fbpx
Wikipedia

Multi-parametric surface plasmon resonance

Multi-parametric surface plasmon resonance (MP-SPR) is based on surface plasmon resonance (SPR), an established real-time label-free method for biomolecular interaction analysis, but it uses a different optical setup, a goniometric SPR configuration. While MP-SPR provides same kinetic information as SPR (equilibrium constant, dissociation constant, association constant), it provides also structural information (refractive index, layer thickness). Hence, MP-SPR measures both surface interactions and nanolayer properties.[1]

History edit

The goniometric SPR method was researched alongside focused beam SPR and Otto configurations at VTT Technical Research Centre of Finland since 1980s by Dr. Janusz Sadowski.[2] The goniometric SPR optics was commercialized by Biofons Oy for use in point-of-care applications. Introduction of additional measurement laser wavelengths and first thin film analyses were performed in 2011 giving way to MP-SPR method.

Principle edit

The MP-SPR optical setup measures at multiple wavelengths simultaneously (similarly to spectroscopic SPR), but instead of measuring at a fixed angle, it rather scans across a wide range of θ angles (for instance 40 degrees). This results in measurements of full SPR curves at multiple wavelengths providing additional information about structure and dynamic conformation of the film.[3]

Measured values edit

The measured full SPR curves (x-axis: angle, y-axis: reflected light intensity) can be transcribed into sensograms (x-axis: time, y-axis: selected parameter such as peak minimum, light intensity, peak width).[4] The sensograms can be fitted using binding models to obtain kinetic parameters including on- and off-rates and affinity. The full SPR curves are used to fit Fresnel equations to obtain thickness and refractive index of the layers. Also due to the ability of scanning the whole SPR curve, MP-SPR is able to separate bulk effect and analyte binding from each other using parameters of the curve.

Molecular interactions Layer properties
Kinetics, PureKinetics (kon, koff) Refractive index (n)
Affinity (KD) Thickness (d)
Concentration (c) Extinction coefficient (k)
Adsorption/Absorption Density (ρ)
Desorption Surface coverage (Γ)
Adhesion Swelling (Δd)
Electrochemistry (E, I, omega) Optical dispersion (n(λ))

While QCM-D measures wet mass, MP-SPR and other optical methods measure dry mass, which enables analysis of water content of nanocellulose films.

Applications edit

The method has been used in life sciences, material sciences and biosensor development. In life sciences, the main applications focus on pharmaceutical development including small-molecule, antibody or nanoparticle interactions with target with a biomembrane[5] or with a living cell monolayer.[4] As first in the world, MP-SPR is able to separate transcellular and paracellular drug uptake[4] in real-time and label-free for targeted drug delivery. In biosensor development, MP-SPR is used for assay development for point-of-care applications.[3][6][7][8] Typical developed biosensors include electrochemical printed biosensors, ELISA and SERS. In material sciences, MP-SPR is used for optimization of thin solid films from Ångströms to 100 nanometers (graphene, metals, oxides),[9] soft materials up to microns (nanocellulose, polyelectrolyte) including nanoparticles. Applications including thin film solar cells, barrier coatings including anti-reflective coatings, antimicrobial surfaces, self-cleaning glass, plasmonic metamaterials, electro-switching surfaces, layer-by-layer assembly, and graphene.[10][11][12][13]

References edit

  1. ^ Korhonen, Kristiina; Granqvist, Niko; Ketolainen, Jarkko; Laitinen, Riikka (October 2015). "Monitoring of drug release kinetics from thin polymer films by multi-parametric surface plasmon resonance". International Journal of Pharmaceutics. 494 (1): 531–536. doi:10.1016/j.ijpharm.2015.08.071. PMID 26319634.
  2. ^ Sadowski, J. W.; Korhonen, I.; Peltonen, J. (1995). "Characterization of thin films and their structures in surface plasmon resonance measurements". Optical Engineering. 34 (9): 2581–2586. Bibcode:1995OptEn..34.2581S. doi:10.1117/12.208083.
  3. ^ a b Wang, Huangxian Ju, Xueji Zhang, Joseph (2011). NanoBiosensing : principles, development, and application. New York: Springer. p. chapter 4. ISBN 978-1-4419-9621-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b c Viitala, Tapani; Granqvist, Niko; Hallila, Susanna; Raviña, Manuela; Yliperttula, Marjo; van Raaij, Mark J. (27 August 2013). "Elucidating the Signal Responses of Multi-Parametric Surface Plasmon Resonance Living Cell Sensing: A Comparison between Optical Modeling and Drug–MDCKII Cell Interaction Measurements". PLOS ONE. 8 (8): e72192. Bibcode:2013PLoSO...872192V. doi:10.1371/journal.pone.0072192. PMC 3754984. PMID 24015218.
  5. ^ Garcia-Linares, Sara; Palacios-Ortega, Juan; Yasuda, Tomokazu; Åstrand, Mia; Gavilanes, Jose G.; Martinez-del-Pozo, Alvaro; Slotte, J.Peter (2016). "Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers". Biomembranes. 1858 (6): 1189–1195. doi:10.1016/j.bbamem.2016.03.013. PMID 26975250.
  6. ^ Souto, Dênio E.P.; Fonseca, Aliani M.; Barragan, José T.C.; Luz, Rita de C.S.; Andrade, Hélida M.; Damos, Flávio S.; Kubota, Lauro T. (August 2015). "SPR analysis of the interaction between a recombinant protein of unknown function in Leishmania infantum immobilised on dendrimers and antibodies of the visceral leishmaniasis: A potential use in immunodiagnosis". Biosensors and Bioelectronics. 70: 275–281. doi:10.1016/j.bios.2015.03.034. PMID 25829285.
  7. ^ Sonny, Susanna; Virtanen, Vesa; Sesay, Adama M. (2010). "Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva". SPIE Laser Applications in Life Sciences. 7376 (5): 737605. Bibcode:2010SPIE.7376E..05S. doi:10.1117/12.871116. S2CID 95200834.
  8. ^ Ihalainen, Petri; Majumdar, Himadri; Viitala, Tapani; Törngren, Björn; Närjeoja, Tuomas; Määttänen, Anni; Sarfraz, Jawad; Härmä, Harri; Yliperttula, Marjo; Österbacka, Ronald; Peltonen, Jouko (27 December 2012). "Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development". Biosensors. 3 (1): 1–17. doi:10.3390/bios3010001. PMC 4263588. PMID 25587396.
  9. ^ Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E. (2018-01-12). "Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode". Journal of Applied Physics. 123 (2): 023108. Bibcode:2018JAP...123b3108T. doi:10.1063/1.5003869. ISSN 0021-8979.
  10. ^ Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016). "Surface plasmon resonance for characterization of large-area atomic-layer graphene film". Optica. 3 (2): 151. Bibcode:2016Optic...3..151J. doi:10.1364/OPTICA.3.000151.
  11. ^ Emilsson, Gustav; Schoch, Rafael L.; Feuz, Laurent; Höök, Fredrik; Lim, Roderick Y. H.; Dahlin, Andreas B. (15 April 2015). "Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To". ACS Applied Materials & Interfaces. 7 (14): 7505–7515. doi:10.1021/acsami.5b01590. PMID 25812004.
  12. ^ Vuoriluoto, Maija; Orelma, Hannes; Johansson, Leena-Sisko; Zhu, Baolei; Poutanen, Mikko; Walther, Andreas; Laine, Janne; Rojas, Orlando J. (10 December 2015). "Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion". The Journal of Physical Chemistry B. 119 (49): 15275–15286. doi:10.1021/acs.jpcb.5b07628. PMID 26560798.
  13. ^ Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani (9 July 2013). "Characterizing Ultrathin and Thick Organic Layers by Surface Plasmon Resonance Three-Wavelength and Waveguide Mode Analysis". Langmuir. 29 (27): 8561–8571. doi:10.1021/la401084w. PMID 23758623.

multi, parametric, surface, plasmon, resonance, based, surface, plasmon, resonance, established, real, time, label, free, method, biomolecular, interaction, analysis, uses, different, optical, setup, goniometric, configuration, while, provides, same, kinetic, . Multi parametric surface plasmon resonance MP SPR is based on surface plasmon resonance SPR an established real time label free method for biomolecular interaction analysis but it uses a different optical setup a goniometric SPR configuration While MP SPR provides same kinetic information as SPR equilibrium constant dissociation constant association constant it provides also structural information refractive index layer thickness Hence MP SPR measures both surface interactions and nanolayer properties 1 Contents 1 History 2 Principle 3 Measured values 4 Applications 5 ReferencesHistory editThe goniometric SPR method was researched alongside focused beam SPR and Otto configurations at VTT Technical Research Centre of Finland since 1980s by Dr Janusz Sadowski 2 The goniometric SPR optics was commercialized by Biofons Oy for use in point of care applications Introduction of additional measurement laser wavelengths and first thin film analyses were performed in 2011 giving way to MP SPR method Principle editThe MP SPR optical setup measures at multiple wavelengths simultaneously similarly to spectroscopic SPR but instead of measuring at a fixed angle it rather scans across a wide range of 8 angles for instance 40 degrees This results in measurements of full SPR curves at multiple wavelengths providing additional information about structure and dynamic conformation of the film 3 Measured values editThe measured full SPR curves x axis angle y axis reflected light intensity can be transcribed into sensograms x axis time y axis selected parameter such as peak minimum light intensity peak width 4 The sensograms can be fitted using binding models to obtain kinetic parameters including on and off rates and affinity The full SPR curves are used to fit Fresnel equations to obtain thickness and refractive index of the layers Also due to the ability of scanning the whole SPR curve MP SPR is able to separate bulk effect and analyte binding from each other using parameters of the curve Molecular interactions Layer propertiesKinetics PureKinetics kon koff Refractive index n Affinity KD Thickness d Concentration c Extinction coefficient k Adsorption Absorption Density r Desorption Surface coverage G Adhesion Swelling Dd Electrochemistry E I omega Optical dispersion n l While QCM D measures wet mass MP SPR and other optical methods measure dry mass which enables analysis of water content of nanocellulose films Applications editThe method has been used in life sciences material sciences and biosensor development In life sciences the main applications focus on pharmaceutical development including small molecule antibody or nanoparticle interactions with target with a biomembrane 5 or with a living cell monolayer 4 As first in the world MP SPR is able to separate transcellular and paracellular drug uptake 4 in real time and label free for targeted drug delivery In biosensor development MP SPR is used for assay development for point of care applications 3 6 7 8 Typical developed biosensors include electrochemical printed biosensors ELISA and SERS In material sciences MP SPR is used for optimization of thin solid films from Angstroms to 100 nanometers graphene metals oxides 9 soft materials up to microns nanocellulose polyelectrolyte including nanoparticles Applications including thin film solar cells barrier coatings including anti reflective coatings antimicrobial surfaces self cleaning glass plasmonic metamaterials electro switching surfaces layer by layer assembly and graphene 10 11 12 13 References edit Korhonen Kristiina Granqvist Niko Ketolainen Jarkko Laitinen Riikka October 2015 Monitoring of drug release kinetics from thin polymer films by multi parametric surface plasmon resonance International Journal of Pharmaceutics 494 1 531 536 doi 10 1016 j ijpharm 2015 08 071 PMID 26319634 Sadowski J W Korhonen I Peltonen J 1995 Characterization of thin films and their structures in surface plasmon resonance measurements Optical Engineering 34 9 2581 2586 Bibcode 1995OptEn 34 2581S doi 10 1117 12 208083 a b Wang Huangxian Ju Xueji Zhang Joseph 2011 NanoBiosensing principles development and application New York Springer p chapter 4 ISBN 978 1 4419 9621 3 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link a b c Viitala Tapani Granqvist Niko Hallila Susanna Ravina Manuela Yliperttula Marjo van Raaij Mark J 27 August 2013 Elucidating the Signal Responses of Multi Parametric Surface Plasmon Resonance Living Cell Sensing A Comparison between Optical Modeling and Drug MDCKII Cell Interaction Measurements PLOS ONE 8 8 e72192 Bibcode 2013PLoSO 872192V doi 10 1371 journal pone 0072192 PMC 3754984 PMID 24015218 Garcia Linares Sara Palacios Ortega Juan Yasuda Tomokazu Astrand Mia Gavilanes Jose G Martinez del Pozo Alvaro Slotte J Peter 2016 Toxin induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers Biomembranes 1858 6 1189 1195 doi 10 1016 j bbamem 2016 03 013 PMID 26975250 Souto Denio E P Fonseca Aliani M Barragan Jose T C Luz Rita de C S Andrade Helida M Damos Flavio S Kubota Lauro T August 2015 SPR analysis of the interaction between a recombinant protein of unknown function in Leishmania infantum immobilised on dendrimers and antibodies of the visceral leishmaniasis A potential use in immunodiagnosis Biosensors and Bioelectronics 70 275 281 doi 10 1016 j bios 2015 03 034 PMID 25829285 Sonny Susanna Virtanen Vesa Sesay Adama M 2010 Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva SPIE Laser Applications in Life Sciences 7376 5 737605 Bibcode 2010SPIE 7376E 05S doi 10 1117 12 871116 S2CID 95200834 Ihalainen Petri Majumdar Himadri Viitala Tapani Torngren Bjorn Narjeoja Tuomas Maattanen Anni Sarfraz Jawad Harma Harri Yliperttula Marjo Osterbacka Ronald Peltonen Jouko 27 December 2012 Application of Paper Supported Printed Gold Electrodes for Impedimetric Immunosensor Development Biosensors 3 1 1 17 doi 10 3390 bios3010001 PMC 4263588 PMID 25587396 Taverne S Caron B Getin S Lartigue O Lopez C Meunier Della Gatta S Gorge V Reymermier M Racine B Maindron T Quesnel E 2018 01 12 Multispectral surface plasmon resonance approach for ultra thin silver layer characterization Application to top emitting OLED cathode Journal of Applied Physics 123 2 023108 Bibcode 2018JAP 123b3108T doi 10 1063 1 5003869 ISSN 0021 8979 Jussila Henri Yang He Granqvist Niko Sun Zhipei 5 February 2016 Surface plasmon resonance for characterization of large area atomic layer graphene film Optica 3 2 151 Bibcode 2016Optic 3 151J doi 10 1364 OPTICA 3 000151 Emilsson Gustav Schoch Rafael L Feuz Laurent Hook Fredrik Lim Roderick Y H Dahlin Andreas B 15 April 2015 Strongly Stretched Protein Resistant Poly ethylene glycol Brushes Prepared by Grafting To ACS Applied Materials amp Interfaces 7 14 7505 7515 doi 10 1021 acsami 5b01590 PMID 25812004 Vuoriluoto Maija Orelma Hannes Johansson Leena Sisko Zhu Baolei Poutanen Mikko Walther Andreas Laine Janne Rojas Orlando J 10 December 2015 Effect of Molecular Architecture of PDMAEMA POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion The Journal of Physical Chemistry B 119 49 15275 15286 doi 10 1021 acs jpcb 5b07628 PMID 26560798 Granqvist Niko Liang Huamin Laurila Terhi Sadowski Janusz Yliperttula Marjo Viitala Tapani 9 July 2013 Characterizing Ultrathin and Thick Organic Layers by Surface Plasmon Resonance Three Wavelength and Waveguide Mode Analysis Langmuir 29 27 8561 8571 doi 10 1021 la401084w PMID 23758623 Retrieved from https en wikipedia org w index php title Multi parametric surface plasmon resonance amp oldid 1043576706, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.