fbpx
Wikipedia

Cutoff frequency

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced (attenuated or reflected) rather than passing through.

Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f1 and upper 3 dB cutoff frequency f2
Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.

Typically in electronic systems such as filters and communication channels, cutoff frequency applies to an edge in a lowpass, highpass, bandpass, or band-stop characteristic – a frequency characterizing a boundary between a passband and a stopband. It is sometimes taken to be the point in the filter response where a transition band and passband meet, for example, as defined by a half-power point (a frequency for which the output of the circuit is approximately −3.01 dB of the nominal passband value). Alternatively, a stopband corner frequency may be specified as a point where a transition band and a stopband meet: a frequency for which the attenuation is larger than the required stopband attenuation, which for example may be 30 dB or 100 dB.

In the case of a waveguide or an antenna, the cutoff frequencies correspond to the lower and upper cutoff wavelengths.

Electronics edit

In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband. Most frequently this proportion is one half the passband power, also referred to as the 3 dB point since a fall of 3 dB corresponds approximately to half power. As a voltage ratio this is a fall to   of the passband voltage.[1] Other ratios besides the 3 dB point may also be relevant, for example see § Chebyshev filters below. Far from the cutoff frequency in the transition band, the rate of increase of attenuation (roll-off) with logarithm of frequency is asymptotic to a constant. For a first-order network, the roll-off is −20 dB per decade (−6 dB per octave.)

Single-pole transfer function example edit

The transfer function for the simplest low-pass filter,

 
has a single pole at s = −1/α. The magnitude of this function in the j'ω plane is
 

At cutoff

 

Hence, the cutoff frequency is given by

 

Where s is the s-plane variable, ω is angular frequency and j is the imaginary unit.

Chebyshev filters edit

Sometimes other ratios are more convenient than the 3 dB point. For instance, in the case of the Chebyshev filter it is usual to define the cutoff frequency as the point after the last peak in the frequency response at which the level has fallen to the design value of the passband ripple. The amount of ripple in this class of filter can be set by the designer to any desired value, hence the ratio used could be any value.[2]

Radio communications edit

In radio communication, skywave communication is a technique in which radio waves are transmitted at an angle into the sky and reflected back to Earth by layers of charged particles in the ionosphere. In this context, the term cutoff frequency refers to the maximum usable frequency, the frequency above which a radio wave fails to reflect off the ionosphere at the incidence angle required for transmission between two specified points by reflection from the layer.

Waveguides edit

The cutoff frequency of an electromagnetic waveguide is the lowest frequency for which a mode will propagate in it. In fiber optics, it is more common to consider the cutoff wavelength, the maximum wavelength that will propagate in an optical fiber or waveguide. The cutoff frequency is found with the characteristic equation of the Helmholtz equation for electromagnetic waves, which is derived from the electromagnetic wave equation by setting the longitudinal wave number equal to zero and solving for the frequency. Thus, any exciting frequency lower than the cutoff frequency will attenuate, rather than propagate. The following derivation assumes lossless walls. The value of c, the speed of light, should be taken to be the group velocity of light in whatever material fills the waveguide.

For a rectangular waveguide, the cutoff frequency is

 
where   are the mode numbers for the rectangle's sides of length   and   respectively. For TE modes,   (but   is not allowed), while for TM modes  .

The cutoff frequency of the TM01 mode (next higher from dominant mode TE11) in a waveguide of circular cross-section (the transverse-magnetic mode with no angular dependence and lowest radial dependence) is given by

 
where   is the radius of the waveguide, and   is the first root of  , the Bessel function of the first kind of order 1.

The dominant mode TE11 cutoff frequency is given by[3]

 

However, the dominant mode cutoff frequency can be reduced by the introduction of baffle inside the circular cross-section waveguide.[4] For a single-mode optical fiber, the cutoff wavelength is the wavelength at which the normalized frequency is approximately equal to 2.405.

Mathematical analysis edit

The starting point is the wave equation (which is derived from the Maxwell equations),

 
which becomes a Helmholtz equation by considering only functions of the form
 
Substituting and evaluating the time derivative gives
 
The function   here refers to whichever field (the electric field or the magnetic field) has no vector component in the longitudinal direction - the "transverse" field. It is a property of all the eigenmodes of the electromagnetic waveguide that at least one of the two fields is transverse. The z axis is defined to be along the axis of the waveguide.

The "longitudinal" derivative in the Laplacian can further be reduced by considering only functions of the form

 
where   is the longitudinal wavenumber, resulting in
 
where subscript T indicates a 2-dimensional transverse Laplacian. The final step depends on the geometry of the waveguide. The easiest geometry to solve is the rectangular waveguide. In that case, the remainder of the Laplacian can be evaluated to its characteristic equation by considering solutions of the form
 
Thus for the rectangular guide the Laplacian is evaluated, and we arrive at
 
The transverse wavenumbers can be specified from the standing wave boundary conditions for a rectangular geometry cross-section with dimensions a and b:
 
 
where n and m are the two integers representing a specific eigenmode. Performing the final substitution, we obtain
 
which is the dispersion relation in the rectangular waveguide. The cutoff frequency   is the critical frequency between propagation and attenuation, which corresponds to the frequency at which the longitudinal wavenumber   is zero. It is given by
 
The wave equations are also valid below the cutoff frequency, where the longitudinal wave number is imaginary. In this case, the field decays exponentially along the waveguide axis and the wave is thus evanescent.

See also edit

References edit

  1. ^ Van Valkenburg, M. E. (1974). Network Analysis (3rd ed.). pp. 383–384. ISBN 0-13-611095-9. Retrieved 2008-06-22.
  2. ^ Mathaei, Young, Jones Microwave Filters, Impedance-Matching Networks, and Coupling Structures, pp.85-86, McGraw-Hill 1964.
  3. ^ Hunter, I. C. (2001). Theory and design of microwave filters. Institution of Electrical Engineers. London: Institution of Electrical Engineers. p. 214. ISBN 978-0-86341-253-0. OCLC 505848355.
  4. ^ Modi, Anuj Y.; Balanis, Constantine A. (2016-03-01). "PEC-PMC Baffle Inside Circular Cross Section Waveguide for Reduction of Cut-Off Frequency". IEEE Microwave and Wireless Components Letters. 26 (3): 171–173. doi:10.1109/LMWC.2016.2524529. ISSN 1531-1309. S2CID 9594124.

External links edit

  • Calculation of the center frequency with geometric mean and comparison to the arithmetic mean solution
  • Conversion of cutoff frequency fc and time constant τ
  • Mathematical definition of and information about the Bessel functions

cutoff, frequency, physics, electrical, engineering, cutoff, frequency, corner, frequency, break, frequency, boundary, system, frequency, response, which, energy, flowing, through, system, begins, reduced, attenuated, reflected, rather, than, passing, through,. In physics and electrical engineering a cutoff frequency corner frequency or break frequency is a boundary in a system s frequency response at which energy flowing through the system begins to be reduced attenuated or reflected rather than passing through Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f1 and upper 3 dB cutoff frequency f2 Bode plot a logarithmic frequency response plot of any first order low pass filter with a normalized cutoff frequency at w displaystyle omega 1 and a unity gain 0 dB passband Typically in electronic systems such as filters and communication channels cutoff frequency applies to an edge in a lowpass highpass bandpass or band stop characteristic a frequency characterizing a boundary between a passband and a stopband It is sometimes taken to be the point in the filter response where a transition band and passband meet for example as defined by a half power point a frequency for which the output of the circuit is approximately 3 01 dB of the nominal passband value Alternatively a stopband corner frequency may be specified as a point where a transition band and a stopband meet a frequency for which the attenuation is larger than the required stopband attenuation which for example may be 30 dB or 100 dB In the case of a waveguide or an antenna the cutoff frequencies correspond to the lower and upper cutoff wavelengths Contents 1 Electronics 1 1 Single pole transfer function example 1 2 Chebyshev filters 2 Radio communications 3 Waveguides 3 1 Mathematical analysis 4 See also 5 References 6 External linksElectronics editIn electronics cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit such as a line amplifier or electronic filter has fallen to a given proportion of the power in the passband Most frequently this proportion is one half the passband power also referred to as the 3 dB point since a fall of 3 dB corresponds approximately to half power As a voltage ratio this is a fall to 1 2 0 707 textstyle sqrt 1 2 approx 0 707 nbsp of the passband voltage 1 Other ratios besides the 3 dB point may also be relevant for example see Chebyshev filters below Far from the cutoff frequency in the transition band the rate of increase of attenuation roll off with logarithm of frequency is asymptotic to a constant For a first order network the roll off is 20 dB per decade 6 dB per octave Single pole transfer function example edit The transfer function for the simplest low pass filter H s 1 1 a s displaystyle H s frac 1 1 alpha s nbsp has a single pole at s 1 a The magnitude of this function in the j w plane is H j w 1 1 a j w 1 1 a 2 w 2 displaystyle left H j omega right left frac 1 1 alpha j omega right sqrt frac 1 1 alpha 2 omega 2 nbsp At cutoff H j w c 1 2 1 1 a 2 w c 2 displaystyle left H j omega mathrm c right frac 1 sqrt 2 sqrt frac 1 1 alpha 2 omega mathrm c 2 nbsp Hence the cutoff frequency is given byw c 1 a displaystyle omega mathrm c frac 1 alpha nbsp Where s is the s plane variable w is angular frequency and j is the imaginary unit Chebyshev filters edit Sometimes other ratios are more convenient than the 3 dB point For instance in the case of the Chebyshev filter it is usual to define the cutoff frequency as the point after the last peak in the frequency response at which the level has fallen to the design value of the passband ripple The amount of ripple in this class of filter can be set by the designer to any desired value hence the ratio used could be any value 2 Radio communications editIn radio communication skywave communication is a technique in which radio waves are transmitted at an angle into the sky and reflected back to Earth by layers of charged particles in the ionosphere In this context the term cutoff frequency refers to the maximum usable frequency the frequency above which a radio wave fails to reflect off the ionosphere at the incidence angle required for transmission between two specified points by reflection from the layer Waveguides editThe cutoff frequency of an electromagnetic waveguide is the lowest frequency for which a mode will propagate in it In fiber optics it is more common to consider the cutoff wavelength the maximum wavelength that will propagate in an optical fiber or waveguide The cutoff frequency is found with the characteristic equation of the Helmholtz equation for electromagnetic waves which is derived from the electromagnetic wave equation by setting the longitudinal wave number equal to zero and solving for the frequency Thus any exciting frequency lower than the cutoff frequency will attenuate rather than propagate The following derivation assumes lossless walls The value of c the speed of light should be taken to be the group velocity of light in whatever material fills the waveguide For a rectangular waveguide the cutoff frequency isw c c m p a 2 n p b 2 displaystyle omega c c sqrt left frac m pi a right 2 left frac n pi b right 2 nbsp where m n 0 displaystyle m n geq 0 nbsp are the mode numbers for the rectangle s sides of length a displaystyle a nbsp and b displaystyle b nbsp respectively For TE modes m n 0 displaystyle m n geq 0 nbsp but m n 0 displaystyle m n 0 nbsp is not allowed while for TM modes m n 1 displaystyle m n geq 1 nbsp The cutoff frequency of the TM01 mode next higher from dominant mode TE11 in a waveguide of circular cross section the transverse magnetic mode with no angular dependence and lowest radial dependence is given byw c c x 01 r c 2 4048 r displaystyle omega c c frac chi 01 r c frac 2 4048 r nbsp where r displaystyle r nbsp is the radius of the waveguide and x 01 displaystyle chi 01 nbsp is the first root of J 0 r displaystyle J 0 r nbsp the Bessel function of the first kind of order 1 The dominant mode TE11 cutoff frequency is given by 3 w c c x 11 r c 1 8412 r displaystyle omega c c frac chi 11 r c frac 1 8412 r nbsp However the dominant mode cutoff frequency can be reduced by the introduction of baffle inside the circular cross section waveguide 4 For a single mode optical fiber the cutoff wavelength is the wavelength at which the normalized frequency is approximately equal to 2 405 Mathematical analysis edit The starting point is the wave equation which is derived from the Maxwell equations 2 1 c 2 2 t 2 ps r t 0 displaystyle left nabla 2 frac 1 c 2 frac partial 2 partial t 2 right psi mathbf r t 0 nbsp which becomes a Helmholtz equation by considering only functions of the form ps x y z t ps x y z e i w t displaystyle psi x y z t psi x y z e i omega t nbsp Substituting and evaluating the time derivative gives 2 w 2 c 2 ps x y z 0 displaystyle left nabla 2 frac omega 2 c 2 right psi x y z 0 nbsp The function ps displaystyle psi nbsp here refers to whichever field the electric field or the magnetic field has no vector component in the longitudinal direction the transverse field It is a property of all the eigenmodes of the electromagnetic waveguide that at least one of the two fields is transverse The z axis is defined to be along the axis of the waveguide The longitudinal derivative in the Laplacian can further be reduced by considering only functions of the formps x y z t ps x y e i w t k z z displaystyle psi x y z t psi x y e i left omega t k z z right nbsp where k z displaystyle k z nbsp is the longitudinal wavenumber resulting in T 2 k z 2 w 2 c 2 ps x y z 0 displaystyle left nabla T 2 k z 2 frac omega 2 c 2 right psi x y z 0 nbsp where subscript T indicates a 2 dimensional transverse Laplacian The final step depends on the geometry of the waveguide The easiest geometry to solve is the rectangular waveguide In that case the remainder of the Laplacian can be evaluated to its characteristic equation by considering solutions of the form ps x y z t ps 0 e i w t k z z k x x k y y displaystyle psi x y z t psi 0 e i left omega t k z z k x x k y y right nbsp Thus for the rectangular guide the Laplacian is evaluated and we arrive at w 2 c 2 k x 2 k y 2 k z 2 displaystyle frac omega 2 c 2 k x 2 k y 2 k z 2 nbsp The transverse wavenumbers can be specified from the standing wave boundary conditions for a rectangular geometry cross section with dimensions a and b k x n p a displaystyle k x frac n pi a nbsp k y m p b displaystyle k y frac m pi b nbsp where n and m are the two integers representing a specific eigenmode Performing the final substitution we obtain w 2 c 2 n p a 2 m p b 2 k z 2 displaystyle frac omega 2 c 2 left frac n pi a right 2 left frac m pi b right 2 k z 2 nbsp which is the dispersion relation in the rectangular waveguide The cutoff frequency w c displaystyle omega c nbsp is the critical frequency between propagation and attenuation which corresponds to the frequency at which the longitudinal wavenumber k z displaystyle k z nbsp is zero It is given by w c c n p a 2 m p b 2 displaystyle omega c c sqrt left frac n pi a right 2 left frac m pi b right 2 nbsp The wave equations are also valid below the cutoff frequency where the longitudinal wave number is imaginary In this case the field decays exponentially along the waveguide axis and the wave is thus evanescent See also editFull width at half maximum High pass filter Miller effect Spatial cutoff frequency in optical systems Time constantReferences edit Van Valkenburg M E 1974 Network Analysis 3rd ed pp 383 384 ISBN 0 13 611095 9 Retrieved 2008 06 22 Mathaei Young Jones Microwave Filters Impedance Matching Networks and Coupling Structures pp 85 86 McGraw Hill 1964 Hunter I C 2001 Theory and design of microwave filters Institution of Electrical Engineers London Institution of Electrical Engineers p 214 ISBN 978 0 86341 253 0 OCLC 505848355 Modi Anuj Y Balanis Constantine A 2016 03 01 PEC PMC Baffle Inside Circular Cross Section Waveguide for Reduction of Cut Off Frequency IEEE Microwave and Wireless Components Letters 26 3 171 173 doi 10 1109 LMWC 2016 2524529 ISSN 1531 1309 S2CID 9594124 nbsp This article incorporates public domain material from Federal Standard 1037C General Services Administration Archived from the original on 2022 01 22 in support of MIL STD 188 External links editCalculation of the center frequency with geometric mean and comparison to the arithmetic mean solution Conversion of cutoff frequency fc and time constant t Mathematical definition of and information about the Bessel functions Retrieved from https en wikipedia org w index php title Cutoff frequency amp oldid 1217687393, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.