fbpx
Wikipedia

Burnside problem

The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements (see bounded and restricted below). Some of these variants are still open questions.

Brief history edit

Initial work pointed towards the affirmative answer. For example, if a group G is finitely generated and the order of each element of G is a divisor of 4, then G is finite. Moreover, A. I. Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the restricted Burnside problem for the case of prime exponent. (Later, in 1989, Efim Zelmanov was able to solve the restricted Burnside problem for an arbitrary exponent.) Issai Schur had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible n × n complex matrices was finite; he used this theorem to prove the Jordan–Schur theorem.[1]

Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968, Pyotr Novikov and Sergei Adian supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381. In 1982, A. Yu. Ol'shanskii found some striking counterexamples for sufficiently large odd exponents (greater than 1010), and supplied a considerably simpler proof based on geometric ideas.

The case of even exponents turned out to be much harder to settle. In 1992, S. V. Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 (detailed proofs were published in 1994 and occupied some 300 pages). Later joint work of Ol'shanskii and Ivanov established a negative solution to an analogue of the Burnside problem for hyperbolic groups, provided the exponent is sufficiently large. By contrast, when the exponent is small and different from 2, 3, 4 and 6, very little is known.

General Burnside problem edit

A group G is called periodic (or torsion) if every element has finite order; in other words, for each g in G, there exists some positive integer n such that gn = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the p-group which are infinite periodic groups; but the latter group cannot be finitely generated.

General Burnside problem. If G is a finitely generated, periodic group, then is G necessarily finite?

This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich, who gave an example of an infinite p-group that is finitely generated (see Golod–Shafarevich theorem). However, the orders of the elements of this group are not a priori bounded by a single constant.

Bounded Burnside problem edit

 
The Cayley graph of the 27-element free Burnside group of rank 2 and exponent 3.

Part of the difficulty with the general Burnside problem is that the requirements of being finitely generated and periodic give very little information about the possible structure of a group. Therefore, we pose more requirements on G. Consider a periodic group G with the additional property that there exists a least integer n such that for all g in G, gn = 1. A group with this property is said to be periodic with bounded exponent n, or just a group with exponent n. The Burnside problem for groups with bounded exponent asks:

Burnside problem I. If G is a finitely generated group with exponent n, is G necessarily finite?

It turns out that this problem can be restated as a question about the finiteness of groups in a particular family. The free Burnside group of rank m and exponent n, denoted B(m, n), is a group with m distinguished generators x1, ..., xm in which the identity xn = 1 holds for all elements x, and which is the "largest" group satisfying these requirements. More precisely, the characteristic property of B(m, n) is that, given any group G with m generators g1, ..., gm and of exponent n, there is a unique homomorphism from B(m, n) to G that maps the ith generator xi of B(m, n) into the ith generator gi of G. In the language of group presentations, the free Burnside group B(m, n) has m generators x1, ..., xm and the relations xn = 1 for each word x in x1, ..., xm, and any group G with m generators of exponent n is obtained from it by imposing additional relations. The existence of the free Burnside group and its uniqueness up to an isomorphism are established by standard techniques of group theory. Thus if G is any finitely generated group of exponent n, then G is a homomorphic image of B(m, n), where m is the number of generators of G. The Burnside problem can now be restated as follows:

Burnside problem II. For which positive integers m, n is the free Burnside group B(m, n) finite?

The full solution to Burnside problem in this form is not known. Burnside considered some easy cases in his original paper:

The following additional results are known (Burnside, Sanov, M. Hall):

  • B(m, 3), B(m, 4), and B(m, 6) are finite for all m.

The particular case of B(2, 5) remains open: as of 2020 it was not known whether this group is finite.

The breakthrough in solving the Burnside problem was achieved by Pyotr Novikov and Sergei Adian in 1968. Using a complicated combinatorial argument, they demonstrated that for every odd number n with n > 4381, there exist infinite, finitely generated groups of exponent n. Adian later improved the bound on the odd exponent to 665.[2] The latest improvement to the bound on odd exponent is 101 obtained by Adian himself in 2015. The case of even exponent turned out to be considerably more difficult. It was only in 1994 that Sergei Vasilievich Ivanov was able to prove an analogue of Novikov–Adian theorem: for any m > 1 and an even n ≥ 248, n divisible by 29, the group B(m, n) is infinite; together with the Novikov–Adian theorem, this implies infiniteness for all m > 1 and n ≥ 248. This was improved in 1996 by I. G. Lysënok to m > 1 and n ≥ 8000. Novikov–Adian, Ivanov and Lysënok established considerably more precise results on the structure of the free Burnside groups. In the case of the odd exponent, all finite subgroups of the free Burnside groups were shown to be cyclic groups. In the even exponent case, each finite subgroup is contained in a product of two dihedral groups, and there exist non-cyclic finite subgroups. Moreover, the word and conjugacy problems were shown to be effectively solvable in B(m, n) both for the cases of odd and even exponents n.

A famous class of counterexamples to the Burnside problem is formed by finitely generated non-cyclic infinite groups in which every nontrivial proper subgroup is a finite cyclic group, the so-called Tarski Monsters. First examples of such groups were constructed by A. Yu. Ol'shanskii in 1979 using geometric methods, thus affirmatively solving O. Yu. Schmidt's problem. In 1982 Ol'shanskii was able to strengthen his results to establish existence, for any sufficiently large prime number p (one can take p > 1075) of a finitely generated infinite group in which every nontrivial proper subgroup is a cyclic group of order p. In a paper published in 1996, Ivanov and Ol'shanskii solved an analogue of the Burnside problem in an arbitrary hyperbolic group for sufficiently large exponents.

Restricted Burnside problem edit

Formulated in the 1930s, it asks another, related, question:

Restricted Burnside problem. If it is known that a group G with m generators and exponent n is finite, can one conclude that the order of G is bounded by some constant depending only on m and n? Equivalently, are there only finitely many finite groups with m generators of exponent n, up to isomorphism?

This variant of the Burnside problem can also be stated in terms of category theory: an affirmative answer for all m is equivalent to saying that the category of finite groups of exponent n has all finite limits and colimits.[3] It can also be stated more explicitly in terms of certain universal groups with m generators and exponent n. By basic results of group theory, the intersection of two normal subgroups of finite index in any group is itself a normal subgroup of finite index. Thus, the intersection M of all the normal subgroups of the free Burnside group B(m, n) which have finite index is a normal subgroup of B(m, n). One can therefore define the free restricted Burnside group B0(m, n) to be the quotient group B(m, n)/M. Every finite group of exponent n with m generators is isomorphic to B(m,n)/N where N is a normal subgroup of B(m,n) with finite index. Therefore, by the Third Isomorphism Theorem, every finite group of exponent n with m generators is isomorphic to B0(m,n)/(N/M) — in other words, it is a homomorphic image of B0(m, n). The restricted Burnside problem then asks whether B0(m, n) is a finite group. In terms of category theory, B0(m, n) is the coproduct of n cyclic groups of order m in the category of finite groups of exponent n.

In the case of the prime exponent p, this problem was extensively studied by A. I. Kostrikin during the 1950s, prior to the negative solution of the general Burnside problem. His solution, establishing the finiteness of B0(m, p), used a relation with deep questions about identities in Lie algebras in finite characteristic. The case of arbitrary exponent has been completely settled in the affirmative by Efim Zelmanov, who was awarded the Fields Medal in 1994 for his work.

Notes edit

  1. ^ The key step is to observe that the identities a2 = b2 = (ab)2 = 1 together imply that ab = ba, so that a free Burnside group of exponent two is necessarily abelian.

References edit

  1. ^ Curtis, Charles; Reiner, Irving (1962). Representation Theory of Finite Groups and Associated Algebras. John Wiley & Sons. pp. 256–262.
  2. ^ John Britton proposed a nearly 300 page alternative proof to the Burnside problem in 1973; however, Adian ultimately pointed out a flaw in that proof.
  3. ^ Nahlus, Nazih; Yang, Yilong (2021). "Projective Limits and Ultraproducts of Nonabelian Finite Groups". p. 19. arXiv:2107.09900 [math.GR]. Corollary 3.2

Bibliography edit

  • S. I. Adian (1979) The Burnside problem and identities in groups. Translated from the Russian by John Lennox and James Wiegold. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 95. Springer-Verlag, Berlin-New York. ISBN 3-540-08728-1.
  • S. I. Adian (2015). "New estimates of odd exponents of infinite Burnside groups". Trudy Matematicheskogo Instituta Imeni V. A. Steklova (in Russian). 289: 41–82. doi:10.1134/S0371968515020041. Translation in Adian, S. I. (2015). "New estimates of odd exponents of infinite Burnside groups". Proceedings of the Steklov Institute of Mathematics. 289 (1): 33–71. doi:10.1134/S0081543815040045.
  • S. V. Ivanov (1994). "The Free Burnside Groups of Sufficiently Large Exponents". International Journal of Algebra and Computation. 04: 1–308. doi:10.1142/S0218196794000026.
  • S. V. Ivanov; A. Yu. Ol'Shanskii (1996). "Hyperbolic groups and their quotients of bounded exponents". Transactions of the American Mathematical Society. 348 (6): 2091–2138. doi:10.1090/S0002-9947-96-01510-3.
  • A. I. Kostrikin (1990) Around Burnside. Translated from the Russian and with a preface by James Wiegold. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 20. Springer-Verlag, Berlin. ISBN 3-540-50602-0.
  • I. G. Lysënok (1996). "Infinite Burnside groups of even exponent" (in Russian). 60 (3): 3–224. doi:10.4213/im77. {{cite journal}}: Cite journal requires |journal= (help) Translation in Lysënok, I. G. (1996). "Infinite Burnside groups of even exponent". Izvestiya: Mathematics. 60 (3): 453–654. Bibcode:1996IzMat..60..453L. doi:10.1070/IM1996v060n03ABEH000077. S2CID 250838960.
  • A. Yu. Ol'shanskii (1989) Geometry of defining relations in groups. Translated from the 1989 Russian original by Yu. A. Bakhturin (1991) Mathematics and its Applications (Soviet Series), 70. Dordrecht: Kluwer Academic Publishers Group. ISBN 0-7923-1394-1.
  • E. Zelmanov (1990). "Solution of the restricted Burnside problem for groups of odd exponent". Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya (in Russian). 54 (1): 42–59, 221. Translation in Zel'manov, E I (1991). "Solution of the Restricted Burnside Problem for Groups of Odd Exponent". Mathematics of the USSR-Izvestiya. 36 (1): 41–60. Bibcode:1991IzMat..36...41Z. doi:10.1070/IM1991v036n01ABEH001946. S2CID 39623037.
  • E. Zelmanov (1991). "Solution of the restricted Burnside problem for 2-groups". Matematicheskii Sbornik (in Russian). 182 (4): 568–592. Translation in Zel'manov, E I (1992). "A Solution of the Restricted Burnside Problem for 2-groups". Mathematics of the USSR-Sbornik. 72 (2): 543–565. Bibcode:1992SbMat..72..543Z. doi:10.1070/SM1992v072n02ABEH001272.

External links edit

burnside, problem, asks, whether, finitely, generated, group, which, every, element, finite, order, must, necessarily, finite, group, posed, william, burnside, 1902, making, oldest, questions, group, theory, influential, development, combinatorial, group, theo. The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group It was posed by William Burnside in 1902 making it one of the oldest questions in group theory and was influential in the development of combinatorial group theory It is known to have a negative answer in general as Evgeny Golod and Igor Shafarevich provided a counter example in 1964 The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements see bounded and restricted below Some of these variants are still open questions Contents 1 Brief history 2 General Burnside problem 3 Bounded Burnside problem 4 Restricted Burnside problem 5 Notes 6 References 7 Bibliography 8 External linksBrief history editInitial work pointed towards the affirmative answer For example if a group G is finitely generated and the order of each element of G is a divisor of 4 then G is finite Moreover A I Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent there exists a largest one This provides a solution for the restricted Burnside problem for the case of prime exponent Later in 1989 Efim Zelmanov was able to solve the restricted Burnside problem for an arbitrary exponent Issai Schur had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible n n complex matrices was finite he used this theorem to prove the Jordan Schur theorem 1 Nevertheless the general answer to the Burnside problem turned out to be negative In 1964 Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order In 1968 Pyotr Novikov and Sergei Adian supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381 In 1982 A Yu Ol shanskii found some striking counterexamples for sufficiently large odd exponents greater than 1010 and supplied a considerably simpler proof based on geometric ideas The case of even exponents turned out to be much harder to settle In 1992 S V Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 detailed proofs were published in 1994 and occupied some 300 pages Later joint work of Ol shanskii and Ivanov established a negative solution to an analogue of the Burnside problem for hyperbolic groups provided the exponent is sufficiently large By contrast when the exponent is small and different from 2 3 4 and 6 very little is known General Burnside problem editA group G is called periodic or torsion if every element has finite order in other words for each g in G there exists some positive integer n such that gn 1 Clearly every finite group is periodic There exist easily defined groups such as the p group which are infinite periodic groups but the latter group cannot be finitely generated General Burnside problem If G is a finitely generated periodic group then is G necessarily finite This question was answered in the negative in 1964 by Evgeny Golod and Igor Shafarevich who gave an example of an infinite p group that is finitely generated see Golod Shafarevich theorem However the orders of the elements of this group are not a priori bounded by a single constant Bounded Burnside problem edit nbsp The Cayley graph of the 27 element free Burnside group of rank 2 and exponent 3 Part of the difficulty with the general Burnside problem is that the requirements of being finitely generated and periodic give very little information about the possible structure of a group Therefore we pose more requirements on G Consider a periodic group G with the additional property that there exists a least integer n such that for all g in G gn 1 A group with this property is said to be periodic with bounded exponent n or just a group with exponent n The Burnside problem for groups with bounded exponent asks Burnside problem I If G is a finitely generated group with exponent n is G necessarily finite It turns out that this problem can be restated as a question about the finiteness of groups in a particular family The free Burnside group of rank m and exponent n denoted B m n is a group with m distinguished generators x1 xm in which the identity xn 1 holds for all elements x and which is the largest group satisfying these requirements More precisely the characteristic property of B m n is that given any group G with m generators g1 gm and of exponent n there is a unique homomorphism from B m n to G that maps the ith generator xi of B m n into the ith generator gi of G In the language of group presentations the free Burnside group B m n has m generators x1 xm and the relations xn 1 for each word x in x1 xm and any group G with m generators of exponent n is obtained from it by imposing additional relations The existence of the free Burnside group and its uniqueness up to an isomorphism are established by standard techniques of group theory Thus if G is any finitely generated group of exponent n then G is a homomorphic image of B m n where m is the number of generators of G The Burnside problem can now be restated as follows Burnside problem II For which positive integers m n is the free Burnside group B m n finite The full solution to Burnside problem in this form is not known Burnside considered some easy cases in his original paper B 1 n is the cyclic group of order n B m 2 is the direct product of m copies of the cyclic group of order 2 and hence finite note 1 The following additional results are known Burnside Sanov M Hall B m 3 B m 4 and B m 6 are finite for all m The particular case of B 2 5 remains open as of 2020 update it was not known whether this group is finite The breakthrough in solving the Burnside problem was achieved by Pyotr Novikov and Sergei Adian in 1968 Using a complicated combinatorial argument they demonstrated that for every odd number n with n gt 4381 there exist infinite finitely generated groups of exponent n Adian later improved the bound on the odd exponent to 665 2 The latest improvement to the bound on odd exponent is 101 obtained by Adian himself in 2015 The case of even exponent turned out to be considerably more difficult It was only in 1994 that Sergei Vasilievich Ivanov was able to prove an analogue of Novikov Adian theorem for any m gt 1 and an even n 248 n divisible by 29 the group B m n is infinite together with the Novikov Adian theorem this implies infiniteness for all m gt 1 and n 248 This was improved in 1996 by I G Lysenok to m gt 1 and n 8000 Novikov Adian Ivanov and Lysenok established considerably more precise results on the structure of the free Burnside groups In the case of the odd exponent all finite subgroups of the free Burnside groups were shown to be cyclic groups In the even exponent case each finite subgroup is contained in a product of two dihedral groups and there exist non cyclic finite subgroups Moreover the word and conjugacy problems were shown to be effectively solvable in B m n both for the cases of odd and even exponents n A famous class of counterexamples to the Burnside problem is formed by finitely generated non cyclic infinite groups in which every nontrivial proper subgroup is a finite cyclic group the so called Tarski Monsters First examples of such groups were constructed by A Yu Ol shanskii in 1979 using geometric methods thus affirmatively solving O Yu Schmidt s problem In 1982 Ol shanskii was able to strengthen his results to establish existence for any sufficiently large prime number p one can take p gt 1075 of a finitely generated infinite group in which every nontrivial proper subgroup is a cyclic group of order p In a paper published in 1996 Ivanov and Ol shanskii solved an analogue of the Burnside problem in an arbitrary hyperbolic group for sufficiently large exponents Restricted Burnside problem editFormulated in the 1930s it asks another related question Restricted Burnside problem If it is known that a group G with m generators and exponent n is finite can one conclude that the order of G is bounded by some constant depending only on m and n Equivalently are there only finitely many finite groups with m generators of exponent n up to isomorphism This variant of the Burnside problem can also be stated in terms of category theory an affirmative answer for all m is equivalent to saying that the category of finite groups of exponent n has all finite limits and colimits 3 It can also be stated more explicitly in terms of certain universal groups with m generators and exponent n By basic results of group theory the intersection of two normal subgroups of finite index in any group is itself a normal subgroup of finite index Thus the intersection M of all the normal subgroups of the free Burnside group B m n which have finite index is a normal subgroup of B m n One can therefore define the free restricted Burnside group B0 m n to be the quotient group B m n M Every finite group of exponent n with m generators is isomorphic to B m n N where N is a normal subgroup of B m n with finite index Therefore by the Third Isomorphism Theorem every finite group of exponent n with m generators is isomorphic to B0 m n N M in other words it is a homomorphic image of B0 m n The restricted Burnside problem then asks whether B0 m n is a finite group In terms of category theory B0 m n is the coproduct of n cyclic groups of order m in the category of finite groups of exponent n In the case of the prime exponent p this problem was extensively studied by A I Kostrikin during the 1950s prior to the negative solution of the general Burnside problem His solution establishing the finiteness of B0 m p used a relation with deep questions about identities in Lie algebras in finite characteristic The case of arbitrary exponent has been completely settled in the affirmative by Efim Zelmanov who was awarded the Fields Medal in 1994 for his work Notes edit The key step is to observe that the identities a2 b2 ab 2 1 together imply that ab ba so that a free Burnside group of exponent two is necessarily abelian References edit Curtis Charles Reiner Irving 1962 Representation Theory of Finite Groups and Associated Algebras John Wiley amp Sons pp 256 262 John Britton proposed a nearly 300 page alternative proof to the Burnside problem in 1973 however Adian ultimately pointed out a flaw in that proof Nahlus Nazih Yang Yilong 2021 Projective Limits and Ultraproducts of Nonabelian Finite Groups p 19 arXiv 2107 09900 math GR Corollary 3 2Bibliography editS I Adian 1979 The Burnside problem and identities in groups Translated from the Russian by John Lennox and James Wiegold Ergebnisse der Mathematik und ihrer Grenzgebiete Results in Mathematics and Related Areas 95 Springer Verlag Berlin New York ISBN 3 540 08728 1 S I Adian 2015 New estimates of odd exponents of infinite Burnside groups Trudy Matematicheskogo Instituta Imeni V A Steklova in Russian 289 41 82 doi 10 1134 S0371968515020041 Translation in Adian S I 2015 New estimates of odd exponents of infinite Burnside groups Proceedings of the Steklov Institute of Mathematics 289 1 33 71 doi 10 1134 S0081543815040045 S V Ivanov 1994 The Free Burnside Groups of Sufficiently Large Exponents International Journal of Algebra and Computation 04 1 308 doi 10 1142 S0218196794000026 S V Ivanov A Yu Ol Shanskii 1996 Hyperbolic groups and their quotients of bounded exponents Transactions of the American Mathematical Society 348 6 2091 2138 doi 10 1090 S0002 9947 96 01510 3 A I Kostrikin 1990 Around Burnside Translated from the Russian and with a preface by James Wiegold Ergebnisse der Mathematik und ihrer Grenzgebiete 3 Results in Mathematics and Related Areas 3 20 Springer Verlag Berlin ISBN 3 540 50602 0 I G Lysenok 1996 Infinite Burnside groups of even exponent in Russian 60 3 3 224 doi 10 4213 im77 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Translation in Lysenok I G 1996 Infinite Burnside groups of even exponent Izvestiya Mathematics 60 3 453 654 Bibcode 1996IzMat 60 453L doi 10 1070 IM1996v060n03ABEH000077 S2CID 250838960 A Yu Ol shanskii 1989 Geometry of defining relations in groups Translated from the 1989 Russian original by Yu A Bakhturin 1991 Mathematics and its Applications Soviet Series 70 Dordrecht Kluwer Academic Publishers Group ISBN 0 7923 1394 1 E Zelmanov 1990 Solution of the restricted Burnside problem for groups of odd exponent Izvestiya Rossiiskoi Akademii Nauk Seriya Matematicheskaya in Russian 54 1 42 59 221 Translation in Zel manov E I 1991 Solution of the Restricted Burnside Problem for Groups of Odd Exponent Mathematics of the USSR Izvestiya 36 1 41 60 Bibcode 1991IzMat 36 41Z doi 10 1070 IM1991v036n01ABEH001946 S2CID 39623037 E Zelmanov 1991 Solution of the restricted Burnside problem for 2 groups Matematicheskii Sbornik in Russian 182 4 568 592 Translation in Zel manov E I 1992 A Solution of the Restricted Burnside Problem for 2 groups Mathematics of the USSR Sbornik 72 2 543 565 Bibcode 1992SbMat 72 543Z doi 10 1070 SM1992v072n02ABEH001272 External links editHistory of the Burnside problem at MacTutor History of Mathematics archive Retrieved from https en wikipedia org w index php title Burnside problem amp oldid 1196453054, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.