, 3, 6, or 7) would rule out playing 11, so 11 is an ender. When an ender exists, the next player can win by following a strategy-stealing argument. If one of the non-ender moves can win, the next player takes that winning move. And if none of the non-ender moves wins, then the next player can win by playing the ender and forcing the other player to make one of the other non-winning moves. However, although this argument proves that the next player can win, it does not identify a winning strategy for the player. After playing a prime number that is 5 or larger as a first move, the first player in a game of sylver coinage can always win by following this (non-constructive) ender strategy on their next turn.[2][3]

Unsolved problem in mathematics:

Are there any non-prime winning opening moves in sylver coinage?

If there are any other winning openings, they must be 3-smooth numbers (numbers of the form 2i3j for non-negative integers i and j). For, if any number n that is not of this form and is not prime is played, then the second player can win by choosing a large prime factor of n. The first few 3-smooth numbers, 1, 2, 3, 4, 6, 8, 9, and 12, are all losing openings, for which complete strategies are known by which the second player can win. By Dickson's lemma (applied to the pairs of exponents (i, j) of these numbers), only finitely many 3-smooth numbers can be winning openings, but it is not known whether any of them are.[2][5] In 2017, Conway (2017) offered a $1000 prize for determining who wins in the first unsolved case, the opening move 16, as part of a set of prize problems also including Conway's 99-graph problem, the minimum spacing of Danzer sets, and the thrackle conjecture.[6]

References edit

  1. ^ Guy, Richard K. (1976). "Twenty questions concerning Conway's Sylver Coinage". Research Problems. American Mathematical Monthly. 83 (8): 634–637. doi:10.2307/2319892. JSTOR 2319892. MR 1538138.
  2. ^ a b c d e f Berlekamp, Elwyn R.; Conway, John H.; Guy, Richard K. (1982). "18. The Emperor and His Money" (PDF). Winning Ways for your Mathematical Plays, Vol. II: Games in Particular. Academic Press. pp. 575–606.
  3. ^ a b Sicherman, George (2002). "Theory and Practice of Sylver Coinage" (PDF). Integers. 2. G2.
  4. ^ Sylvester, James J. (1884). "Question 7382". Mathematical Questions. Educational Times. 41: 21.
  5. ^ a b c Guy, Richard K. (2004). "C7. The money-changing problem". Unsolved problems in number theory (3rd ed.). Springer-Verlag. pp. 171–174. ISBN 978-0-387-20860-2. Zbl 1058.11001.
  6. ^ Conway, John H. (2017). "Five $1,000 Problems (Update 2017)" (PDF). On-Line Encyclopedia of Integer Sequences. Retrieved 2019-02-12.

Further reading edit

  • Michael, T. S. (2009). "6. From Stamps to Sylver Coins". How to Guard an Art Gallery and Other Discrete Mathematical Adventures. JHU Press. pp. 169–206. ISBN 9780801897047.

External links edit

  • The Sylver Coinage Page

sylver, coinage, mathematical, game, players, invented, john, conway, players, take, turns, naming, positive, integers, greater, than, that, nonnegative, multiples, previously, named, integers, player, cannot, name, such, number, loses, instance, player, opens. Sylver coinage is a mathematical game for two players invented by John H Conway 1 The two players take turns naming positive integers greater than 1 that are not the sum of nonnegative multiples of previously named integers The player who cannot name such a number loses For instance if player A opens with 2 B can win by naming 3 2 Sylver coinage is named after James Joseph Sylvester 2 3 who proved that if a and b are relatively prime positive integers then a 1 b 1 1 is the largest number that is not a sum of nonnegative multiples of a and b 4 Thus if a and b are the first two moves in a game of sylver coinage this formula gives the largest number that can still be played More generally if the greatest common divisor of the moves played so far is g then only finitely many multiples of g can remain to be played and after they are all played then g must decrease on the next move Therefore every game of sylver coinage must eventually end 2 When a sylver coinage game has only a finite number of remaining moves the largest number that can still be played is called the Frobenius number and finding this number is called the coin problem 5 Contents 1 Example 2 Analysis 3 References 4 Further reading 5 External linksExample editA sample game between A and B A opens with 5 Now neither player can name 5 10 15 B names 4 Now neither player can name 4 5 8 9 10 or any number greater than 11 Example 27 4 3 5 3 A names 11 Now the only remaining numbers are 2 3 6 and 7 B names 6 Now the only remaining numbers are 2 3 and 7 A names 7 Now the only remaining numbers are 2 and 3 B names 2 Now the only remaining number is 3 A names 3 leaving nothing for B and wins Each of A s moves was to a winning position Analysis editUnlike many similar mathematical games sylver coinage has not been completely solved mainly because many positions have infinitely many possible moves Furthermore the main theorem that identifies a class of winning positions due to R L Hutchings guarantees that such a position has a winning strategy but does not identify the strategy Hutchings s Theorem states that any of the prime numbers 5 7 11 13 wins as a first move but very little is known about the subsequent winning moves these are the only winning openings known 2 5 When the greatest common divisor of the moves that have been made so far is 1 the remaining set of numbers that can be played will be a finite set and can be described mathematically as the set of gaps of a numerical semigroup Some of these finite positions including all of the positions after the second player has responded to one of Hutchings winning moves allow a special move that Sicherman calls an ender An ender is a number that may only be played immediately playing any other number would rule it out If an ender exists it is always the largest number that can still be played For instance after the moves 4 5 the largest number that can still be played is 11 Playing 11 cannot rule out any smaller numbers but playing any of the smaller available numbers 1 2 3 6 or 7 would rule out playing 11 so 11 is an ender When an ender exists the next player can win by following a strategy stealing argument If one of the non ender moves can win the next player takes that winning move And if none of the non ender moves wins then the next player can win by playing the ender and forcing the other player to make one of the other non winning moves However although this argument proves that the next player can win it does not identify a winning strategy for the player After playing a prime number that is 5 or larger as a first move the first player in a game of sylver coinage can always win by following this non constructive ender strategy on their next turn 2 3 Unsolved problem in mathematics Are there any non prime winning opening moves in sylver coinage more unsolved problems in mathematics If there are any other winning openings they must be 3 smooth numbers numbers of the form 2i3j for non negative integers i and j For if any number n that is not of this form and is not prime is played then the second player can win by choosing a large prime factor of n The first few 3 smooth numbers 1 2 3 4 6 8 9 and 12 are all losing openings for which complete strategies are known by which the second player can win By Dickson s lemma applied to the pairs of exponents i j of these numbers only finitely many 3 smooth numbers can be winning openings but it is not known whether any of them are 2 5 In 2017 Conway 2017 offered a 1000 prize for determining who wins in the first unsolved case the opening move 16 as part of a set of prize problems also including Conway s 99 graph problem the minimum spacing of Danzer sets and the thrackle conjecture 6 References edit Guy Richard K 1976 Twenty questions concerning Conway s Sylver Coinage Research Problems American Mathematical Monthly 83 8 634 637 doi 10 2307 2319892 JSTOR 2319892 MR 1538138 a b c d e f Berlekamp Elwyn R Conway John H Guy Richard K 1982 18 The Emperor and His Money PDF Winning Ways for your Mathematical Plays Vol II Games in Particular Academic Press pp 575 606 a b Sicherman George 2002 Theory and Practice of Sylver Coinage PDF Integers 2 G2 Sylvester James J 1884 Question 7382 Mathematical Questions Educational Times 41 21 a b c Guy Richard K 2004 C7 The money changing problem Unsolved problems in number theory 3rd ed Springer Verlag pp 171 174 ISBN 978 0 387 20860 2 Zbl 1058 11001 Conway John H 2017 Five 1 000 Problems Update 2017 PDF On Line Encyclopedia of Integer Sequences Retrieved 2019 02 12 Further reading editMichael T S 2009 6 From Stamps to Sylver Coins How to Guard an Art Gallery and Other Discrete Mathematical Adventures JHU Press pp 169 206 ISBN 9780801897047 External links editThe Sylver Coinage Page Retrieved from https en wikipedia org w index php title Sylver coinage amp oldid 1181392911, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.