fbpx
Wikipedia

Molecular pathological epidemiology

Molecular pathological epidemiology (MPE, also molecular pathologic epidemiology) is a discipline combining epidemiology and pathology. It is defined as "epidemiology of molecular pathology and heterogeneity of disease".[1] Pathology and epidemiology share the same goal of elucidating etiology of disease, and MPE aims to achieve this goal at molecular, individual and population levels. Typically, MPE utilizes tissue pathology resources and data within existing epidemiology studies. Molecular epidemiology broadly encompasses MPE and conventional-type molecular epidemiology with the use of traditional disease designation systems.

Disease process edit

Data from The Cancer Genome Atlas projects indicate that disease evolution is an inherently heterogeneous process.[2][3] Each patient has a unique disease process (“the unique disease principle”), considering the uniqueness of the exposome and its unique influence on molecular pathologic process.[2] This concept has been adopted in clinical medicine along with precision medicine and personalized medicine.[citation needed]

Methodology edit

In MPE, investigators dissect interrelationships between exposures (e.g., environmental, dietary, lifestyle and genetic factors); alterations in cellular or extracellular molecules (disease molecular signatures); and disease evolution and progression.[2] Investigators can analyze genome, methylome, epigenome, metabolome, transcriptome, proteome, microbiome, immunity and interactome. A putative risk factor can be linked to specific molecular signatures.[citation needed]

MPE research enables identification of a new biomarker for potential clinical utility, using large-scale population-based data (e.g., PIK3CA mutation in colorectal cancer to select patients for aspirin therapy).[1] The MPE approach can be used following a genome-wide association study (GWAS), termed "GWAS-MPE approach".[4] Detailed disease endpoint phenotyping can be conducted by means of molecular pathology or surrogate histopathology or immunohistochemistry analysis of diseased tissues and cells within GWAS.[5][6]

As an alternative approach, potential risk variants identified by GWAS can be examined in combination with molecular pathology analysis on diseased tissues.[7][8][9][10] This GWAS-MPE approach can give not only more precise effect estimates, even larger effects, for specific molecular subtypes of the disease, but also insights into pathogenesis by linking genetic variants to molecular pathologic signatures of disease.[4] Since molecular diagnostics is becoming routine clinical practice, molecular pathology data can aid epidemiologic research.[citation needed]

History edit

MPE began as analysis of risk factors (e.g., smoking) and molecular pathological findings (e.g., KRAS G12C oncogene mutations in lung carcinoma).[citation needed]

Studies to examine the relationship between an exposure and molecular pathological signatures of disease (particularly, cancer) became increasingly common throughout the 1990s and early 2000s.[11]

The use of molecular pathology in epidemiology lacked standardized methodologies and guidelines as well as interdisciplinary experts and training programs.[12] MPE research required a new conceptual framework and methodologies (epidemiological method) because MPE examines heterogeneity in an outcome variable.[13]

The term "molecular pathological epidemiology" was used by Shuji Ogino and Meir Stampfer in 2010.[14] Specific principles of MPE developed following 2010. The MPE paradigm is in widespread use globally,[15][16][17][18][19][20][21][22][23][24][25][excessive citations] and has been a subject of international conferences.[26][27][28] The International Molecular Pathological Epidemiology (MPE) Meeting Series, which was established in 2013, has been open to the research community around the world, and five meetings were held through 2021.[29][30][31][32]

See also edit

References edit

  1. ^ a b Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT (June 2014). "Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology". review. Oncogene. 33 (23): 2949–55. doi:10.1038/onc.2013.244. PMC 3818472. PMID 23792451.
  2. ^ a b c Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, et al. (April 2013). "Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease". review. Modern Pathology. 26 (4): 465–84. doi:10.1038/modpathol.2012.214. PMC 3637979. PMID 23307060.
  3. ^ Ogino S, Fuchs CS, Giovannucci E (2012). "How many molecular subtypes? Implications of the unique tumor principle in personalized medicine". review. Expert Review of Molecular Diagnostics. 12 (6): 621–8. doi:10.1586/erm.12.46. PMC 3492839. PMID 22845482.
  4. ^ a b Ogino S, Chan AT, Fuchs CS, Giovannucci E (March 2011). "Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field". review. Gut. 60 (3): 397–411. doi:10.1136/gut.2010.217182. PMC 3040598. PMID 21036793.
  5. ^ Shen H, Fridley BL, Song H, Lawrenson K, Cunningham JM, Ramus SJ, et al. (2013). "Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer". primary. Nature Communications. 4: 1628. Bibcode:2013NatCo...4.1628.. doi:10.1038/ncomms2629. PMC 3848248. PMID 23535649.
  6. ^ Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, et al. (April 2013). "Genome-wide association studies identify four ER negative-specific breast cancer risk loci". primary. Nature Genetics. 45 (4): 392–8, 398e1-2. doi:10.1038/ng.2561. PMC 3771695. PMID 23535733.
  7. ^ Gruber SB, Moreno V, Rozek LS, Rennerts HS, Lejbkowicz F, Bonner JD, et al. (July 2007). "Genetic variation in 8q24 associated with risk of colorectal cancer". primary. Cancer Biology & Therapy. 6 (7): 1143–7. doi:10.4161/cbt.6.7.4704. PMID 17630503.
  8. ^ Slattery ML, Herrick J, Curtin K, Samowitz W, Wolff RK, Caan BJ, Duggan D, Potter JD, Peters U (February 2010). "Increased risk of colon cancer associated with a genetic polymorphism of SMAD7". primary. Cancer Research. 70 (4): 1479–85. doi:10.1158/0008-5472.CAN-08-1792. PMC 2925533. PMID 20124488.
  9. ^ Garcia-Albeniz X, Nan H, Valeri L, Morikawa T, Kuchiba A, Phipps AI, et al. (February 2013). "Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival". primary. Carcinogenesis. 34 (2): 292–8. doi:10.1093/carcin/bgs335. PMC 3564438. PMID 23104301.
  10. ^ Nan H, Morikawa T, Suuriniemi M, Imamura Y, Werner L, Kuchiba A, et al. (December 2013). "Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations". primary. Journal of the National Cancer Institute. 105 (24): 1852–61. doi:10.1093/jnci/djt331. PMC 3866156. PMID 24317174.
  11. ^ Slattery ML (October 2002). "The science and art of molecular epidemiology". Journal of Epidemiology and Community Health (Comment). 56 (10): 728–9. doi:10.1136/jech.56.10.728. PMC 1732025. PMID 12239192.
  12. ^ Sherman ME, Howatt W, Blows FM, Pharoah P, Hewitt SM, Garcia-Closas M (April 2010). "Molecular pathology in epidemiologic studies: a primer on key considerations". review. Cancer Epidemiology, Biomarkers & Prevention. 19 (4): 966–72. doi:10.1158/1055-9965.EPI-10-0056. PMC 2852464. PMID 20332257.
  13. ^ Ogino S, Beck AH, King EE, Sherman ME, Milner DA, Giovannucci E (2012). "Ogino et Al. Respond to "the 21st century epidemiologist"". American Journal of Epidemiology. 176 (8): 672–4. doi:10.1093/aje/kws229. PMC 3571249. PMID 22935516.
  14. ^ Ogino S, Stampfer M (March 2010). "Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology". Journal of the National Cancer Institute (Comment). 102 (6): 365–7. doi:10.1093/jnci/djq031. PMC 2841039. PMID 20208016.
  15. ^ Curtin K, Slattery ML, Samowitz WS (April 2011). "CpG island methylation in colorectal cancer: past, present and future". review. Pathology Research International. 2011: 902674. doi:10.4061/2011/902674. PMC 3090226. PMID 21559209.
  16. ^ Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. (October 2012). "Cancer classification using the Immunoscore: a worldwide task force". review. Journal of Translational Medicine. 10: 205. doi:10.1186/1479-5876-10-205. PMC 3554496. PMID 23034130.
  17. ^ Ku CS, Cooper DN, Wu M, Roukos DH, Pawitan Y, Soong R, Iacopetta B (August 2012). "Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X". review. Modern Pathology. 25 (8): 1055–68. doi:10.1038/modpathol.2012.62. PMID 22522846.
  18. ^ Koshiol J, Lin SW (July 2012). "Can tissue-based immune markers be used for studying the natural history of cancer?". review. Annals of Epidemiology. 22 (7): 520–30. doi:10.1016/j.annepidem.2012.03.001. PMC 3596808. PMID 22481034.
  19. ^ Dogan S, Shen R, Ang DC, Johnson ML, D'Angelo SP, Paik PK, et al. (November 2012). "Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers". primary. Clinical Cancer Research. 18 (22): 6169–77. doi:10.1158/1078-0432.CCR-11-3265. PMC 3500422. PMID 23014527.
  20. ^ Spitz MR, Caporaso NE, Sellers TA (December 2012). "Integrative cancer epidemiology--the next generation". Cancer Discovery. 2 (12): 1087–90. doi:10.1158/2159-8290.CD-12-0424. PMC 3531829. PMID 23230187.
  21. ^ Shanmuganathan R, Basheer NB, Amirthalingam L, Muthukumar H, Kaliaperumal R, Shanmugam K (January 2013). "Conventional and nanotechniques for DNA methylation profiling". review. The Journal of Molecular Diagnostics. 15 (1): 17–26. doi:10.1016/j.jmoldx.2012.06.007. PMID 23127612.
  22. ^ Hughes LA, Melotte V, de Schrijver J, de Maat M, Smit VT, Bovée JV, et al. (October 2013). "The CpG island methylator phenotype: what's in a name?". review. Cancer Research. 73 (19): 5858–68. doi:10.1158/0008-5472.CAN-12-4306. PMID 23801749.
  23. ^ Esterhuyse MM, Kaufmann SH (July 2013). "Diagnostic biomarkers are hidden in the infected host's epigenome". review. Expert Review of Molecular Diagnostics. 13 (6): 625–37. doi:10.1586/14737159.2013.811897. PMID 23895131. S2CID 3463193.
  24. ^ Hagland HR, Søreide K (January 2015). "Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways". review. Cancer Letters. 356 (2 Pt A): 273–80. doi:10.1016/j.canlet.2014.02.026. PMID 24614287.
  25. ^ Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R (May 2014). "Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention". review. World Journal of Gastroenterology. 20 (20): 6055–72. doi:10.3748/wjg.v20.i20.6055. PMC 4033445. PMID 24876728.
  26. ^ Kuller LH, Bracken MB, Ogino S, Prentice RL, Tracy RP (November 2013). "The role of epidemiology in the era of molecular epidemiology and genomics: Summary of the 2013 AJE-sponsored Society of Epidemiologic Research Symposium". American Journal of Epidemiology. 178 (9): 1350–4. doi:10.1093/aje/kwt239. PMC 3988450. PMID 24105654.
  27. ^ Epplein M, Bostick RM, Mu L, Ogino S, Braithwaite D, Kanetsky PA (2014). "Challenges and opportunities in international molecular cancer prevention research: An ASPO Molecular Epidemiology and the Environment and International Cancer Prevention Interest Groups Report". Cancer Epidemiology, Biomarkers & Prevention. 23 (11): 2613–7. doi:10.1158/1055-9965.EPI-14-0848. PMC 4221505. PMID 25277796.
  28. ^ Ogino S, Campbell PT, Nishihara R, Phipps AI, Beck AH, Sherman ME, et al. (2015). "Proceedings of the second international molecular pathological epidemiology (MPE) meeting". Cancer Causes & Control. 26 (7): 959–72. doi:10.1007/s10552-015-0596-2. PMC 4466011. PMID 25956270.
  29. ^ . Dana-Farber Cancer Institute. Archived from the original on 2019-05-15. Retrieved 2020-04-07.
  30. ^ Campbell PT, Rebbeck TR, Nishihara R, Beck AH, Begg CB, Bogdanov AA, et al. (2017). "Proceedings of the third international molecular pathological epidemiology (MPE) meeting". review. Cancer Causes & Control. 28 (2): 167–176. doi:10.1007/s10552-016-0845-z. PMC 5303153. PMID 28097472.
  31. ^ Campbell et al. Cancer Causes Cont 2019
  32. ^ "Home". mpemeeting.org.

Further reading edit

  • Gao C (2016). "Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma". World Journal of Hepatology. 8 (27): 1119–1127. doi:10.4254/wjh.v8.i27.1119. PMC 5037325. PMID 27721917.
  • Rescigno T, Micolucci L, Tecce MF, Capasso A (2017). "Bioactive Nutrients and Nutrigenomics in Age-Related Diseases". Molecules (Basel, Switzerland). 22 (1): 105. doi:10.3390/molecules22010105. PMC 6155887. PMID 28075340.
  • Patil H, Saxena SG, Barrow CJ, Kanwar JR, Kapat A, Kanwar RK (2017). "Chasing the personalized medicine dream through biomarker validation in colorectal cancer". Drug Discovery Today. 22 (1): 111–119. doi:10.1016/j.drudis.2016.09.022. PMID 27693431.

molecular, pathological, epidemiology, also, molecular, pathologic, epidemiology, discipline, combining, epidemiology, pathology, defined, epidemiology, molecular, pathology, heterogeneity, disease, pathology, epidemiology, share, same, goal, elucidating, etio. Molecular pathological epidemiology MPE also molecular pathologic epidemiology is a discipline combining epidemiology and pathology It is defined as epidemiology of molecular pathology and heterogeneity of disease 1 Pathology and epidemiology share the same goal of elucidating etiology of disease and MPE aims to achieve this goal at molecular individual and population levels Typically MPE utilizes tissue pathology resources and data within existing epidemiology studies Molecular epidemiology broadly encompasses MPE and conventional type molecular epidemiology with the use of traditional disease designation systems Contents 1 Disease process 2 Methodology 3 History 4 See also 5 References 6 Further readingDisease process editData from The Cancer Genome Atlas projects indicate that disease evolution is an inherently heterogeneous process 2 3 Each patient has a unique disease process the unique disease principle considering the uniqueness of the exposome and its unique influence on molecular pathologic process 2 This concept has been adopted in clinical medicine along with precision medicine and personalized medicine citation needed Methodology editIn MPE investigators dissect interrelationships between exposures e g environmental dietary lifestyle and genetic factors alterations in cellular or extracellular molecules disease molecular signatures and disease evolution and progression 2 Investigators can analyze genome methylome epigenome metabolome transcriptome proteome microbiome immunity and interactome A putative risk factor can be linked to specific molecular signatures citation needed MPE research enables identification of a new biomarker for potential clinical utility using large scale population based data e g PIK3CA mutation in colorectal cancer to select patients for aspirin therapy 1 The MPE approach can be used following a genome wide association study GWAS termed GWAS MPE approach 4 Detailed disease endpoint phenotyping can be conducted by means of molecular pathology or surrogate histopathology or immunohistochemistry analysis of diseased tissues and cells within GWAS 5 6 As an alternative approach potential risk variants identified by GWAS can be examined in combination with molecular pathology analysis on diseased tissues 7 8 9 10 This GWAS MPE approach can give not only more precise effect estimates even larger effects for specific molecular subtypes of the disease but also insights into pathogenesis by linking genetic variants to molecular pathologic signatures of disease 4 Since molecular diagnostics is becoming routine clinical practice molecular pathology data can aid epidemiologic research citation needed History editMPE began as analysis of risk factors e g smoking and molecular pathological findings e g KRAS G12C oncogene mutations in lung carcinoma citation needed Studies to examine the relationship between an exposure and molecular pathological signatures of disease particularly cancer became increasingly common throughout the 1990s and early 2000s 11 The use of molecular pathology in epidemiology lacked standardized methodologies and guidelines as well as interdisciplinary experts and training programs 12 MPE research required a new conceptual framework and methodologies epidemiological method because MPE examines heterogeneity in an outcome variable 13 The term molecular pathological epidemiology was used by Shuji Ogino and Meir Stampfer in 2010 14 Specific principles of MPE developed following 2010 The MPE paradigm is in widespread use globally 15 16 17 18 19 20 21 22 23 24 25 excessive citations and has been a subject of international conferences 26 27 28 The International Molecular Pathological Epidemiology MPE Meeting Series which was established in 2013 has been open to the research community around the world and five meetings were held through 2021 29 30 31 32 See also editCausal inference Epidemiological method Epidemiology Evidence based medicine Molecular diagnostics Molecular epidemiology Molecular medicine Molecular pathology Pathogenesis Pathology Personalized medicine Precision medicine Public health Systems biologyReferences edit a b Ogino S Lochhead P Giovannucci E Meyerhardt JA Fuchs CS Chan AT June 2014 Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker power and promise of molecular pathological epidemiology review Oncogene 33 23 2949 55 doi 10 1038 onc 2013 244 PMC 3818472 PMID 23792451 a b c Ogino S Lochhead P Chan AT Nishihara R Cho E Wolpin BM et al April 2013 Molecular pathological epidemiology of epigenetics emerging integrative science to analyze environment host and disease review Modern Pathology 26 4 465 84 doi 10 1038 modpathol 2012 214 PMC 3637979 PMID 23307060 Ogino S Fuchs CS Giovannucci E 2012 How many molecular subtypes Implications of the unique tumor principle in personalized medicine review Expert Review of Molecular Diagnostics 12 6 621 8 doi 10 1586 erm 12 46 PMC 3492839 PMID 22845482 a b Ogino S Chan AT Fuchs CS Giovannucci E March 2011 Molecular pathological epidemiology of colorectal neoplasia an emerging transdisciplinary and interdisciplinary field review Gut 60 3 397 411 doi 10 1136 gut 2010 217182 PMC 3040598 PMID 21036793 Shen H Fridley BL Song H Lawrenson K Cunningham JM Ramus SJ et al 2013 Epigenetic analysis leads to identification of HNF1B as a subtype specific susceptibility gene for ovarian cancer primary Nature Communications 4 1628 Bibcode 2013NatCo 4 1628 doi 10 1038 ncomms2629 PMC 3848248 PMID 23535649 Garcia Closas M Couch FJ Lindstrom S Michailidou K Schmidt MK Brook MN et al April 2013 Genome wide association studies identify four ER negative specific breast cancer risk loci primary Nature Genetics 45 4 392 8 398e1 2 doi 10 1038 ng 2561 PMC 3771695 PMID 23535733 Gruber SB Moreno V Rozek LS Rennerts HS Lejbkowicz F Bonner JD et al July 2007 Genetic variation in 8q24 associated with risk of colorectal cancer primary Cancer Biology amp Therapy 6 7 1143 7 doi 10 4161 cbt 6 7 4704 PMID 17630503 Slattery ML Herrick J Curtin K Samowitz W Wolff RK Caan BJ Duggan D Potter JD Peters U February 2010 Increased risk of colon cancer associated with a genetic polymorphism of SMAD7 primary Cancer Research 70 4 1479 85 doi 10 1158 0008 5472 CAN 08 1792 PMC 2925533 PMID 20124488 Garcia Albeniz X Nan H Valeri L Morikawa T Kuchiba A Phipps AI et al February 2013 Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival primary Carcinogenesis 34 2 292 8 doi 10 1093 carcin bgs335 PMC 3564438 PMID 23104301 Nan H Morikawa T Suuriniemi M Imamura Y Werner L Kuchiba A et al December 2013 Aspirin use 8q24 single nucleotide polymorphism rs6983267 and colorectal cancer according to CTNNB1 alterations primary Journal of the National Cancer Institute 105 24 1852 61 doi 10 1093 jnci djt331 PMC 3866156 PMID 24317174 Slattery ML October 2002 The science and art of molecular epidemiology Journal of Epidemiology and Community Health Comment 56 10 728 9 doi 10 1136 jech 56 10 728 PMC 1732025 PMID 12239192 Sherman ME Howatt W Blows FM Pharoah P Hewitt SM Garcia Closas M April 2010 Molecular pathology in epidemiologic studies a primer on key considerations review Cancer Epidemiology Biomarkers amp Prevention 19 4 966 72 doi 10 1158 1055 9965 EPI 10 0056 PMC 2852464 PMID 20332257 Ogino S Beck AH King EE Sherman ME Milner DA Giovannucci E 2012 Ogino et Al Respond to the 21st century epidemiologist American Journal of Epidemiology 176 8 672 4 doi 10 1093 aje kws229 PMC 3571249 PMID 22935516 Ogino S Stampfer M March 2010 Lifestyle factors and microsatellite instability in colorectal cancer the evolving field of molecular pathological epidemiology Journal of the National Cancer Institute Comment 102 6 365 7 doi 10 1093 jnci djq031 PMC 2841039 PMID 20208016 Curtin K Slattery ML Samowitz WS April 2011 CpG island methylation in colorectal cancer past present and future review Pathology Research International 2011 902674 doi 10 4061 2011 902674 PMC 3090226 PMID 21559209 Galon J Pages F Marincola FM Angell HK Thurin M Lugli A et al October 2012 Cancer classification using the Immunoscore a worldwide task force review Journal of Translational Medicine 10 205 doi 10 1186 1479 5876 10 205 PMC 3554496 PMID 23034130 Ku CS Cooper DN Wu M Roukos DH Pawitan Y Soong R Iacopetta B August 2012 Gene discovery in familial cancer syndromes by exome sequencing prospects for the elucidation of familial colorectal cancer type X review Modern Pathology 25 8 1055 68 doi 10 1038 modpathol 2012 62 PMID 22522846 Koshiol J Lin SW July 2012 Can tissue based immune markers be used for studying the natural history of cancer review Annals of Epidemiology 22 7 520 30 doi 10 1016 j annepidem 2012 03 001 PMC 3596808 PMID 22481034 Dogan S Shen R Ang DC Johnson ML D Angelo SP Paik PK et al November 2012 Molecular epidemiology of EGFR and KRAS mutations in 3 026 lung adenocarcinomas higher susceptibility of women to smoking related KRAS mutant cancers primary Clinical Cancer Research 18 22 6169 77 doi 10 1158 1078 0432 CCR 11 3265 PMC 3500422 PMID 23014527 Spitz MR Caporaso NE Sellers TA December 2012 Integrative cancer epidemiology the next generation Cancer Discovery 2 12 1087 90 doi 10 1158 2159 8290 CD 12 0424 PMC 3531829 PMID 23230187 Shanmuganathan R Basheer NB Amirthalingam L Muthukumar H Kaliaperumal R Shanmugam K January 2013 Conventional and nanotechniques for DNA methylation profiling review The Journal of Molecular Diagnostics 15 1 17 26 doi 10 1016 j jmoldx 2012 06 007 PMID 23127612 Hughes LA Melotte V de Schrijver J de Maat M Smit VT Bovee JV et al October 2013 The CpG island methylator phenotype what s in a name review Cancer Research 73 19 5858 68 doi 10 1158 0008 5472 CAN 12 4306 PMID 23801749 Esterhuyse MM Kaufmann SH July 2013 Diagnostic biomarkers are hidden in the infected host s epigenome review Expert Review of Molecular Diagnostics 13 6 625 37 doi 10 1586 14737159 2013 811897 PMID 23895131 S2CID 3463193 Hagland HR Soreide K January 2015 Cellular metabolism in colorectal carcinogenesis Influence of lifestyle gut microbiome and metabolic pathways review Cancer Letters 356 2 Pt A 273 80 doi 10 1016 j canlet 2014 02 026 PMID 24614287 Bishehsari F Mahdavinia M Vacca M Malekzadeh R Mariani Costantini R May 2014 Epidemiological transition of colorectal cancer in developing countries environmental factors molecular pathways and opportunities for prevention review World Journal of Gastroenterology 20 20 6055 72 doi 10 3748 wjg v20 i20 6055 PMC 4033445 PMID 24876728 Kuller LH Bracken MB Ogino S Prentice RL Tracy RP November 2013 The role of epidemiology in the era of molecular epidemiology and genomics Summary of the 2013 AJE sponsored Society of Epidemiologic Research Symposium American Journal of Epidemiology 178 9 1350 4 doi 10 1093 aje kwt239 PMC 3988450 PMID 24105654 Epplein M Bostick RM Mu L Ogino S Braithwaite D Kanetsky PA 2014 Challenges and opportunities in international molecular cancer prevention research An ASPO Molecular Epidemiology and the Environment and International Cancer Prevention Interest Groups Report Cancer Epidemiology Biomarkers amp Prevention 23 11 2613 7 doi 10 1158 1055 9965 EPI 14 0848 PMC 4221505 PMID 25277796 Ogino S Campbell PT Nishihara R Phipps AI Beck AH Sherman ME et al 2015 Proceedings of the second international molecular pathological epidemiology MPE meeting Cancer Causes amp Control 26 7 959 72 doi 10 1007 s10552 015 0596 2 PMC 4466011 PMID 25956270 The Ogino MPE lab Dana Farber Cancer Institute Archived from the original on 2019 05 15 Retrieved 2020 04 07 Campbell PT Rebbeck TR Nishihara R Beck AH Begg CB Bogdanov AA et al 2017 Proceedings of the third international molecular pathological epidemiology MPE meeting review Cancer Causes amp Control 28 2 167 176 doi 10 1007 s10552 016 0845 z PMC 5303153 PMID 28097472 Campbell et al Cancer Causes Cont 2019 Home mpemeeting org Further reading editGao C 2016 Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma World Journal of Hepatology 8 27 1119 1127 doi 10 4254 wjh v8 i27 1119 PMC 5037325 PMID 27721917 Rescigno T Micolucci L Tecce MF Capasso A 2017 Bioactive Nutrients and Nutrigenomics in Age Related Diseases Molecules Basel Switzerland 22 1 105 doi 10 3390 molecules22010105 PMC 6155887 PMID 28075340 Patil H Saxena SG Barrow CJ Kanwar JR Kapat A Kanwar RK 2017 Chasing the personalized medicine dream through biomarker validation in colorectal cancer Drug Discovery Today 22 1 111 119 doi 10 1016 j drudis 2016 09 022 PMID 27693431 Retrieved from https en wikipedia org w index php title Molecular pathological epidemiology amp oldid 1177052025, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.