fbpx
Wikipedia

Pyrometric cone

Pyrometric cones are pyrometric devices that are used to gauge heatwork during the firing of ceramic materials. The cones, often used in sets of three, are positioned in a kiln with the wares to be fired and provide a visual indication of when the wares have reached a required state of maturity, a combination of time and temperature. Thus, pyrometric cones give a temperature equivalent; they are not simple temperature-measuring devices.

Seger cones after use

Definition

The pyrometric cone is "A pyramid with a triangular base and of a defined shape and size; the "cone" is shaped from a carefully proportioned and uniformly mixed batch of ceramic materials so that when it is heated under stated conditions, it will bend due to softening, the tip of the cone becoming level with the base at a definitive temperature. Pyrometric cones are made in series, the temperature interval between the successive cones usually being 20 degrees Celsius. The best known series are Seger Cones (Germany), Orton Cones (USA) and Staffordshire Cones (UK)."[1][2]

Usage

For some products, such as porcelain and lead-free glazes, it can be advantageous to fire within a two-cone range. The three-cone system can be used to determine temperature uniformity and to check the performance of an electronic controller. The three-cone system consists of three consecutively numbered cones:

  • Guide cone – one cone number cooler than firing cone.
  • Firing cone – the cone recommended by manufacturer of glaze, slip, etc.
  • Guard cone – one cone number hotter than firing cone.

Additionally, most kilns have temperature differences from top to bottom. The amount of difference depends on the design of the kiln, the age of the heating elements, the load distribution in the kiln, and the cone number to which the kiln is fired. Usually, kilns have a greater temperature difference at cooler cone numbers. Cones should be used on the lower, middle and top shelves to determine how much difference exists during firing. This will aid in the way the kiln is loaded and fired to reduce the difference. Downdraft venting will also even out temperatures variance.

Both temperature and time and sometimes atmosphere affect the final bending position of a cone. Temperature is the predominant variable. The temperature is referred to as an equivalent temperature, since actual firing conditions may vary somewhat from those in which the cones were originally standardized. Observation of cone bending is used to determine when a kiln has reached a desired state. Additionally, small cones or bars can be arranged to mechanically trigger kiln controls when the temperature rises enough for them to deform. Precise, consistent placement of large and small cones must be followed to ensure the proper temperature equivalent is being reached. Every effort needs to be made to always have the cone inclined at 8° from the vertical. Large cones must be mounted 2 inches above the plaque and small cones mounted 15/16 inches. With the cones having their own base, "self-supporting cones" eliminate errors with their mounting.

Temperature ranges

The following temperature equivalents for pyrometric cones were retrieved from references in the External Links section.

Orton[3] Börkey Keratech[4] Nimra Glass[5] Min Max
Self-Supporting Cones Large Cones Small
Regular — SSB Iron Free — SSK Regular — LRB Iron Free — IFB Regular
Heating Rate: 15°C/hr 60°C/hr 150°C/hr 15°C/hr 60°C/hr 150°C/hr 60°C/hr 150°C/hr 60°C/hr 150°C/hr 300°C/hr 150°C/hr 150°C/hr 20°C/hr 20°C/hr
Type: Slow Medium Fast Slow Medium Fast Medium Fast Medium Fast Fast Normal Laboratory Normal Laboratory
Cone #
022 586°C 590°C 630°C 595°C 605°C 580°C 585°C 590°C 580°C 630°C
021 600°C 617°C 643°C 640°C 650°C 620°C 625°C 610°C 600°C 650°C
020 626°C 638°C 666°C 660°C 675°C 635°C 640°C 635°C 626°C 675°C
019 656°C 678°C 695°C 676°C 693°C 723°C 685°C 695°C 655°C 665°C 685°C 655°C 723°C
018 686°C 715°C 734°C 712°C 732°C 752°C 705°C 715°C 675°C 680°C 725°C 675°C 752°C
017 705°C 738°C 763°C 736°C 761°C 784°C 730°C 735°C 695°C 695°C 750°C 695°C 784°C
016 742°C 772°C 796°C 769°C 794°C 825°C 755°C 760°C 720°C 720°C 786°C 720°C 825°C
015a 780°C 785°C 740°C 750°C 740°C 785°C
015 750°C 791°C 818°C 788°C 816°C 843°C 810°C 750°C 843°C
014a 805°C 815°C 780°C 790°C 780°C 815°C
014 757°C 807°C 838°C 807°C 836°C 870°C 830°C 757°C 870°C
013a 835°C 845°C 840°C 860°C 835°C 860°C
013 807°C 837°C 861°C 837°C 859°C 880°C 860°C 807°C 880°C
012a 860°C 890°C 860°C 880°C 860°C 890°C
012 843°C 861°C 882°C 858°C 880°C 900°C 865°C 843°C 900°C
011a 900°C 900°C 880°C 890°C 880°C 900°C
011 857°C 875°C 894°C 873°C 892°C 915°C 885°C 857°C 915°C
010a 920°C 925°C 900°C 910°C 900°C 925°C
010 891°C 903°C 915°C 871°C 886°C 893°C 898°C 913°C 884°C 891°C 919°C 895°C 871°C 919°C
09a 935°C 940°C 920°C 930°C 920°C 940°C
09 907°C 920°C 930°C 899°C 919°C 928°C 917°C 928°C 917°C 926°C 955°C 925°C 899°C 955°C
08a 955°C 965°C 930°C 940°C 930°C 965°C
08 922°C 942°C 956°C 924°C 946°C 957°C 942°C 954°C 945°C 955°C 983°C 955°C 922°C 983°C
07a 970°C 975°C 950°C 955°C 950°C 975°C
07 962°C 976°C 987°C 953°C 971°C 982°C 973°C 985°C 970°C 980°C 1008°C 980°C 953°C 1008°C
06a 990°C 995°C 970°C 980°C 970°C 995°C
06 981°C 998°C 1013°C 969°C 991°C 998°C 995°C 1011°C 991°C 996°C 1023°C 1000°C 969°C 1023°C
05½ 1004°C 1015°C 1025°C 990°C 1012°C 1021°C 1012°C 1023°C 1011°C 1020°C 1043°C 990°C 1043°C
05a 1000°C 1010°C 990°C 1010°C 990°C 1010°C
05 1021°C 1031°C 1044°C 1013°C 1037°C 1046°C 1030°C 1046°C 1032°C 1044°C 1062°C 1045°C 1013°C 1062°C
04a 1025°C 1055°C 1015°C 1035°C 1015°C 1055°C
04 1046°C 1063°C 1077°C 1043°C 1061°C 1069°C 1060°C 1070°C 1060°C 1067°C 1098°C 1060°C 1043°C 1098°C
03a 1055°C 1070°C 1040°C 1055°C 1040°C 1070°C
03 1071°C 1086°C 1104°C 1066°C 1088°C 1093°C 1086°C 1101°C 1087°C 1091°C 1131°C 1100°C 1066°C 1131°C
02a 1085°C 1100°C 1070°C 1090°C 1070°C 1100°C
02 1078°C 1102°C 1122°C 1084°C 1105°C 1115°C 1101°C 1120°C 1102°C 1113°C 1148°C 1120°C 1078°C 1148°C
01a 1105°C 1125°C 1090°C 1105°C 1090°C 1125°C
01 1093°C 1119°C 1138°C 1101°C 1123°C 1134°C 1117°C 1137°C 1122°C 1132°C 1178°C 1138°C 1093°C 1178°C
1 1109°C 1137°C 1154°C 1119°C 1139°C 1148°C 1136°C 1154°C 1137°C 1146°C 1184°C 1155°C 1109°C 1184°C
1a 1125°C 1145°C 1105°C 1120°C 1105°C 1145°C
2 1112°C 1142°C 1164°C 1142°C 1162°C 1190°C 1160°C 1112°C 1190°C
2a 1150°C 1165°C 1125°C 1135°C 1125°C 1165°C
3 1115°C 1152°C 1170°C 1130°C 1154°C 1162°C 1152°C 1168°C 1151°C 1160°C 1196°C 1170°C 1115°C 1196°C
3a 1170°C 1185°C 1140°C 1150°C 1140°C 1185°C
4 1141°C 1162°C 1183°C 1160°C 1181°C 1209°C 1185°C 1141°C 1209°C
4a 1195°C 1220°C 1160°C 1170°C 1160°C 1220°C
5 1159°C 1186°C 1207°C 1184°C 1205°C 1221°C 1200°C 1159°C 1221°C
1167°C 1203°C 1225°C 1167°C 1225°C
5a 1215°C 1230°C 1175°C 1185°C 1175°C 1230°C
6 1185°C 1222°C 1243°C 1220°C 1241°C 1255°C 1225°C 1185°C 1255°C
6a 1240°C 1260°C 1195°C 1210°C 1195°C 1260°C
7 1201°C 1239°C 1257°C 1237°C 1255°C 1264°C 1260°C 1270°C 1215°C 1230°C 1240°C 1201°C 1270°C
8 1211°C 1249°C 1271°C 1247°C 1269°C 1300°C 1280°C 1295°C 1240°C 1255°C 1260°C 1211°C 1300°C
9 1224°C 1260°C 1280°C 1257°C 1278°C 1317°C 1300°C 1315°C 1255°C 1270°C 1280°C 1224°C 1317°C
10 1251°C 1285°C 1305°C 1282°C 1303°C 1330°C 1320°C 1330°C 1280°C 1290°C 1300°C 1251°C 1330°C
11 1272°C 1294°C 1315°C 1293°C 1312°C 1336°C 1340°C 1350°C 1300°C 1315°C 1315°C 1272°C 1350°C
12 1285°C 1306°C 1326°C 1304°C 1324°C 1355°C 1360°C 1375°C 1330°C 1340°C 1330°C 1285°C 1375°C
13 1310°C 1331°C 1348°C 1321°C 1346°C 1380°C 1395°C 1360°C 1375°C 1345°C 1310°C 1395°C
14 1351°C 1365°C 1384°C 1388°C 1366°C 1400°C 1410°C 1370°C 1395°C 1365°C 1351°C 1410°C
15 1425°C 1440°C 1400°C 1420°C 1430°C 1400°C 1440°C
16 1445°C 1470°C 1425°C 1445°C 1475°C 1425°C 1475°C
17 1480°C 1500°C 1445°C 1465°C 1485°C 1445°C 1500°C
18 1500°C 1520°C 1470°C 1480°C 1505°C 1470°C 1520°C
19 1515°C 1540°C 1495°C 1505°C 1530°C 1495°C 1540°C
20 1530°C 1560°C 1515°C 1530°C 1550°C 1515°C 1560°C
21 1570°C 1570°C 1570°C
23 1540°C --- --- --- 1591°C 1540°C 1591°C
26 1560°C 1580°C --- --- 1607°C 1560°C 1607°C
27 1595°C 1600°C --- --- 1595°C 1600°C
27½ --- 1620°C --- --- 1620°C 1620°C
28 1605°C 1640°C --- --- 1605°C 1640°C
29 1635°C 1660°C --- --- 1635°C 1660°C
30 1655°C 1680°C --- --- 1655°C 1680°C
31 1680°C 1700°C --- --- 1680°C 1700°C
32 1695°C 1710°C --- --- 1695°C 1710°C
32½ --- 1720°C --- --- 1720°C 1720°C
33 1710°C 1730°C --- --- 1710°C 1730°C
33½ --- 1740°C --- --- 1740°C 1740°C
34 1725°C 1760°C --- --- 1725°C 1760°C
35 1765°C 1780°C --- --- 1765°C 1780°C
36 1790°C 1800°C --- --- 1790°C 1800°C
37 1815°C 1830°C --- --- 1815°C 1830°C
38 1840°C 1860°C --- --- 1840°C 1860°C
39 1860°C 1880°C --- --- 1860°C 1880°C
40 1880°C 1900°C --- --- 1880°C 1900°C
41 1915°C 1940°C --- --- 1915°C 1940°C
42 1955°C 1980°C --- --- 1955°C 1980°C

Control of variability

Pyrometric cones are sensitive measuring devices and it is important to users that they should remain consistent in the way that they react to heating. Cone manufacturers follow procedures to control variability (within batches and between batches) to ensure that cones of a given grade remain consistent in their properties over long periods. A number of national standards[6][7][8] and an ISO standard [9] have been published regarding pyrometric cones.

Even though cones from different manufacturers can have relatively similar numbering systems, they are not identical in their characteristics. If a change is made from one manufacturer to another, then allowances for the differences can sometimes be necessary.

History

In 1782, Josiah Wedgwood created accurately scaled pyrometric beads, which led him to be elected a fellow of the Royal Society. The modern form of the pyrometric cone was developed by Hermann Seger and first used to control the firing of porcelain wares at the Royal Porcelain Factory, Berlin (Königliche Porzellanmanufaktur, in 1886, where Seger was director.[10] Seger cones are to this day made by a small number of companies and the term is often used as a synonym for pyrometric cones.[11][12] The Standard Pyrometric Cone Company was founded in Columbus, Ohio, by Edward J. Orton, Jr. in 1896 to manufacture pyrometric cones, and following his death a charitable trust established to operate the company, which is known Edward Orton Jr. Ceramic Foundation, or Orton Ceramic Foundation.[13]

Ceramic art

A biennial ceramic art exhibition for small work, the Orton Cone Box Show,[14] takes the Orton Cone company's pyrometric cone box as the size constraint for submissions.

Notes

  1. ^ Dodd and Murfin, A. and D. (1994). Dictionary Of Ceramics. 3rd edition. Cambridge: Institute of Materials. Woodhead Publishing Limited. ISBN 0-901716-56-1.
  2. ^ Edward Orton Jr. Ceramic Foundation
  3. ^ "Temperature Equivalents for Orton Pyrometric Cones (°C)" (PDF). Edward Orton Jr. Ceramic Foundation. Retrieved 17 January 2020.
  4. ^ . Börkey Keratech. Archived from the original on 2011-07-18. Retrieved 17 January 2020.
  5. ^ "Nimra Glass Temperature Conversion Chart". Nimra Cerglass Technics (P) Ltd. Retrieved 17 January 2020.
  6. ^ "Japan Pyrometric reference cones".
  7. ^ "China's Refractories".
  8. ^ "ASTM C24 Standard Test Method for Pyrometric Cone Equivalency(PCE) of Fireclay and High Alumina Refractory Materials".
  9. ^ "ISO 1146:1988-02".
  10. ^ Lange, P. (1991). "Role of August Hermann Seger in the development of silicate technology". Ceram. Forum Int./Ber. DKG 68, No.1/2.
  11. ^ "The Seger Cone: 100 years old". Osterr. Keram. Rundsch. 23, (9/10), 9.
  12. ^ Joger, A. (1985). "100 years 'Seger Cone'". Silikattechnik 36, (12), 400.
  13. ^ "Orton Company History".
  14. ^ "Cone Box Show".

References

  • Hamer, Frank and Hamer, Janet (1991). The Potter's Dictionary of Materials and Techniques. Third edition. A & C Black Publishers, Limited, London, England. ISBN 0-8122-3112-0.

External links

  • Temperature equivalents table Nimra & description of Nimra Cerglass pyrometric cones
  • Temperature equivalents table Orton Celsius
  • [dead link]

pyrometric, cone, pyrometric, devices, that, used, gauge, heatwork, during, firing, ceramic, materials, cones, often, used, sets, three, positioned, kiln, with, wares, fired, provide, visual, indication, when, wares, have, reached, required, state, maturity, c. Pyrometric cones are pyrometric devices that are used to gauge heatwork during the firing of ceramic materials The cones often used in sets of three are positioned in a kiln with the wares to be fired and provide a visual indication of when the wares have reached a required state of maturity a combination of time and temperature Thus pyrometric cones give a temperature equivalent they are not simple temperature measuring devices Seger cones after use Contents 1 Definition 2 Usage 3 Temperature ranges 4 Control of variability 5 History 6 Ceramic art 7 Notes 8 References 9 External linksDefinition EditThe pyrometric cone is A pyramid with a triangular base and of a defined shape and size the cone is shaped from a carefully proportioned and uniformly mixed batch of ceramic materials so that when it is heated under stated conditions it will bend due to softening the tip of the cone becoming level with the base at a definitive temperature Pyrometric cones are made in series the temperature interval between the successive cones usually being 20 degrees Celsius The best known series are Seger Cones Germany Orton Cones USA and Staffordshire Cones UK 1 2 Usage EditFor some products such as porcelain and lead free glazes it can be advantageous to fire within a two cone range The three cone system can be used to determine temperature uniformity and to check the performance of an electronic controller The three cone system consists of three consecutively numbered cones Guide cone one cone number cooler than firing cone Firing cone the cone recommended by manufacturer of glaze slip etc Guard cone one cone number hotter than firing cone Additionally most kilns have temperature differences from top to bottom The amount of difference depends on the design of the kiln the age of the heating elements the load distribution in the kiln and the cone number to which the kiln is fired Usually kilns have a greater temperature difference at cooler cone numbers Cones should be used on the lower middle and top shelves to determine how much difference exists during firing This will aid in the way the kiln is loaded and fired to reduce the difference Downdraft venting will also even out temperatures variance Both temperature and time and sometimes atmosphere affect the final bending position of a cone Temperature is the predominant variable The temperature is referred to as an equivalent temperature since actual firing conditions may vary somewhat from those in which the cones were originally standardized Observation of cone bending is used to determine when a kiln has reached a desired state Additionally small cones or bars can be arranged to mechanically trigger kiln controls when the temperature rises enough for them to deform Precise consistent placement of large and small cones must be followed to ensure the proper temperature equivalent is being reached Every effort needs to be made to always have the cone inclined at 8 from the vertical Large cones must be mounted 2 inches above the plaque and small cones mounted 15 16 inches With the cones having their own base self supporting cones eliminate errors with their mounting Temperature ranges EditThe following temperature equivalents for pyrometric cones were retrieved from references in the External Links section Orton 3 Borkey Keratech 4 Nimra Glass 5 Min MaxSelf Supporting Cones Large Cones SmallRegular SSB Iron Free SSK Regular LRB Iron Free IFB RegularHeating Rate 15 C hr 60 C hr 150 C hr 15 C hr 60 C hr 150 C hr 60 C hr 150 C hr 60 C hr 150 C hr 300 C hr 150 C hr 150 C hr 20 C hr 20 C hrType Slow Medium Fast Slow Medium Fast Medium Fast Medium Fast Fast Normal Laboratory Normal LaboratoryCone 022 586 C 590 C 630 C 595 C 605 C 580 C 585 C 590 C 580 C 630 C021 600 C 617 C 643 C 640 C 650 C 620 C 625 C 610 C 600 C 650 C020 626 C 638 C 666 C 660 C 675 C 635 C 640 C 635 C 626 C 675 C019 656 C 678 C 695 C 676 C 693 C 723 C 685 C 695 C 655 C 665 C 685 C 655 C 723 C018 686 C 715 C 734 C 712 C 732 C 752 C 705 C 715 C 675 C 680 C 725 C 675 C 752 C017 705 C 738 C 763 C 736 C 761 C 784 C 730 C 735 C 695 C 695 C 750 C 695 C 784 C016 742 C 772 C 796 C 769 C 794 C 825 C 755 C 760 C 720 C 720 C 786 C 720 C 825 C015a 780 C 785 C 740 C 750 C 740 C 785 C015 750 C 791 C 818 C 788 C 816 C 843 C 810 C 750 C 843 C014a 805 C 815 C 780 C 790 C 780 C 815 C014 757 C 807 C 838 C 807 C 836 C 870 C 830 C 757 C 870 C013a 835 C 845 C 840 C 860 C 835 C 860 C013 807 C 837 C 861 C 837 C 859 C 880 C 860 C 807 C 880 C012a 860 C 890 C 860 C 880 C 860 C 890 C012 843 C 861 C 882 C 858 C 880 C 900 C 865 C 843 C 900 C011a 900 C 900 C 880 C 890 C 880 C 900 C011 857 C 875 C 894 C 873 C 892 C 915 C 885 C 857 C 915 C010a 920 C 925 C 900 C 910 C 900 C 925 C010 891 C 903 C 915 C 871 C 886 C 893 C 898 C 913 C 884 C 891 C 919 C 895 C 871 C 919 C09a 935 C 940 C 920 C 930 C 920 C 940 C09 907 C 920 C 930 C 899 C 919 C 928 C 917 C 928 C 917 C 926 C 955 C 925 C 899 C 955 C08a 955 C 965 C 930 C 940 C 930 C 965 C08 922 C 942 C 956 C 924 C 946 C 957 C 942 C 954 C 945 C 955 C 983 C 955 C 922 C 983 C07a 970 C 975 C 950 C 955 C 950 C 975 C07 962 C 976 C 987 C 953 C 971 C 982 C 973 C 985 C 970 C 980 C 1008 C 980 C 953 C 1008 C06a 990 C 995 C 970 C 980 C 970 C 995 C06 981 C 998 C 1013 C 969 C 991 C 998 C 995 C 1011 C 991 C 996 C 1023 C 1000 C 969 C 1023 C05 1004 C 1015 C 1025 C 990 C 1012 C 1021 C 1012 C 1023 C 1011 C 1020 C 1043 C 990 C 1043 C05a 1000 C 1010 C 990 C 1010 C 990 C 1010 C05 1021 C 1031 C 1044 C 1013 C 1037 C 1046 C 1030 C 1046 C 1032 C 1044 C 1062 C 1045 C 1013 C 1062 C04a 1025 C 1055 C 1015 C 1035 C 1015 C 1055 C04 1046 C 1063 C 1077 C 1043 C 1061 C 1069 C 1060 C 1070 C 1060 C 1067 C 1098 C 1060 C 1043 C 1098 C03a 1055 C 1070 C 1040 C 1055 C 1040 C 1070 C03 1071 C 1086 C 1104 C 1066 C 1088 C 1093 C 1086 C 1101 C 1087 C 1091 C 1131 C 1100 C 1066 C 1131 C02a 1085 C 1100 C 1070 C 1090 C 1070 C 1100 C02 1078 C 1102 C 1122 C 1084 C 1105 C 1115 C 1101 C 1120 C 1102 C 1113 C 1148 C 1120 C 1078 C 1148 C01a 1105 C 1125 C 1090 C 1105 C 1090 C 1125 C01 1093 C 1119 C 1138 C 1101 C 1123 C 1134 C 1117 C 1137 C 1122 C 1132 C 1178 C 1138 C 1093 C 1178 C1 1109 C 1137 C 1154 C 1119 C 1139 C 1148 C 1136 C 1154 C 1137 C 1146 C 1184 C 1155 C 1109 C 1184 C1a 1125 C 1145 C 1105 C 1120 C 1105 C 1145 C2 1112 C 1142 C 1164 C 1142 C 1162 C 1190 C 1160 C 1112 C 1190 C2a 1150 C 1165 C 1125 C 1135 C 1125 C 1165 C3 1115 C 1152 C 1170 C 1130 C 1154 C 1162 C 1152 C 1168 C 1151 C 1160 C 1196 C 1170 C 1115 C 1196 C3a 1170 C 1185 C 1140 C 1150 C 1140 C 1185 C4 1141 C 1162 C 1183 C 1160 C 1181 C 1209 C 1185 C 1141 C 1209 C4a 1195 C 1220 C 1160 C 1170 C 1160 C 1220 C5 1159 C 1186 C 1207 C 1184 C 1205 C 1221 C 1200 C 1159 C 1221 C5 1167 C 1203 C 1225 C 1167 C 1225 C5a 1215 C 1230 C 1175 C 1185 C 1175 C 1230 C6 1185 C 1222 C 1243 C 1220 C 1241 C 1255 C 1225 C 1185 C 1255 C6a 1240 C 1260 C 1195 C 1210 C 1195 C 1260 C7 1201 C 1239 C 1257 C 1237 C 1255 C 1264 C 1260 C 1270 C 1215 C 1230 C 1240 C 1201 C 1270 C8 1211 C 1249 C 1271 C 1247 C 1269 C 1300 C 1280 C 1295 C 1240 C 1255 C 1260 C 1211 C 1300 C9 1224 C 1260 C 1280 C 1257 C 1278 C 1317 C 1300 C 1315 C 1255 C 1270 C 1280 C 1224 C 1317 C10 1251 C 1285 C 1305 C 1282 C 1303 C 1330 C 1320 C 1330 C 1280 C 1290 C 1300 C 1251 C 1330 C11 1272 C 1294 C 1315 C 1293 C 1312 C 1336 C 1340 C 1350 C 1300 C 1315 C 1315 C 1272 C 1350 C12 1285 C 1306 C 1326 C 1304 C 1324 C 1355 C 1360 C 1375 C 1330 C 1340 C 1330 C 1285 C 1375 C13 1310 C 1331 C 1348 C 1321 C 1346 C 1380 C 1395 C 1360 C 1375 C 1345 C 1310 C 1395 C14 1351 C 1365 C 1384 C 1388 C 1366 C 1400 C 1410 C 1370 C 1395 C 1365 C 1351 C 1410 C15 1425 C 1440 C 1400 C 1420 C 1430 C 1400 C 1440 C16 1445 C 1470 C 1425 C 1445 C 1475 C 1425 C 1475 C17 1480 C 1500 C 1445 C 1465 C 1485 C 1445 C 1500 C18 1500 C 1520 C 1470 C 1480 C 1505 C 1470 C 1520 C19 1515 C 1540 C 1495 C 1505 C 1530 C 1495 C 1540 C20 1530 C 1560 C 1515 C 1530 C 1550 C 1515 C 1560 C21 1570 C 1570 C 1570 C23 1540 C 1591 C 1540 C 1591 C26 1560 C 1580 C 1607 C 1560 C 1607 C27 1595 C 1600 C 1595 C 1600 C27 1620 C 1620 C 1620 C28 1605 C 1640 C 1605 C 1640 C29 1635 C 1660 C 1635 C 1660 C30 1655 C 1680 C 1655 C 1680 C31 1680 C 1700 C 1680 C 1700 C32 1695 C 1710 C 1695 C 1710 C32 1720 C 1720 C 1720 C33 1710 C 1730 C 1710 C 1730 C33 1740 C 1740 C 1740 C34 1725 C 1760 C 1725 C 1760 C35 1765 C 1780 C 1765 C 1780 C36 1790 C 1800 C 1790 C 1800 C37 1815 C 1830 C 1815 C 1830 C38 1840 C 1860 C 1840 C 1860 C39 1860 C 1880 C 1860 C 1880 C40 1880 C 1900 C 1880 C 1900 C41 1915 C 1940 C 1915 C 1940 C42 1955 C 1980 C 1955 C 1980 CControl of variability EditPyrometric cones are sensitive measuring devices and it is important to users that they should remain consistent in the way that they react to heating Cone manufacturers follow procedures to control variability within batches and between batches to ensure that cones of a given grade remain consistent in their properties over long periods A number of national standards 6 7 8 and an ISO standard 9 have been published regarding pyrometric cones Even though cones from different manufacturers can have relatively similar numbering systems they are not identical in their characteristics If a change is made from one manufacturer to another then allowances for the differences can sometimes be necessary History EditIn 1782 Josiah Wedgwood created accurately scaled pyrometric beads which led him to be elected a fellow of the Royal Society The modern form of the pyrometric cone was developed by Hermann Seger and first used to control the firing of porcelain wares at the Royal Porcelain Factory Berlin Konigliche Porzellanmanufaktur in 1886 where Seger was director 10 Seger cones are to this day made by a small number of companies and the term is often used as a synonym for pyrometric cones 11 12 The Standard Pyrometric Cone Company was founded in Columbus Ohio by Edward J Orton Jr in 1896 to manufacture pyrometric cones and following his death a charitable trust established to operate the company which is known Edward Orton Jr Ceramic Foundation or Orton Ceramic Foundation 13 Ceramic art EditA biennial ceramic art exhibition for small work the Orton Cone Box Show 14 takes the Orton Cone company s pyrometric cone box as the size constraint for submissions Notes Edit Dodd and Murfin A and D 1994 Dictionary Of Ceramics 3rd edition Cambridge Institute of Materials Woodhead Publishing Limited ISBN 0 901716 56 1 Edward Orton Jr Ceramic Foundation Temperature Equivalents for Orton Pyrometric Cones C PDF Edward Orton Jr Ceramic Foundation Retrieved 17 January 2020 Temperature equivalents table of Seger pyrometric cones Borkey Keratech Archived from the original on 2011 07 18 Retrieved 17 January 2020 Nimra Glass Temperature Conversion Chart Nimra Cerglass Technics P Ltd Retrieved 17 January 2020 Japan Pyrometric reference cones China s Refractories ASTM C24 Standard Test Method for Pyrometric Cone Equivalency PCE of Fireclay and High Alumina Refractory Materials ISO 1146 1988 02 Lange P 1991 Role of August Hermann Seger in the development of silicate technology Ceram Forum Int Ber DKG 68 No 1 2 The Seger Cone 100 years old Osterr Keram Rundsch 23 9 10 9 Joger A 1985 100 years Seger Cone Silikattechnik 36 12 400 Orton Company History Cone Box Show References EditHamer Frank and Hamer Janet 1991 The Potter s Dictionary of Materials and Techniques Third edition A amp C Black Publishers Limited London England ISBN 0 8122 3112 0 External links EditTemperature equivalents table Nimra amp description of Nimra Cerglass pyrometric cones Temperature equivalents table Orton Celsius Temperature Equivalents and Description of Orton Cones up to Cone 14 Temperature equivalents table of Seger pyrometric cones dead link Retrieved from https en wikipedia org w index php title Pyrometric cone amp oldid 1069877838, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.