fbpx
Wikipedia

Oblique shock

An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the incident upstream flow direction. It will occur when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave.

An oblique shock at the nose of a T-38 aircraft is made visible through Schlieren photography

It is always possible to convert an oblique shock into a normal shock by a Galilean transformation.

Wave theory Edit

 
Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock.
 
This chart shows the oblique shock angle, β, as a function of the corner angle, θ, for a few constant M1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic. The chart assumes  =1.4, which is valid for an ideal diatomic gas.

For a given Mach number, M1, and corner angle, θ, the oblique shock angle, β, and the downstream Mach number, M2, can be calculated. Unlike after a normal shock where M2 must always be less than 1, in oblique shock M2 can be supersonic (weak shock wave) or subsonic (strong shock wave). Weak solutions are often observed in flow geometries open to atmosphere (such as on the outside of a flight vehicle). Strong solutions may be observed in confined geometries (such as inside a nozzle intake). Strong solutions are required when the flow needs to match the downstream high pressure condition. Discontinuous changes also occur in the pressure, density and temperature, which all rise downstream of the oblique shock wave.

The θ-β-M equation Edit

Using the continuity equation and the fact that the tangential velocity component does not change across the shock, trigonometric relations eventually lead to the θ-β-M equation which shows θ as a function of M1 β, and ɣ, where ɣ is the Heat capacity ratio.[1]

 

It is more intuitive to want to solve for β as a function of M1 and θ, but this approach is more complicated, the results of which are often contained in tables or calculated through a numerical method.

Maximum deflection angle Edit

Within the θ-β-M equation, a maximum corner angle, θMAX, exists for any upstream Mach number. When θ > θMAX, the oblique shock wave is no longer attached to the corner and is replaced by a detached bow shock. A θ-β-M diagram, common in most compressible flow textbooks, shows a series of curves that will indicate θMAX for each Mach number. The θ-β-M relationship will produce two β angles for a given θ and M1, with the larger angle called a strong shock and the smaller called a weak shock. The weak shock is almost always seen experimentally.

The rise in pressure, density, and temperature after an oblique shock can be calculated as follows:

 

 

 

M2 is solved for as follows:

 

Wave applications Edit

 
Concorde intake ramp system
 
F-14D Tomcat showing wedge-shaped intakes

Oblique shocks are often preferable in engineering applications when compared to normal shocks. This can be attributed to the fact that using one or a combination of oblique shock waves results in more favourable post-shock conditions (smaller increase in entropy, less stagnation pressure loss, etc.) when compared to utilizing a single normal shock. An example of this technique can be seen in the design of supersonic aircraft engine intakes or supersonic inlets. A type of these inlets is wedge-shaped to compress air flow into the combustion chamber while minimizing thermodynamic losses. Early supersonic aircraft jet engine intakes were designed using compression from a single normal shock, but this approach caps the maximum achievable Mach number to roughly 1.6. Concorde (which first flew in 1969) used variable geometry wedge-shaped intakes to achieve a maximum speed of Mach 2.2. A similar design was used on the F-14 Tomcat (the F-14D was first delivered in 1994) and achieved a maximum speed of Mach 2.34.

Many supersonic aircraft wings are designed around a thin diamond shape. Placing a diamond-shaped object at an angle of attack relative to the supersonic flow streamlines will result in two oblique shocks propagating from the front tip over the top and bottom of the wing, with Prandtl-Meyer expansion fans created at the two corners of the diamond closest to the front tip. When correctly designed, this generates lift.

Waves and the hypersonic limit Edit

As the Mach number of the upstream flow becomes increasingly hypersonic, the equations for the pressure, density, and temperature after the oblique shock wave reach a mathematical limit. The pressure and density ratios can then be expressed as:

 

 

For a perfect atmospheric gas approximation using γ = 1.4, the hypersonic limit for the density ratio is 6. However, hypersonic post-shock dissociation of O2 and N2 into O and N lowers γ, allowing for higher density ratios in nature. The hypersonic temperature ratio is:

 

See also Edit

References Edit

  1. ^ (PDF). Archived from the original (PDF) on 2012-10-21. Retrieved 2013-01-01.{{cite web}}: CS1 maint: archived copy as title (link)

External links Edit

  • NASA oblique shock wave calculator 2011-07-18 at the Wayback Machine (Java applet)
  • Supersonic wind tunnel test demonstration (Mach 2.5) with flat plate and wedge creating an oblique shock(Video)

oblique, shock, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, november, 2019, learn, when, remove, this, template, message, . This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations November 2019 Learn how and when to remove this template message An oblique shock wave is a shock wave that unlike a normal shock is inclined with respect to the incident upstream flow direction It will occur when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses The upstream streamlines are uniformly deflected after the shock wave The most common way to produce an oblique shock wave is to place a wedge into supersonic compressible flow Similar to a normal shock wave the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur While the upstream and downstream flow directions are unchanged across a normal shock they are different for flow across an oblique shock wave An oblique shock at the nose of a T 38 aircraft is made visible through Schlieren photographyIt is always possible to convert an oblique shock into a normal shock by a Galilean transformation Contents 1 Wave theory 1 1 The 8 b M equation 1 2 Maximum deflection angle 2 Wave applications 3 Waves and the hypersonic limit 4 See also 5 References 6 External linksWave theory Edit nbsp Supersonic flow encounters a wedge and is uniformly deflected forming an oblique shock nbsp This chart shows the oblique shock angle b as a function of the corner angle 8 for a few constant M1 lines The red line separates the strong and weak solutions The blue line represents the point when the downstream Mach number becomes sonic The chart assumes g displaystyle gamma nbsp 1 4 which is valid for an ideal diatomic gas For a given Mach number M1 and corner angle 8 the oblique shock angle b and the downstream Mach number M2 can be calculated Unlike after a normal shock where M2 must always be less than 1 in oblique shock M2 can be supersonic weak shock wave or subsonic strong shock wave Weak solutions are often observed in flow geometries open to atmosphere such as on the outside of a flight vehicle Strong solutions may be observed in confined geometries such as inside a nozzle intake Strong solutions are required when the flow needs to match the downstream high pressure condition Discontinuous changes also occur in the pressure density and temperature which all rise downstream of the oblique shock wave The 8 b M equation Edit Using the continuity equation and the fact that the tangential velocity component does not change across the shock trigonometric relations eventually lead to the 8 b M equation which shows 8 as a function of M1 b and ɣ where ɣ is the Heat capacity ratio 1 tan 8 2 cot b M 1 2 sin 2 b 1 M 1 2 g cos 2 b 2 displaystyle tan theta 2 cot beta frac M 1 2 sin 2 beta 1 M 1 2 gamma cos 2 beta 2 nbsp It is more intuitive to want to solve for b as a function of M1 and 8 but this approach is more complicated the results of which are often contained in tables or calculated through a numerical method Maximum deflection angle Edit Within the 8 b M equation a maximum corner angle 8MAX exists for any upstream Mach number When 8 gt 8MAX the oblique shock wave is no longer attached to the corner and is replaced by a detached bow shock A 8 b M diagram common in most compressible flow textbooks shows a series of curves that will indicate 8MAX for each Mach number The 8 b M relationship will produce two b angles for a given 8 and M1 with the larger angle called a strong shock and the smaller called a weak shock The weak shock is almost always seen experimentally The rise in pressure density and temperature after an oblique shock can be calculated as follows p 2 p 1 1 2 g g 1 M 1 2 sin 2 b 1 displaystyle frac p 2 p 1 1 frac 2 gamma gamma 1 M 1 2 sin 2 beta 1 nbsp r 2 r 1 g 1 M 1 2 sin 2 b g 1 M 1 2 sin 2 b 2 displaystyle frac rho 2 rho 1 frac gamma 1 M 1 2 sin 2 beta gamma 1 M 1 2 sin 2 beta 2 nbsp T 2 T 1 p 2 p 1 r 1 r 2 displaystyle frac T 2 T 1 frac p 2 p 1 frac rho 1 rho 2 nbsp M2 is solved for as follows M 2 1 sin b 8 1 g 1 2 M 1 2 sin 2 b g M 1 2 sin 2 b g 1 2 displaystyle M 2 frac 1 sin beta theta sqrt frac 1 frac gamma 1 2 M 1 2 sin 2 beta gamma M 1 2 sin 2 beta frac gamma 1 2 nbsp Wave applications Edit nbsp Concorde intake ramp system nbsp F 14D Tomcat showing wedge shaped intakesOblique shocks are often preferable in engineering applications when compared to normal shocks This can be attributed to the fact that using one or a combination of oblique shock waves results in more favourable post shock conditions smaller increase in entropy less stagnation pressure loss etc when compared to utilizing a single normal shock An example of this technique can be seen in the design of supersonic aircraft engine intakes or supersonic inlets A type of these inlets is wedge shaped to compress air flow into the combustion chamber while minimizing thermodynamic losses Early supersonic aircraft jet engine intakes were designed using compression from a single normal shock but this approach caps the maximum achievable Mach number to roughly 1 6 Concorde which first flew in 1969 used variable geometry wedge shaped intakes to achieve a maximum speed of Mach 2 2 A similar design was used on the F 14 Tomcat the F 14D was first delivered in 1994 and achieved a maximum speed of Mach 2 34 Many supersonic aircraft wings are designed around a thin diamond shape Placing a diamond shaped object at an angle of attack relative to the supersonic flow streamlines will result in two oblique shocks propagating from the front tip over the top and bottom of the wing with Prandtl Meyer expansion fans created at the two corners of the diamond closest to the front tip When correctly designed this generates lift Waves and the hypersonic limit EditAs the Mach number of the upstream flow becomes increasingly hypersonic the equations for the pressure density and temperature after the oblique shock wave reach a mathematical limit The pressure and density ratios can then be expressed as p 2 p 1 2 g g 1 M 1 2 sin 2 b displaystyle frac p 2 p 1 approx frac 2 gamma gamma 1 M 1 2 sin 2 beta nbsp r 2 r 1 g 1 g 1 displaystyle frac rho 2 rho 1 approx frac gamma 1 gamma 1 nbsp For a perfect atmospheric gas approximation using g 1 4 the hypersonic limit for the density ratio is 6 However hypersonic post shock dissociation of O2 and N2 into O and N lowers g allowing for higher density ratios in nature The hypersonic temperature ratio is T 2 T 1 2 g g 1 g 1 2 M 1 2 sin 2 b displaystyle frac T 2 T 1 approx frac 2 gamma gamma 1 gamma 1 2 M 1 2 sin 2 beta nbsp See also EditBow shock aerodynamics Gas dynamics Mach reflection Moving shock Shock polar Shock waveReferences Edit Archived copy PDF Archived from the original PDF on 2012 10 21 Retrieved 2013 01 01 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link Liepmann Hans W Roshko A 2001 1957 Elements of Gasdynamics Dover Publications ISBN 978 0 486 41963 3 Anderson John D Jr January 2001 1984 Fundamentals of Aerodynamics 3rd ed McGraw Hill Science Engineering Math ISBN 978 0 07 237335 6 Shapiro Ascher H 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow Volume 1 Ronald Press ISBN 978 0 471 06691 0 External links EditNASA oblique shock wave calculator Archived 2011 07 18 at the Wayback Machine Java applet Supersonic wind tunnel test demonstration Mach 2 5 with flat plate and wedge creating an oblique shock Video Retrieved from https en wikipedia org w index php title Oblique shock amp oldid 1074875335, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.