fbpx
Wikipedia

Numerical analytic continuation

In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies.

Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method,[1][2][3][4] the average spectrum method[5][6][7][8] and Pade approximation methods.[9][10]

Examples edit

A common analytic continuation problem is obtaining the spectral function   at real frequencies   from the Green function values   at Matsubara frequencies   by numerically inverting the integral equation

 

where   for fermionic systems or   for bosonic ones and   is the inverse temperature. This relation is an example of Kramers-Kronig relation.


The spectral function can also be related to the imaginary-time Green function   be applying the inverse Fourier transform to the above equation

 

with  . Evaluating the summation over Matsubara frequencies gives the desired relation

 

where the upper sign is for fermionic systems and the lower sign is for bosonic ones.


Another example of the analytic continuation is calculating the optical conductivity   from the current-current correlation function values   at Matsubara frequencies. The two are related as following

 

Software edit

  • The Maxent Project: Open source utility for performing analytic continuation using the maximum entropy method.
  • Spektra: Free online tool for performing analytic continuation using the average spectrum Method.
  • SpM: Sparse modeling tool for analytic continuation of imaginary-time Green’s function.

See also edit

References edit

  1. ^ Silver, R. N.; Sivia, D. S.; Gubernatis, J. E. (1990-02-01). "Maximum-entropy method for analytic continuation of quantum Monte Carlo data". Physical Review B. 41 (4): 2380–2389. Bibcode:1990PhRvB..41.2380S. doi:10.1103/PhysRevB.41.2380. PMID 9993975.
  2. ^ Jarrell, Mark; Gubernatis, J. E. (1996-05-01). "Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data". Physics Reports. 269 (3): 133–195. Bibcode:1996PhR...269..133J. doi:10.1016/0370-1573(95)00074-7. ISSN 0370-1573.
  3. ^ Reymbaut, A.; Bergeron, D.; Tremblay, A.-M. S. (2015-08-27). "Maximum entropy analytic continuation for spectral functions with nonpositive spectral weight". Physical Review B. 92 (6): 060509. arXiv:1507.01956. Bibcode:2015PhRvB..92f0509R. doi:10.1103/PhysRevB.92.060509. S2CID 56385057.
  4. ^ Burnier, Yannis; Rothkopf, Alexander (2013-10-31). "Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories". Physical Review Letters. 111 (18): 182003. arXiv:1307.6106. Bibcode:2013PhRvL.111r2003B. doi:10.1103/PhysRevLett.111.182003. PMID 24237510.
  5. ^ White, S. R. (1991). "The Average Spectrum Method for the Analytic Continuation of Imaginary-Time Data". In Landau, David P.; Mon, K. K.; Schüttler, Heinz-Bernd (eds.). Computer Simulation Studies in Condensed Matter Physics III. Springer Proceedings in Physics. Vol. 53. Berlin, Heidelberg: Springer. pp. 145–153. doi:10.1007/978-3-642-76382-3_13. ISBN 978-3-642-76382-3.
  6. ^ Sandvik, Anders W. (1998-05-01). "Stochastic method for analytic continuation of quantum Monte Carlo data". Physical Review B. 57 (17): 10287–10290. Bibcode:1998PhRvB..5710287S. doi:10.1103/PhysRevB.57.10287.
  7. ^ Ghanem, Khaldoon; Koch, Erik (2020-02-10). "Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid". Physical Review B. 101 (8): 085111. arXiv:1912.01379. Bibcode:2020PhRvB.101h5111G. doi:10.1103/PhysRevB.101.085111. S2CID 208548627.
  8. ^ Ghanem, Khaldoon; Koch, Erik (2020-07-06). "Extending the average spectrum method: Grid point sampling and density averaging". Physical Review B. 102 (3): 035114. arXiv:2004.01155. Bibcode:2020PhRvB.102c5114G. doi:10.1103/PhysRevB.102.035114. S2CID 214775183.
  9. ^ Beach, K. S. D.; Gooding, R. J.; Marsiglio, F. (2000-02-15). "Reliable Pad\'e analytical continuation method based on a high-accuracy symbolic computation algorithm". Physical Review B. 61 (8): 5147–5157. arXiv:cond-mat/9908477. Bibcode:2000PhRvB..61.5147B. doi:10.1103/PhysRevB.61.5147. S2CID 17880539.
  10. ^ Östlin, A.; Chioncel, L.; Vitos, L. (2012-12-06). "One-particle spectral function and analytic continuation for many-body implementation in the exact muffin-tin orbitals method". Physical Review B. 86 (23): 235107. arXiv:1209.5283. Bibcode:2012PhRvB..86w5107O. doi:10.1103/PhysRevB.86.235107. S2CID 8434964.

numerical, analytic, continuation, many, body, physics, problem, analytic, continuation, that, numerically, extracting, spectral, density, green, function, given, values, imaginary, axis, necessary, post, processing, step, calculating, dynamical, properties, p. In many body physics the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis It is a necessary post processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations which often compute Green function values only at imaginary times or Matsubara frequencies Mathematically the problem reduces to solving a Fredholm integral equation of the first kind with an ill conditioned kernel As a result it is an ill posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution There are different methods for solving this problem including the maximum entropy method 1 2 3 4 the average spectrum method 5 6 7 8 and Pade approximation methods 9 10 Contents 1 Examples 2 Software 3 See also 4 ReferencesExamples editA common analytic continuation problem is obtaining the spectral function A w textstyle A omega nbsp at real frequencies w textstyle omega nbsp from the Green function values G iwn textstyle mathcal G i omega n nbsp at Matsubara frequencies wn textstyle omega n nbsp by numerically inverting the integral equationG iwn dw2p1iwn wA w displaystyle mathcal G i omega n int infty infty frac d omega 2 pi frac 1 i omega n omega A omega nbsp where wn 2n 1 p b textstyle omega n 2n 1 pi beta nbsp for fermionic systems or wn 2np b textstyle omega n 2n pi beta nbsp for bosonic ones and b 1 T textstyle beta 1 T nbsp is the inverse temperature This relation is an example of Kramers Kronig relation The spectral function can also be related to the imaginary time Green function G t textstyle mathcal G tau nbsp be applying the inverse Fourier transform to the above equationG t 1b wne iwntg iwn dw2pA w 1b wne iwntiwn w displaystyle mathcal G tau colon frac 1 beta sum omega n e i omega n tau mathcal g i omega n int infty infty frac d omega 2 pi A omega frac 1 beta sum omega n frac e i omega n tau i omega n omega nbsp with t 0 b textstyle tau in 0 beta nbsp Evaluating the summation over Matsubara frequencies gives the desired relationG t dw2p e tw1 e bwA w displaystyle mathcal G tau int infty infty frac d omega 2 pi frac e tau omega 1 pm e beta omega A omega nbsp where the upper sign is for fermionic systems and the lower sign is for bosonic ones Another example of the analytic continuation is calculating the optical conductivity s w displaystyle sigma omega nbsp from the current current correlation function values P iwn displaystyle Pi i omega n nbsp at Matsubara frequencies The two are related as followingP iwn 0 dwp2w2wn2 w2A w displaystyle Pi i omega n int 0 infty frac d omega pi frac 2 omega 2 omega n 2 omega 2 A omega nbsp Software editThe Maxent Project Open source utility for performing analytic continuation using the maximum entropy method Spektra Free online tool for performing analytic continuation using the average spectrum Method SpM Sparse modeling tool for analytic continuation of imaginary time Green s function See also editAnalytic continuation Analytic continuation along a curve Fredholm integral equation Green s function Kramers Kronig relations Quantum Monte CarloReferences edit Silver R N Sivia D S Gubernatis J E 1990 02 01 Maximum entropy method for analytic continuation of quantum Monte Carlo data Physical Review B 41 4 2380 2389 Bibcode 1990PhRvB 41 2380S doi 10 1103 PhysRevB 41 2380 PMID 9993975 Jarrell Mark Gubernatis J E 1996 05 01 Bayesian inference and the analytic continuation of imaginary time quantum Monte Carlo data Physics Reports 269 3 133 195 Bibcode 1996PhR 269 133J doi 10 1016 0370 1573 95 00074 7 ISSN 0370 1573 Reymbaut A Bergeron D Tremblay A M S 2015 08 27 Maximum entropy analytic continuation for spectral functions with nonpositive spectral weight Physical Review B 92 6 060509 arXiv 1507 01956 Bibcode 2015PhRvB 92f0509R doi 10 1103 PhysRevB 92 060509 S2CID 56385057 Burnier Yannis Rothkopf Alexander 2013 10 31 Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories Physical Review Letters 111 18 182003 arXiv 1307 6106 Bibcode 2013PhRvL 111r2003B doi 10 1103 PhysRevLett 111 182003 PMID 24237510 White S R 1991 The Average Spectrum Method for the Analytic Continuation of Imaginary Time Data In Landau David P Mon K K Schuttler Heinz Bernd eds Computer Simulation Studies in Condensed Matter Physics III Springer Proceedings in Physics Vol 53 Berlin Heidelberg Springer pp 145 153 doi 10 1007 978 3 642 76382 3 13 ISBN 978 3 642 76382 3 Sandvik Anders W 1998 05 01 Stochastic method for analytic continuation of quantum Monte Carlo data Physical Review B 57 17 10287 10290 Bibcode 1998PhRvB 5710287S doi 10 1103 PhysRevB 57 10287 Ghanem Khaldoon Koch Erik 2020 02 10 Average spectrum method for analytic continuation Efficient blocked mode sampling and dependence on the discretization grid Physical Review B 101 8 085111 arXiv 1912 01379 Bibcode 2020PhRvB 101h5111G doi 10 1103 PhysRevB 101 085111 S2CID 208548627 Ghanem Khaldoon Koch Erik 2020 07 06 Extending the average spectrum method Grid point sampling and density averaging Physical Review B 102 3 035114 arXiv 2004 01155 Bibcode 2020PhRvB 102c5114G doi 10 1103 PhysRevB 102 035114 S2CID 214775183 Beach K S D Gooding R J Marsiglio F 2000 02 15 Reliable Pad e analytical continuation method based on a high accuracy symbolic computation algorithm Physical Review B 61 8 5147 5157 arXiv cond mat 9908477 Bibcode 2000PhRvB 61 5147B doi 10 1103 PhysRevB 61 5147 S2CID 17880539 Ostlin A Chioncel L Vitos L 2012 12 06 One particle spectral function and analytic continuation for many body implementation in the exact muffin tin orbitals method Physical Review B 86 23 235107 arXiv 1209 5283 Bibcode 2012PhRvB 86w5107O doi 10 1103 PhysRevB 86 235107 S2CID 8434964 Retrieved from https en wikipedia org w index php title Numerical analytic continuation amp oldid 1188489352, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.