fbpx
Wikipedia

Mathisson–Papapetrou–Dixon equations

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.

They are named for M. Mathisson,[1] W. G. Dixon,[2] and A. Papapetrou.[3]

Throughout, this article uses the natural units c = G = 1, and tensor index notation.

Mathisson–Papapetrou–Dixon equations edit

The Mathisson–Papapetrou–Dixon (MPD) equations for a mass   spinning body are

 

Here   is the proper time along the trajectory,   is the body's four-momentum

 

the vector   is the four-velocity of some reference point   in the body, and the skew-symmetric tensor   is the angular momentum

 

of the body about this point. In the time-slice integrals we are assuming that the body is compact enough that we can use flat coordinates within the body where the energy-momentum tensor   is non-zero.

As they stand, there are only ten equations to determine thirteen quantities. These quantities are the six components of  , the four components of   and the three independent components of  . The equations must therefore be supplemented by three additional constraints which serve to determine which point in the body has velocity  . Mathison and Pirani originally chose to impose the condition   which, although involving four components, contains only three constraints because   is identically zero. This condition, however, does not lead to a unique solution and can give rise to the mysterious "helical motions".[4] The Tulczyjew–Dixon condition   does lead to a unique solution as it selects the reference point   to be the body's center of mass in the frame in which its momentum is  .

Accepting the Tulczyjew–Dixon condition  , we can manipulate the second of the MPD equations into the form

 

This is a form of Fermi–Walker transport of the spin tensor along the trajectory – but one preserving orthogonality to the momentum vector   rather than to the tangent vector  . Dixon calls this M-transport.

See also edit

References edit

Notes edit

  1. ^ M. Mathisson (1937). "Neue Mechanik materieller Systeme". Acta Physica Polonica. Vol. 6. pp. 163–209.
  2. ^ W. G. Dixon (1970). "Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum". Proc. R. Soc. Lond. A. 314 (1519): 499–527. Bibcode:1970RSPSA.314..499D. doi:10.1098/rspa.1970.0020. S2CID 119632715.
  3. ^ A. Papapetrou (1951). "Spinning Test-Particles in General Relativity. I". Proc. R. Soc. Lond. A. 209 (1097): 248–258. Bibcode:1951RSPSA.209..248P. doi:10.1098/rspa.1951.0200. S2CID 121464697.
  4. ^ L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". AIP Conf. Proc. AIP Conference Proceedings. 1458: 367–370. arXiv:1206.7093. Bibcode:2012AIPC.1458..367C. doi:10.1063/1.4734436. S2CID 119306409.

Selected papers edit

  • C. Chicone; B. Mashhoon; B. Punsly (2005). "Relativistic motion of spinning particles in a gravitational field". Physics Letters A. 343 (1–3): 1–7. arXiv:gr-qc/0504146. Bibcode:2005PhLA..343....1C. doi:10.1016/j.physleta.2005.05.072. hdl:10355/8357. S2CID 56132009.
  • N. Messios (2007). "Spinning Particles in Spacetimes with Torsion". International Journal of Theoretical Physics. General Relativity and Gravitation. Springer. 46 (3): 562–575. Bibcode:2007IJTP...46..562M. doi:10.1007/s10773-006-9146-8. S2CID 119514028.
  • D. Singh (2008). "An analytic perturbation approach for classical spinning particle dynamics". International Journal of Theoretical Physics. General Relativity and Gravitation. Springer. 40 (6): 1179–1192. arXiv:0706.0928. Bibcode:2008GReGr..40.1179S. doi:10.1007/s10714-007-0597-x. S2CID 7255389.
  • L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". AIP Conf. Proc. AIP Conference Proceedings. 1458: 367–370. arXiv:1206.7093. Bibcode:2012AIPC.1458..367C. doi:10.1063/1.4734436. S2CID 119306409.
  • R. M. Plyatsko (1985). "Addition of the Pirani condition to the Mathisson-Papapetrou equations in a Schwarzschild field". Soviet Physics Journal. Springer. 28 (7): 601–604. Bibcode:1985SvPhJ..28..601P. doi:10.1007/BF00896195. S2CID 121704297.
  • R.R. Lompay (2005). "Deriving Mathisson-Papapetrou equations from relativistic pseudomechanics". arXiv:gr-qc/0503054.
  • R. Plyatsko (2011). "Can Mathisson-Papapetrou equations give clue to some problems in astrophysics?". arXiv:1110.2386 [gr-qc].
  • M. Leclerc (2005). "Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation". Classical and Quantum Gravity. 22 (16): 3203–3221. arXiv:gr-qc/0505021. Bibcode:2005CQGra..22.3203L. doi:10.1088/0264-9381/22/16/006. S2CID 2569951.
  • R. Plyatsko; O. Stefanyshyn; M. Fenyk (2011). "Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds". Classical and Quantum Gravity. 28 (19): 195025. arXiv:1110.1967. Bibcode:2011CQGra..28s5025P. doi:10.1088/0264-9381/28/19/195025. S2CID 119213540.
  • R. Plyatsko; O. Stefanyshyn (2008). "On common solutions of Mathisson equations under different conditions". arXiv:0803.0121. Bibcode:2008arXiv0803.0121P. {{cite journal}}: Cite journal requires |journal= (help)
  • R. M. Plyatsko; A. L. Vynar; Ya. N. Pelekh (1985). "Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction". Soviet Physics Journal. Springer. 28 (10): 773–776. Bibcode:1985SvPhJ..28..773P. doi:10.1007/BF00897946. S2CID 119799125.
  • K. Svirskas; K. Pyragas (1991). "The spherically-symmetrical trajectories of spin particles in the Schwarzschild field". Astrophysics and Space Science. Springer. 179 (2): 275–283. Bibcode:1991Ap&SS.179..275S. doi:10.1007/BF00646947. S2CID 120108333.

mathisson, papapetrou, dixon, equations, physics, specifically, general, relativity, describe, motion, massive, spinning, body, moving, gravitational, field, other, equations, with, similar, names, mathematical, forms, mathisson, papapetrou, equations, papapet. In physics specifically general relativity the Mathisson Papapetrou Dixon equations describe the motion of a massive spinning body moving in a gravitational field Other equations with similar names and mathematical forms are the Mathisson Papapetrou equations and Papapetrou Dixon equations All three sets of equations describe the same physics They are named for M Mathisson 1 W G Dixon 2 and A Papapetrou 3 Throughout this article uses the natural units c G 1 and tensor index notation Contents 1 Mathisson Papapetrou Dixon equations 2 See also 3 References 3 1 Notes 3 2 Selected papersMathisson Papapetrou Dixon equations editThe Mathisson Papapetrou Dixon MPD equations for a mass m displaystyle m nbsp spinning body are D k n D t 1 2 S l m R l m n r V r 0 D S l m D t V l k m V m k l 0 displaystyle begin aligned frac Dk nu D tau frac 1 2 S lambda mu R lambda mu nu rho V rho amp 0 frac DS lambda mu D tau V lambda k mu V mu k lambda amp 0 end aligned nbsp Here t displaystyle tau nbsp is the proper time along the trajectory k n displaystyle k nu nbsp is the body s four momentum k n t const T 0 n g d 3 x displaystyle k nu int t text const T 0 nu sqrt g d 3 x nbsp the vector V m displaystyle V mu nbsp is the four velocity of some reference point X m displaystyle X mu nbsp in the body and the skew symmetric tensor S m n displaystyle S mu nu nbsp is the angular momentum S m n t const x m X m T 0 n x n X n T 0 m g d 3 x displaystyle S mu nu int t text const left left x mu X mu right T 0 nu left x nu X nu right T 0 mu right sqrt g d 3 x nbsp of the body about this point In the time slice integrals we are assuming that the body is compact enough that we can use flat coordinates within the body where the energy momentum tensor T m n displaystyle T mu nu nbsp is non zero As they stand there are only ten equations to determine thirteen quantities These quantities are the six components of S l m displaystyle S lambda mu nbsp the four components of k n displaystyle k nu nbsp and the three independent components of V m displaystyle V mu nbsp The equations must therefore be supplemented by three additional constraints which serve to determine which point in the body has velocity V m displaystyle V mu nbsp Mathison and Pirani originally chose to impose the condition V m S m n 0 displaystyle V mu S mu nu 0 nbsp which although involving four components contains only three constraints because V m S m n V n displaystyle V mu S mu nu V nu nbsp is identically zero This condition however does not lead to a unique solution and can give rise to the mysterious helical motions 4 The Tulczyjew Dixon condition k m S m n 0 displaystyle k mu S mu nu 0 nbsp does lead to a unique solution as it selects the reference point X m displaystyle X mu nbsp to be the body s center of mass in the frame in which its momentum is k 0 k 1 k 2 k 3 m 0 0 0 displaystyle k 0 k 1 k 2 k 3 m 0 0 0 nbsp Accepting the Tulczyjew Dixon condition k m S m n 0 displaystyle k mu S mu nu 0 nbsp we can manipulate the second of the MPD equations into the form D S l m D t 1 m 2 S l r k m D k r D t S r m k l D k r D t 0 displaystyle frac DS lambda mu D tau frac 1 m 2 left S lambda rho k mu frac Dk rho D tau S rho mu k lambda frac Dk rho D tau right 0 nbsp This is a form of Fermi Walker transport of the spin tensor along the trajectory but one preserving orthogonality to the momentum vector k m displaystyle k mu nbsp rather than to the tangent vector V m d X m d t displaystyle V mu dX mu d tau nbsp Dixon calls this M transport See also editIntroduction to the mathematics of general relativity Geodesic equation Pauli Lubanski pseudovector Test particle Relativistic angular momentum Center of mass relativistic References editNotes edit M Mathisson 1937 Neue Mechanik materieller Systeme Acta Physica Polonica Vol 6 pp 163 209 W G Dixon 1970 Dynamics of Extended Bodies in General Relativity I Momentum and Angular Momentum Proc R Soc Lond A 314 1519 499 527 Bibcode 1970RSPSA 314 499D doi 10 1098 rspa 1970 0020 S2CID 119632715 A Papapetrou 1951 Spinning Test Particles in General Relativity I Proc R Soc Lond A 209 1097 248 258 Bibcode 1951RSPSA 209 248P doi 10 1098 rspa 1951 0200 S2CID 121464697 L F O Costa J Natario M Zilhao 2012 Mathisson s helical motions demystified AIP Conf Proc AIP Conference Proceedings 1458 367 370 arXiv 1206 7093 Bibcode 2012AIPC 1458 367C doi 10 1063 1 4734436 S2CID 119306409 Selected papers edit C Chicone B Mashhoon B Punsly 2005 Relativistic motion of spinning particles in a gravitational field Physics Letters A 343 1 3 1 7 arXiv gr qc 0504146 Bibcode 2005PhLA 343 1C doi 10 1016 j physleta 2005 05 072 hdl 10355 8357 S2CID 56132009 N Messios 2007 Spinning Particles in Spacetimes with Torsion International Journal of Theoretical Physics General Relativity and Gravitation Springer 46 3 562 575 Bibcode 2007IJTP 46 562M doi 10 1007 s10773 006 9146 8 S2CID 119514028 D Singh 2008 An analytic perturbation approach for classical spinning particle dynamics International Journal of Theoretical Physics General Relativity and Gravitation Springer 40 6 1179 1192 arXiv 0706 0928 Bibcode 2008GReGr 40 1179S doi 10 1007 s10714 007 0597 x S2CID 7255389 L F O Costa J Natario M Zilhao 2012 Mathisson s helical motions demystified AIP Conf Proc AIP Conference Proceedings 1458 367 370 arXiv 1206 7093 Bibcode 2012AIPC 1458 367C doi 10 1063 1 4734436 S2CID 119306409 R M Plyatsko 1985 Addition of the Pirani condition to the Mathisson Papapetrou equations in a Schwarzschild field Soviet Physics Journal Springer 28 7 601 604 Bibcode 1985SvPhJ 28 601P doi 10 1007 BF00896195 S2CID 121704297 R R Lompay 2005 Deriving Mathisson Papapetrou equations from relativistic pseudomechanics arXiv gr qc 0503054 R Plyatsko 2011 Can Mathisson Papapetrou equations give clue to some problems in astrophysics arXiv 1110 2386 gr qc M Leclerc 2005 Mathisson Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation Classical and Quantum Gravity 22 16 3203 3221 arXiv gr qc 0505021 Bibcode 2005CQGra 22 3203L doi 10 1088 0264 9381 22 16 006 S2CID 2569951 R Plyatsko O Stefanyshyn M Fenyk 2011 Mathisson Papapetrou Dixon equations in the Schwarzschild and Kerr backgrounds Classical and Quantum Gravity 28 19 195025 arXiv 1110 1967 Bibcode 2011CQGra 28s5025P doi 10 1088 0264 9381 28 19 195025 S2CID 119213540 R Plyatsko O Stefanyshyn 2008 On common solutions of Mathisson equations under different conditions arXiv 0803 0121 Bibcode 2008arXiv0803 0121P a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help R M Plyatsko A L Vynar Ya N Pelekh 1985 Conditions for the appearance of gravitational ultrarelativistic spin orbital interaction Soviet Physics Journal Springer 28 10 773 776 Bibcode 1985SvPhJ 28 773P doi 10 1007 BF00897946 S2CID 119799125 K Svirskas K Pyragas 1991 The spherically symmetrical trajectories of spin particles in the Schwarzschild field Astrophysics and Space Science Springer 179 2 275 283 Bibcode 1991Ap amp SS 179 275S doi 10 1007 BF00646947 S2CID 120108333 Retrieved from https en wikipedia org w index php title Mathisson Papapetrou Dixon equations amp oldid 1160747152 Papapetrou Dixon equations, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.