fbpx
Wikipedia

Maxwell–Jüttner distribution

In physics, the Maxwell–Jüttner distribution, sometimes called Jüttner–Synge distribution, is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than (where is the mass of the kind of particle making up the gas, is the speed of light and is Boltzmann constant), this distribution becomes identical to the Maxwell–Boltzmann distribution.

The distribution can be attributed to Ferencz Jüttner, who derived it in 1911.[1] It has become known as the Maxwell–Jüttner distribution by analogy to the name Maxwell–Boltzmann distribution that is commonly used to refer to Maxwell's or Maxwellian distribution.

Definition edit

 
Maxwell–Jüttner distribution over Lorentz factor (relativistic Maxwell–Boltzmann), for a gas at different temperatures. Speed is represented in terms of the Lorentz factor.

As the gas becomes hotter and   approaches or exceeds  , the probability distribution for   in this relativistic Maxwellian gas is given by the Maxwell–Jüttner distribution:[2]

 

where     and   is the modified Bessel function of the second kind.

Alternatively, this can be written in terms of the momentum as

 
where  . The Maxwell–Jüttner equation is covariant, but not manifestly so, and the temperature of the gas does not vary with the gross speed of the gas.[3]

Jüttner distribution graph edit

A visual representation of the distribution in particle velocities for plasmas at four different temperatures:[4]

Where thermal parameter has been defined as  .

The four general limits are:

  • ultrarelativistic temperatures  
  • relativistic temperatures:  ,
  • weakly (or mildly) relativistic temperatures:  ,
  • low temperatures:  ,

Limitations edit

Some limitations of the Maxwell–Jüttner distributions are shared with the classical ideal gas: neglect of interactions, and neglect of quantum effects. An additional limitation (not important in the classical ideal gas) is that the Maxwell–Jüttner distribution neglects antiparticles.

If particle-antiparticle creation is allowed, then once the thermal energy   is a significant fraction of  , particle-antiparticle creation will occur and begin to increase the number of particles while generating antiparticles (the number of particles is not conserved, but instead the conserved quantity is the difference between particle number and antiparticle number). The resulting thermal distribution will depend on the chemical potential relating to the conserved particle–antiparticle number difference. A further consequence of this is that it becomes necessary to incorporate statistical mechanics for indistinguishable particles, because the occupation probabilities for low kinetic energy states becomes of order unity. For fermions it is necessary to use Fermi–Dirac statistics and the result is analogous to the thermal generation of electron–hole pairs in semiconductors. For bosonic particles, it is necessary to use the Bose–Einstein statistics.[5]

Perhaps most significantly, the basic   distribution has two main issues: it does not extend to particles moving at relativistic speeds, and  it assumes anisotropic temperature (where each DoF does not have the same translational kinetic energy).[clarification needed] While the classic Maxwell–Jüttner distribution generalizes for the case of special relativity, it fails to consider the anisotropic description.

Derivation edit

The Maxwell–Boltzmann ( ) distribution   describes the velocities   or the kinetic energy   of the particles at thermal equilibrium, far from the limit of the speed of light, i.e:

 

 

 

 

 

(1a)

 

Or, in terms of the kinetic energy:

 

 

 

 

 

(1b)

 

where   is the temperature in speed dimensions, called thermal speed, and d denotes the kinetic degrees of freedom of each particle. (Note that the temperature is defined in the fluid’s rest frame, where the bulk speed   is zero. In the non-relativistic case, this can be shown by using  .

The relativistic generalization of Eq. (1a), that is, the Maxwell–Jüttner ( ) distribution, is given by:

 

 

 

 

 

(2)

where   and  . (Note that the inverse of the unitless temperature   is the relativistic coldness  , Rezzola and Zanotti, 2013.) This distribution (Eq. 2) can be derived as follows. According to the relativistic formalism for the particle momentum and energy, one has

 

 

 

 

 

(3)

While the kinetic energy is given by  . The Boltzmann distribution of a Hamiltonian is   In the absence of a potential energy,   is simply given by the particle energy  , thus:

 

 

 

 

 

(4a)

(Note that   is the sum of the kinetic   and inertial energy  ). Then, when one includes the  -dimensional density of states:

 

 

 

 

 

(4b)

So that:

 

Where   denotes the  -dimensional solid angle. For isotropic distributions, one has

 

 

 

 

 

(5a)

or

 

 

 

 

 

(5b)

Then,   so that:

 

 

 

 

 

(6)

Or:

 

 

 

 

 

(7)

Now, because  . Then, one normalises the distribution Eq. (7). One sets

 

 

 

 

 

(8)

And the angular integration:

 

Where   is the surface of the unit d-dimensional sphere. Then, using the identity   one has:

 

 

 

 

 

(9)

and

 

 

 

 

 

(10)

Where one has defined the integral:

 

 

 

 

 

(11)

The Macdonald function (Modified Bessel function of the II kind) (Abramowitz and Stegun, 1972, p.376) is defined by:

 

 

 

 

 

(12)

So that, by setting   one obtains:

 

 

 

 

 

(13)

Hence,

 

 

 

 

 

(14a)

Or

 

 

 

 

 

(14b)

The inverse of the normalization constant gives the partition function  

 

 

 

 

 

(14c)

Therefore, the normalized distribution is:

 

 

 

 

 

(15a)

Or one may derive the normalised distribution in terms of:

 

 

 

 

 

(15b)

Note that   can be shown to coincide with the thermodynamic definition of temperature.

Also useful is the expression of the distribution in the velocity space.[6] Given that  , one has:

 

Hence

 

 

 

 

 

(15c)

Take   (the “classic case” in our world):

 

 

 

 

 

(16a)

And

 

 

 

 

 

(16b)

 

 

 

 

 

(16c)

Note that when the   distribution clearly deviates from the   distribution of the same temperature and dimensionality, one can misinterpret and deduce a different  distribution that will give a good approximation to the   distribution. This new  distribution can be either:

  • a convected   distribution, that is, an   distribution with the same dimensionality, but with different temperature   and bulk speed   (or bulk energy  )
  • an   distribution with the same bulk speed, but with different temperature   and degrees of freedom  . These two types of approximations are illustrated.

Other properties edit

The   probability density function is given by:

 

This means that a relativistic non-quantum particle with parameter   has a probability of   of having its Lorentz factor in the interval  .

The   cumulative distribution function is given by:

 

That has a series expansion at  :

 

By definition  , regardless of the parameter   .

To find the average speed,   , one must compute   , where   is the speed in terms of its Lorentz factor. The integral simplifies to the closed- form expression:

 

This closed formula for   has a series expansion at  :

 

Or substituting the definition for the parameter   :

 

Where the first term of the expansion, which is independently of   , corresponds to the average speed in the Maxwell–Boltzmann distribution,  , whilst the following are relativistic corrections.

This closed formula for   has a series expansion at  :

 

Or substituting the definition for the parameter  :

 

Where it follows that   is an upper limit to the particle's speed, something only present in a relativistic context, and not in the Maxwell–Boltzmann distribution.

References edit

  This article incorporates text by George Livadiotis available under the CC BY 3.0 license.

  1. ^ Jüttner, F. (1911). "Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie". Annalen der Physik. 339 (5): 856–882. Bibcode:1911AnP...339..856J. doi:10.1002/andp.19113390503.
  2. ^ Synge, J.L (1957). The Relativistic Gas. Series in physics. North-Holland. LCCN 57003567.
  3. ^ Chacon-Acosta, Guillermo; Dagdug, Leonardo; Morales-Tecotl, Hugo A. (2009). "On the Manifestly Covariant Jüttner Distribution and Equipartition Theorem". Physical Review E. 81 (2 Pt 1): 021126. arXiv:0910.1625. Bibcode:2010PhRvE..81b1126C. doi:10.1103/PhysRevE.81.021126. PMID 20365549. S2CID 39195896.
  4. ^ Lazar, M.; Stockem, A.; Schlickeiser, R. (2010-12-03). "Towards a Relativistically Correct Characterization of Counterstreaming Plasmas. I. Distribution Functions". The Open Plasma Physics Journal. 3 (1).
  5. ^ See first few paragraphs in [1] for extended discussion.
  6. ^ Dunkel, Jörn; Talkner, Peter; Hänggi, Peter (2007-05-22). "Relative entropy, Haar measures and relativistic canonical velocity distributions". New Journal of Physics. 9 (5): 144. arXiv:cond-mat/0610045. Bibcode:2007NJPh....9..144D. doi:10.1088/1367-2630/9/5/144. ISSN 1367-2630. S2CID 15896453.


maxwell, jüttner, distribution, physics, sometimes, called, jüttner, synge, distribution, distribution, speeds, particles, hypothetical, relativistic, particles, similar, maxwell, boltzmann, distribution, considers, classical, ideal, where, particles, dilute, . In physics the Maxwell Juttner distribution sometimes called Juttner Synge distribution is the distribution of speeds of particles in a hypothetical gas of relativistic particles Similar to the Maxwell Boltzmann distribution the Maxwell Juttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other The distinction from Maxwell Boltzmann s case is that effects of special relativity are taken into account In the limit of low temperatures T displaystyle T much less than m c 2 k B displaystyle mc 2 k text B where m displaystyle m is the mass of the kind of particle making up the gas c displaystyle c is the speed of light and k B displaystyle k text B is Boltzmann constant this distribution becomes identical to the Maxwell Boltzmann distribution The distribution can be attributed to Ferencz Juttner who derived it in 1911 1 It has become known as the Maxwell Juttner distribution by analogy to the name Maxwell Boltzmann distribution that is commonly used to refer to Maxwell s or Maxwellian distribution Contents 1 Definition 2 Juttner distribution graph 3 Limitations 4 Derivation 5 Other properties 6 ReferencesDefinition edit nbsp Maxwell Juttner distribution over Lorentz factor relativistic Maxwell Boltzmann for a gas at different temperatures Speed is represented in terms of the Lorentz factor As the gas becomes hotter and k B T displaystyle k text B T nbsp approaches or exceeds m c 2 displaystyle mc 2 nbsp the probability distribution for g 1 1 v 2 c 2 textstyle gamma 1 sqrt 1 v 2 c 2 nbsp in this relativistic Maxwellian gas is given by the Maxwell Juttner distribution 2 f g g 2 b g 8 K 2 1 8 e g 8 displaystyle f gamma frac gamma 2 beta gamma theta operatorname K 2 left frac 1 theta right e gamma theta nbsp where b v c 1 1 g 2 textstyle beta frac v c sqrt 1 1 gamma 2 nbsp 8 k B T m c 2 textstyle theta frac k text B T mc 2 nbsp and K 2 displaystyle operatorname K 2 nbsp is the modified Bessel function of the second kind Alternatively this can be written in terms of the momentum asf p 1 4 p m 3 c 3 8 K 2 1 8 e g p 8 displaystyle f mathbf p frac 1 4 pi m 3 c 3 theta operatorname K 2 left frac 1 theta right e frac gamma p theta nbsp where g p 1 p m c 2 textstyle gamma p sqrt 1 left frac p mc right 2 nbsp The Maxwell Juttner equation is covariant but not manifestly so and the temperature of the gas does not vary with the gross speed of the gas 3 Juttner distribution graph editA visual representation of the distribution in particle velocities for plasmas at four different temperatures 4 Where thermal parameter has been defined as m m c 2 k B T 1 8 textstyle mu frac mc 2 k text B T frac 1 theta nbsp The four general limits are ultrarelativistic temperatures m 1 8 1 displaystyle mu ll 1 iff theta gg 1 nbsp relativistic temperatures m lt 1 8 gt 1 displaystyle mu lt 1 iff theta gt 1 nbsp weakly or mildly relativistic temperatures m gt 1 8 lt 1 displaystyle mu gt 1 iff theta lt 1 nbsp low temperatures m 1 8 1 displaystyle mu gg 1 iff theta ll 1 nbsp Limitations editSome limitations of the Maxwell Juttner distributions are shared with the classical ideal gas neglect of interactions and neglect of quantum effects An additional limitation not important in the classical ideal gas is that the Maxwell Juttner distribution neglects antiparticles If particle antiparticle creation is allowed then once the thermal energy k B T displaystyle k text B T nbsp is a significant fraction of m c 2 displaystyle mc 2 nbsp particle antiparticle creation will occur and begin to increase the number of particles while generating antiparticles the number of particles is not conserved but instead the conserved quantity is the difference between particle number and antiparticle number The resulting thermal distribution will depend on the chemical potential relating to the conserved particle antiparticle number difference A further consequence of this is that it becomes necessary to incorporate statistical mechanics for indistinguishable particles because the occupation probabilities for low kinetic energy states becomes of order unity For fermions it is necessary to use Fermi Dirac statistics and the result is analogous to the thermal generation of electron hole pairs in semiconductors For bosonic particles it is necessary to use the Bose Einstein statistics 5 Perhaps most significantly the basic MB displaystyle text MB nbsp distribution has two main issues it does not extend to particles moving at relativistic speeds and it assumes anisotropic temperature where each DoF does not have the same translational kinetic energy clarification needed While the classic Maxwell Juttner distribution generalizes for the case of special relativity it fails to consider the anisotropic description Derivation editThe Maxwell Boltzmann MB displaystyle text MB nbsp distribution pdf MB displaystyle operatorname pdf text MB nbsp describes the velocities u displaystyle mathbf u nbsp or the kinetic energy e 1 2 m u 2 textstyle varepsilon frac 1 2 m mathbf u 2 nbsp of the particles at thermal equilibrium far from the limit of the speed of light i e pdf MB p 8 p m 2 8 2 d 2 e p 2 2 m k B T displaystyle operatorname pdf text MB mathbf p theta left pi m 2 theta 2 right d 2 e frac mathbf p 2 2m k text B T nbsp 1a 8 2 k B T m u c textstyle theta equiv sqrt 2 k text B T m u ll c nbsp Or in terms of the kinetic energy pdf MB e T k B T d 2 G d 2 e e k B T e 1 2 d 1 displaystyle operatorname pdf text MB varepsilon T frac k text B T d 2 Gamma left frac d 2 right e varepsilon k text B T varepsilon frac 1 2 d 1 nbsp 1b e m c 2 displaystyle varepsilon ll mc 2 nbsp where 8 displaystyle theta nbsp is the temperature in speed dimensions called thermal speed and d denotes the kinetic degrees of freedom of each particle Note that the temperature is defined in the fluid s rest frame where the bulk speed u b displaystyle mathbf u b nbsp is zero In the non relativistic case this can be shown by using e 1 2 m u u b 2 textstyle varepsilon frac 1 2 m mathbf u mathbf u b 2 nbsp The relativistic generalization of Eq 1a that is the Maxwell Juttner MJ displaystyle text MJ nbsp distribution is given by pdf MJ g g 2 b g e g 8 8 k B T E 0 E 0 m c 2 displaystyle operatorname pdf text MJ gamma propto gamma 2 beta gamma e frac gamma theta theta equiv frac k text B T E 0 E 0 mc 2 nbsp 2 where b u c displaystyle beta equiv mathbf u c nbsp and g b 1 b 2 1 2 displaystyle gamma beta 1 beta 2 1 2 nbsp Note that the inverse of the unitless temperature 8 displaystyle theta nbsp is the relativistic coldness z displaystyle zeta nbsp Rezzola and Zanotti 2013 This distribution Eq 2 can be derived as follows According to the relativistic formalism for the particle momentum and energy one has p m c g b b E b g b E 0 displaystyle mathbf p mc gamma left beta right mathbf beta E left beta right gamma beta E 0 nbsp 3 While the kinetic energy is given by e E E 0 g 1 E 0 displaystyle varepsilon E E 0 gamma 1 E 0 nbsp The Boltzmann distribution of a Hamiltonian is pdf MJ H e H k B T displaystyle operatorname pdf text MJ H propto e frac H k text B T nbsp In the absence of a potential energy H displaystyle H nbsp is simply given by the particle energy E displaystyle E nbsp thus pdf MJ E e E k B T e g 8 displaystyle operatorname pdf text MJ left E right propto e frac E k text B T propto e frac gamma theta nbsp 4a Note that E displaystyle E nbsp is the sum of the kinetic e displaystyle varepsilon nbsp and inertial energy E 0 e k B T g 1 8 textstyle E 0 frac varepsilon k text B T frac gamma 1 theta nbsp Then when one includes the d displaystyle d nbsp dimensional density of states pdf MJ g p g d 1 d p g d g e g 8 displaystyle operatorname pdf text MJ gamma propto p gamma d 1 frac mathrm d p gamma mathrm d gamma e frac gamma theta nbsp 4b So that pdf MJ p d p 1 d p d e E p k B T d p 1 d p d e E g W d k B T d W d p d 1 d p W d e E g W d k B T p g d 1 d p g d g d W d d g displaystyle begin aligned int operatorname pdf text MJ mathbf p mathrm d p 1 cdots mathrm d p d amp propto int e frac E mathbf p k text B T mathrm d p 1 cdots mathrm d p d 1ex amp int e frac E gamma Omega d k text B T mathrm d Omega d p d 1 mathrm d p 1ex amp int limits Omega d e frac E gamma Omega d k text B T left p gamma d 1 frac mathrm d p gamma mathrm d gamma right mathrm d Omega d mathrm d gamma end aligned nbsp Where d W d displaystyle mathrm d Omega d nbsp denotes the d displaystyle d nbsp dimensional solid angle For isotropic distributions one has pdf MJ p d p 1 d p d e E p k B T p g d 1 d p g d g d W d d g W d d W d P M J g d g displaystyle int operatorname pdf text MJ p mathrm d p 1 cdots mathrm d p d propto int e frac E p k text B T left p gamma d 1 frac mathrm d p gamma mathrm d gamma right mathrm d Omega d mathrm d gamma equiv int limits Omega d mathrm d Omega d int P MJ gamma mathrm d gamma nbsp 5a or pdf MJ g e E g k B T p g d 1 d p g d g displaystyle operatorname pdf text MJ gamma propto e frac E gamma k text B T p gamma d 1 frac mathrm d p gamma mathrm d gamma nbsp 5b Then d g b g g 2 1 1 2 d g b 1 d g displaystyle mathrm d gamma beta gamma gamma 2 1 frac 1 2 mathrm d gamma beta 1 mathrm d gamma nbsp so that p g d 1 d p g d g m c d g b d 1 d g b d g m c d g d 1 b d 2 displaystyle begin aligned p left gamma right d 1 frac mathrm d p left gamma right mathrm d gamma amp mc d gamma beta d 1 frac mathrm d gamma beta mathrm d gamma amp mc d gamma d 1 beta d 2 end aligned nbsp 6 Or pdf MJ g g d 1 b d 2 e g 8 g g 2 1 d 2 1 e g 8 displaystyle operatorname pdf text MJ gamma propto gamma d 1 beta d 2 e frac gamma theta propto gamma gamma 2 1 frac d 2 1 e frac gamma theta nbsp 7 Now because E k B T g 8 displaystyle frac E k text B T frac gamma theta nbsp Then one normalises the distribution Eq 7 One sets pdf MJ p 8 d p 1 d p d N e g p 8 d p 1 d p d displaystyle operatorname pdf text MJ p theta mathrm d p 1 cdots mathrm d p d N e gamma p theta mathrm d p 1 cdots mathrm d p d nbsp 8 And the angular integration d p 1 d p d B d p d 1 d p 1 2 B d m c d p m c 2 d 2 1 d p m c 2 displaystyle mathrm d p 1 cdots mathrm d p d B d p d 1 mathrm d p frac 1 2 B d left mc right d left left frac p mc right 2 right frac d 2 1 mathrm d left frac p mc right 2 nbsp Where B d 2 p d 2 G d 2 displaystyle B d frac 2 pi d 2 Gamma left frac d 2 right nbsp is the surface of the unit d dimensional sphere Then using the identity g 2 p m c 2 1 displaystyle gamma 2 left frac p mc right 2 1 nbsp one has pdf MJ p 8 d p 1 d p d N 1 2 B d m c d e g 8 g 2 1 d 2 1 d g 2 1 displaystyle operatorname pdf text MJ mathbf p theta mathrm d p 1 cdots mathrm d p d N frac 1 2 B d left mc right d e frac gamma theta gamma 2 1 frac d 2 1 mathrm d gamma 2 1 nbsp 9 and 1 pdf MJ p 8 d p 1 d p d N 1 2 B d m c d 1 e g 8 g 2 1 d 2 1 d g 2 1 N 1 2 B d d 2 1 m c d 8 1 1 e g 8 g 2 1 d 2 d g N 1 2 B d d 2 1 m c d 8 1 I d displaystyle begin aligned 1 amp int infty infty operatorname pdf text MJ mathbf p theta mathrm d p 1 cdots mathrm d p d 1ex amp N frac 1 2 B d mc d int 1 infty e frac gamma theta gamma 2 1 frac d 2 1 mathrm d gamma 2 1 1ex amp N frac 1 2 B d left frac d 2 right 1 mc d theta 1 int 1 infty e frac gamma theta gamma 2 1 frac d 2 mathrm d gamma 1ex amp N frac 1 2 B d left frac d 2 right 1 mc d theta 1 I d end aligned nbsp 10 Where one has defined the integral I d 1 e g 8 g 2 1 d 2 d g displaystyle I d equiv int 1 infty e gamma theta gamma 2 1 d 2 mathrm d gamma nbsp 11 The Macdonald function Modified Bessel function of the II kind Abramowitz and Stegun 1972 p 376 is defined by K n z p 1 2 1 2 z n G n 1 2 1 e z g g 2 1 n 1 2 d g displaystyle operatorname K n z equiv frac pi frac 1 2 frac 1 2 z n Gamma n frac 1 2 int 1 infty e z gamma gamma 2 1 n frac 1 2 mathrm d gamma nbsp 12 So that by setting n d 1 2 z 1 8 displaystyle n frac d 1 2 z frac 1 theta nbsp one obtains I d G d 2 1 p 1 2 K d 1 2 1 8 2 8 d 1 2 displaystyle I d Gamma left frac d 2 1 right pi frac 1 2 operatorname K frac d 1 2 left frac 1 theta right 2 theta frac d 1 2 nbsp 13 Hence N 1 p d 2 G d 2 d 2 1 G d 2 1 p 1 2 K d 1 2 1 8 m c d 2 8 d 1 2 p d 1 2 2 d 1 2 m c d 8 d 1 2 K d 1 2 1 8 displaystyle N 1 frac pi frac d 2 Gamma left frac d 2 right left frac d 2 right 1 Gamma left frac d 2 1 right pi frac 1 2 operatorname K frac d 1 2 left frac 1 theta right mc d 2 theta frac d 1 2 pi frac d 1 2 2 frac d 1 2 mc d theta frac d 1 2 operatorname K frac d 1 2 left frac 1 theta right nbsp 14a Or N p 1 d 2 2 d 1 2 m c d 8 1 d 2 K d 1 2 1 8 1 displaystyle N pi frac 1 d 2 2 frac d 1 2 mc d theta frac 1 d 2 operatorname K frac d 1 2 left frac 1 theta right 1 nbsp 14b The inverse of the normalization constant gives the partition function Z 1 N displaystyle Z equiv frac 1 N nbsp Z p d 1 2 2 d 1 2 m c d 8 d 1 2 K d 1 2 1 8 displaystyle Z pi frac d 1 2 2 frac d 1 2 mc d theta frac d 1 2 operatorname K frac d 1 2 left frac 1 theta right nbsp 14c Therefore the normalized distribution is pdf MJ p 8 d p 1 d p d p 1 d 2 2 d 1 2 m c d 8 1 d 2 K d 1 2 1 8 1 e g p 8 d p 1 d p d displaystyle operatorname pdf text MJ p theta mathrm d p 1 cdots mathrm d p d pi frac 1 d 2 2 frac d 1 2 mc d theta frac 1 d 2 operatorname K frac d 1 2 left frac 1 theta right 1 e frac gamma p theta mathrm d p 1 cdots mathrm d p d nbsp 15a Or one may derive the normalised distribution in terms of pdf MJ g 8 d g p 1 2 2 1 d 2 G d 2 K d 1 2 1 8 1 8 1 d 2 e g 8 g 2 1 d 2 1 g d g displaystyle operatorname pdf text MJ gamma theta mathrm d gamma frac pi frac 1 2 2 frac 1 d 2 Gamma left frac d 2 right operatorname K frac d 1 2 left frac 1 theta right 1 theta frac 1 d 2 e frac gamma theta gamma 2 1 frac d 2 1 gamma mathrm d gamma nbsp 15b Note that 8 displaystyle theta nbsp can be shown to coincide with the thermodynamic definition of temperature Also useful is the expression of the distribution in the velocity space 6 Given that d b g d b g 3 displaystyle frac mathrm d beta gamma mathrm d beta gamma 3 nbsp one has d p 1 d p d p d 1 d p d W d m c d g d 1 b d 1 d b g d b d b d W d m c d g d 2 b d 1 dbd W d m c d g d 2 d b 1 d b d displaystyle begin aligned mathrm d p 1 cdots mathrm d p d p d 1 mathrm d p mathrm d Omega d amp mc d gamma d 1 beta d 1 frac mathrm d beta gamma mathrm d beta mathrm d beta mathrm d Omega d amp mc d gamma d 2 beta d 1 text dbd Omega d 1ex amp mc d gamma d 2 mathrm d beta 1 cdots mathrm d beta d end aligned nbsp Hence pdf MJ b 8 d b 1 d b d p 1 d 2 2 d 1 2 8 1 d 2 K d 1 2 1 8 1 e g b 8 g b d 2 d b 1 d b d displaystyle operatorname pdf text MJ mathbf beta theta mathrm d beta 1 cdots mathrm d beta d pi frac 1 d 2 2 frac d 1 2 theta frac 1 d 2 operatorname K frac d 1 2 left frac 1 theta right 1 e frac gamma beta theta gamma beta d 2 mathrm d beta 1 cdots mathrm d beta d nbsp 15c Take d 3 displaystyle d 3 nbsp the classic case in our world pdf MJ p 8 d p 1 d p d 1 4 p m c 3 1 8 K 2 1 8 1 e g p 8 d p 1 d p 2 d p 3 displaystyle operatorname pdf text MJ p theta mathrm d p 1 cdots mathrm d p d frac 1 4 pi mc 3 frac 1 theta operatorname K 2 left frac 1 theta right 1 e frac gamma mathbf p theta mathrm d p 1 mathrm d p 2 mathrm d p 3 nbsp 16a And pdf MJ g 8 d g 1 8 K 2 1 8 1 e g 8 g 2 1 1 2 g d g displaystyle operatorname pdf text MJ gamma theta mathrm d gamma frac 1 theta operatorname K 2 left frac 1 theta right 1 e frac gamma theta gamma 2 1 frac 1 2 gamma mathrm d gamma nbsp 16b pdf MJ b 8 d b 1 d b 2 d b 3 4 p 1 8 K 2 1 8 1 e g b 8 g b 5 d b 1 d b 2 d b 3 displaystyle operatorname pdf text MJ beta theta mathrm d beta 1 mathrm d beta 2 mathrm d beta 3 frac 4 pi frac 1 theta operatorname K 2 left frac 1 theta right 1 e frac gamma beta theta gamma beta 5 mathrm d beta 1 mathrm d beta 2 mathrm d beta 3 nbsp 16c Note that when the MB displaystyle text MB nbsp distribution clearly deviates from the MJ displaystyle text MJ nbsp distribution of the same temperature and dimensionality one can misinterpret and deduce a different MB displaystyle text MB nbsp distribution that will give a good approximation to the MJ displaystyle text MJ nbsp distribution This new MB displaystyle text MB nbsp distribution can be either a convected MB displaystyle text MB nbsp distribution that is an MB displaystyle text MB nbsp distribution with the same dimensionality but with different temperature T MB displaystyle T text MB nbsp and bulk speed u b displaystyle mathbf u b nbsp or bulk energy E b 1 2 m u u b 2 textstyle E b equiv frac 1 2 m left mathbf u mathbf u b right 2 nbsp an MB displaystyle text MB nbsp distribution with the same bulk speed but with different temperature T MB displaystyle T text MB nbsp and degrees of freedom d MB displaystyle d text MB nbsp These two types of approximations are illustrated Other properties editThe MJ displaystyle text MJ nbsp probability density function is given by pdf MJ g 1 8 K 2 1 8 g 2 b g e g 8 displaystyle operatorname pdf text MJ gamma frac 1 theta operatorname K 2 left frac 1 theta right gamma 2 beta gamma e gamma theta nbsp This means that a relativistic non quantum particle with parameter 8 displaystyle theta nbsp has a probability of pdf MJ g d g displaystyle operatorname pdf text MJ gamma mathrm d gamma nbsp of having its Lorentz factor in the interval g g d g displaystyle gamma gamma mathrm d gamma nbsp The MJ displaystyle text MJ nbsp cumulative distribution function is given by cdf MJ g 1 8 K 2 1 8 1 g g 2 1 1 g 2 e g 8 d g displaystyle operatorname cdf text MJ gamma frac 1 theta operatorname K 2 left dfrac 1 theta right int 1 gamma gamma prime 2 sqrt 1 frac 1 gamma prime 2 e gamma theta mathrm d gamma nbsp That has a series expansion at g 1 displaystyle gamma 1 nbsp cdf MJ g 2 2 3 e 1 8 8 K 2 1 8 g 1 3 1 5 2 5 8 4 e 1 8 8 2 K 2 1 8 g 1 5 O g 1 7 displaystyle operatorname cdf text MJ gamma frac 2 sqrt 2 3 frac e 1 theta theta operatorname K 2 left frac 1 theta right sqrt gamma 1 3 frac 1 5 sqrt 2 frac 5 theta 4 e 1 theta theta 2 operatorname K 2 left frac 1 theta right sqrt gamma 1 5 mathcal O left sqrt gamma 1 7 right nbsp By definition lim g cdf MJ g 1 displaystyle lim gamma to infty operatorname cdf text MJ gamma 1 nbsp regardless of the parameter 8 displaystyle theta nbsp To find the average speed v MJ displaystyle langle v rangle text MJ nbsp one must compute 1 pdf MJ g v g d g textstyle int 1 infty operatorname pdf text MJ gamma v gamma mathrm d gamma nbsp where v g c 1 1 g 2 textstyle v gamma c sqrt 1 1 gamma 2 nbsp is the speed in terms of its Lorentz factor The integral simplifies to the closed form expression v MJ 2 c 8 8 1 e 1 8 K 2 1 8 displaystyle langle v rangle text MJ 2c frac theta theta 1 e 1 theta operatorname K 2 left frac 1 theta right nbsp This closed formula for v MJ displaystyle langle v rangle text MJ nbsp has a series expansion at 8 0 displaystyle theta 0 nbsp 1 c v MJ 8 p 8 7 2 2 p 8 3 O 8 5 displaystyle frac 1 c langle v rangle text MJ sqrt frac 8 pi sqrt theta frac 7 2 sqrt 2 pi sqrt theta 3 mathcal O left sqrt theta 5 right nbsp Or substituting the definition for the parameter 8 displaystyle theta nbsp v MJ 8 p k B T m 7 2 2 p 1 c 2 k B T m 3 displaystyle langle v rangle text MJ sqrt frac 8 pi frac k text B T m frac 7 2 sqrt 2 pi frac 1 c 2 sqrt frac k text B T m 3 cdots nbsp Where the first term of the expansion which is independently of c displaystyle c nbsp corresponds to the average speed in the Maxwell Boltzmann distribution v MB 8 p k B T m displaystyle langle v rangle text MB sqrt frac 8 pi frac k text B T m nbsp whilst the following are relativistic corrections This closed formula for v MJ displaystyle langle v rangle text MJ nbsp has a series expansion at 8 displaystyle theta infty nbsp 1 c v MJ 1 1 4 1 8 2 O 1 8 3 displaystyle frac 1 c langle v rangle text MJ 1 frac 1 4 frac 1 theta 2 mathcal O left frac 1 theta 3 right nbsp Or substituting the definition for the parameter 8 displaystyle theta nbsp v MJ c 1 4 c 5 m 2 k B 2 T 2 displaystyle langle v rangle text MJ c frac 1 4 c 5 frac m 2 k text B 2 T 2 cdots nbsp Where it follows that c displaystyle c nbsp is an upper limit to the particle s speed something only present in a relativistic context and not in the Maxwell Boltzmann distribution References edit nbsp This article incorporates text by George Livadiotis available under the CC BY 3 0 license Juttner F 1911 Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie Annalen der Physik 339 5 856 882 Bibcode 1911AnP 339 856J doi 10 1002 andp 19113390503 Synge J L 1957 The Relativistic Gas Series in physics North Holland LCCN 57003567 Chacon Acosta Guillermo Dagdug Leonardo Morales Tecotl Hugo A 2009 On the Manifestly Covariant Juttner Distribution and Equipartition Theorem Physical Review E 81 2 Pt 1 021126 arXiv 0910 1625 Bibcode 2010PhRvE 81b1126C doi 10 1103 PhysRevE 81 021126 PMID 20365549 S2CID 39195896 Lazar M Stockem A Schlickeiser R 2010 12 03 Towards a Relativistically Correct Characterization of Counterstreaming Plasmas I Distribution Functions The Open Plasma Physics Journal 3 1 See first few paragraphs in 1 for extended discussion Dunkel Jorn Talkner Peter Hanggi Peter 2007 05 22 Relative entropy Haar measures and relativistic canonical velocity distributions New Journal of Physics 9 5 144 arXiv cond mat 0610045 Bibcode 2007NJPh 9 144D doi 10 1088 1367 2630 9 5 144 ISSN 1367 2630 S2CID 15896453 Retrieved from https en wikipedia org w index php title Maxwell Juttner distribution amp oldid 1199029935, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.