fbpx
Wikipedia

Lorentz-violating electrodynamics

Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.

Minimal Lorentz-violating electrodynamics edit

The most general framework for studies of relativity violations is an effective field theory called the Standard-Model Extension (SME).[1][2][3] Lorentz-violating operators in the SME are classified by their mass dimension  . To date, the most widely studied limit of the SME is the minimal SME,[4] which limits attention to operators of renormalizable mass-dimension,  , in flat spacetime. Within the minimal SME, photons are governed by the Lagrangian density

 

The first term on the right-hand side is the conventional Maxwell Lagrangian and gives rise to the usual source-free Maxwell equations. The next term violates both Lorentz and CPT invariance and is constructed from a dimension   operator and a constant coefficient for Lorentz violation  .[5][6] The second term introduces Lorentz violation, but preserves CPT invariance. It consists of a dimension   operator contracted with constant coefficients for Lorentz violation  .[7] There are a total of four independent   coefficients and nineteen   coefficients. Both Lorentz-violating terms are invariant under observer Lorentz transformations, implying that the physics in independent of observer or coordinate choice. However, the coefficient tensors   and   are outside the control of experimenters and can be viewed as constant background fields that fill the entire Universe, introducing directionality to the otherwise isotropic spacetime. Photons interact with these background fields and experience frame-dependent effects, violating Lorentz invariance.

The mathematics describing Lorentz violation in photons is similar to that of conventional electromagnetism in dielectrics. As a result, many of the effects of Lorentz violation are also seen in light passing through transparent materials. These include changes in the speed that can depend on frequency, polarization, and direction of propagation. Consequently, Lorentz violation can introduce dispersion in light propagating in empty space. It can also introduce birefringence, an effect seen in crystals such as calcite. The best constraints on Lorentz violation come from constraints on birefringence in light from astrophysical sources.[8]

Nonminimal Lorentz-violating electrodynamics edit

The full SME incorporates general relativity and curved spacetimes. It also includes operators of arbitrary (nonrenormalizable) dimension  . The general gauge-invariant photon sector was constructed in 2009 by Kostelecky and Mewes.[9] It was shown that the more general theory could be written in a form similar to the minimal case,

 

where the constant coefficients are promoted to operators   and  , which take the form of power series in spacetime derivatives. The   operator contains all the CPT-odd   terms, while the CPT-even terms with   are in  . While the nonrenormalizable terms give many of the same types of signatures as the   case, the effects generally grow faster with frequency, due to the additional derivatives. More complex directional dependence typically also arises. Vacuum dispersion of light without birefringence is another feature that is found, which does not arise in the minimal SME.[9]

Experiments edit

Vacuum birefringence edit

Birefringence of light occurs when the solutions to the modified Lorentz-violating Maxwell equations give rise to polarization-dependent speeds.[9][10][11] Light propagates as the combination of two orthogonal polarizations that propagate at slightly different phase velocities. A gradual change in the relative phase results as one of the polarizations outpaces the other. The total polarization (the sum of the two) evolves as the light propagates, in contrast to the Lorentz-invariant case where the polarization of light remains fixed when propagating in a vacuum. In the CPT-odd case (d ∈ {odd} ), birefringence causes a simple rotation of the polarization. The CPT-even case (d ∈ {even} ) gives more complicated behavior as linearly polarized light evolves into elliptically polarizations.[9]

The quantity determining the size of the effect is the change in relative phase,  , where   is the difference in phase speeds,   is the propagation time, and   is the wavelength. For  , the highest sensitivities are achieved by considering high-energy photons from distant sources, giving large values to the ratio   that enhance the sensitivity to  . The best constraints on vacuum birefringence from   Lorentz violation come from polarimetry studies of gamma-ray bursts (GRB).[11][12][13][14] For example, sensitivities of 10−38 to the   coefficients for Lorentz violation have been achieved. For  , the velocity difference   is proportional to the wavelength, canceling the   dependence in the phase shift, implying there is no benefit to considering higher energies. As a result, maximum sensitivity is achieved by studying the most distant source available, the cosmic microwave background (CMB). Constraints on   coefficients for Lorentz violation from the CMB currently stand at around 10−43 GeV.[15][16][17][18][19][20][21][22][23][24][25][26][27]

Vacuum dispersion edit

Lorentz violation with   can lead to frequency-dependent light speeds.[9] To search for this effect, researchers compare the arrival times of photons from distant sources of pulsed radiation, such as GRB or pulsars. Assuming photons of all energies are produced within a narrow window of time, dispersion would cause higher-energy photons to run ahead or behind lower-energy photons, leading to otherwise unexplained energy dependence in the arrival time. For two photons of two different energies, the difference in arrival times is approximately given by the ratio  , where   is the difference in the group velocity and   is the distance traveled. Sensitivity to Lorentz violation is then increased by considering very distant sources with rapidly changing time profiles. The speed difference   grows as  , so higher-energy sources provide better sensitivity to effects from   Lorentz violation, making GRB an ideal source.[9][28][29][30][31][32]

Dispersion may or may not be accompanied by birefringence. Polarization studies typically achieved sensitivities well beyond those achievable through dispersion. As a result, most searches for dispersion focus on Lorentz violation that leads to dispersion but not birefringence. The SME shows that dispersion without birefringence can only arise from operators of even dimension  . Consequently, the energy dependence in the light speed from nonbirefringent Lorentz violation can be quadratic   or quartic   or any other even power of energy. Odd powers of energy, such as linear   and cubic  , do not arise in effective field theory.

Resonant cavities edit

While extreme sensitivity to Lorentz violation is achieved in astrophysical studies, most forms of Lorentz violation have little to no effect on light propagating in a vacuum. These types of violations cannot be tested using astrophysical tests, but can be sought in laboratory-based experiments involving electromagnetic fields. The primary examples are the modern Michelson-Morley experiments based on electromagnetic resonant cavities, which have achieved sensitivities on the order of parts in 1018 to Lorentz violation.[33][34][35][36][37][38][39][40][41][42][43][44][45][46]

Resonant cavities support electromagnetic standing waves that oscillate at well-defined frequencies determined by the Maxwell equations and the geometry of the cavity. The Lorentz-violating modifications to the Maxwell equations lead to tiny shifts in the resonant frequencies. Experimenters search for these tiny shifts by comparing two or more cavities at different orientations. Since rotation-symmetry violation is a form of Lorentz violation, the resonant frequencies may depend on the orientation of the cavity. So, two cavities with different orientations may give different frequencies even if they are otherwise identical. A typical experiment compares the frequencies of two identical cavities oriented at right angles in the laboratory. To distinguish between frequency differences of more conventional origins, such as small defects in the cavities, and Lorentz violation, the cavities are typically placed on a turntable and rotated in the laboratory. The orientation dependence from Lorentz violation would cause the frequency difference to change as the cavities rotate.

Several classes of cavity experiment exist with different sensitivities to different types of Lorentz violation. Microwave and optical cavities have been used to constrain   violations. Microwave experiments have also placed some bounds on nonminimal   and   violations. However, for  , the effects of Lorentz violation grow with frequency, so optical cavities provide better sensitivity to nonrenormalizable violations, all else being equal. The geometrical symmetries of the cavity also affect the sensitivity since parity symmetric cavities are only directly sensitive to parity-even coefficients for Lorentz violation. Ring resonators provide a complementary class of cavity experiment that can test parity-odd violations. In a ring resonator, two modes propagating in opposites directions in the same ring are compared, rather than modes in two different cavities.

Other experiments edit

A number of other searches for Lorentz violation in photons have been performed that do not fall under the above categories. These include accelerator based experiments,[47][48][36][49] atomic clocks,[50] and threshold analyses.[9][51][52]

The results of experimental searches of Lorentz invariance violation in the photon sector of the SME are summarized in the Data Tables for Lorentz and CPT violation.[53]

See also edit

External links edit

  • Background information on Lorentz and CPT violation
  • Data Tables for Lorentz and CPT Violation

References edit

  1. ^ Colladay, Don; Kostelecký, V. Alan (1 May 1997). "CPT violation and the standard model". Physical Review D. 55 (11): 6760–6774. arXiv:hep-ph/9703464. Bibcode:1997PhRvD..55.6760C. doi:10.1103/physrevd.55.6760. ISSN 0556-2821. S2CID 7651433.
  2. ^ Colladay, D.; Kostelecký, V. Alan (26 October 1998). "Lorentz-violating extension of the standard model". Physical Review D. 58 (11): 116002. arXiv:hep-ph/9809521. Bibcode:1998PhRvD..58k6002C. doi:10.1103/physrevd.58.116002. hdl:2022/18992. ISSN 0556-2821. S2CID 4013391.
  3. ^ Kostelecký, V. Alan (17 May 2004). "Gravity, Lorentz violation, and the standard model". Physical Review D. 69 (10): 105009. arXiv:hep-th/0312310. Bibcode:2004PhRvD..69j5009K. doi:10.1103/physrevd.69.105009. hdl:2022/18692. ISSN 1550-7998. S2CID 55185765.
  4. ^ Kostelecký, V. Alan; Mewes, Matthew (23 September 2002). "Signals for Lorentz violation in electrodynamics". Physical Review D. 66 (5): 056005. arXiv:hep-ph/0205211. Bibcode:2002PhRvD..66e6005K. doi:10.1103/physrevd.66.056005. hdl:2022/19024. ISSN 0556-2821. S2CID 21309077.
  5. ^ Carroll, Sean M.; Field, George B.; Jackiw, Roman (15 February 1990). "Limits on a Lorentz- and parity-violating modification of electrodynamics". Physical Review D. 41 (4). American Physical Society (APS): 1231–1240. Bibcode:1990PhRvD..41.1231C. doi:10.1103/physrevd.41.1231. ISSN 0556-2821. PMID 10012457.
  6. ^ Jackiw, R.; Kostelecký, V. Alan (3 May 1999). "Radiatively Induced Lorentz and CPT Violation in Electrodynamics". Physical Review Letters. 82 (18): 3572–3575. arXiv:hep-ph/9901358. Bibcode:1999PhRvL..82.3572J. doi:10.1103/physrevlett.82.3572. hdl:2022/18677. ISSN 0031-9007. S2CID 119471418.
  7. ^ Kostelecký, V. Alan; Mewes, Matthew (29 November 2001). "Cosmological Constraints on Lorentz Violation in Electrodynamics". Physical Review Letters. 87 (25): 251304. arXiv:hep-ph/0111026. Bibcode:2001PhRvL..87y1304K. doi:10.1103/physrevlett.87.251304. hdl:2022/19023. ISSN 0031-9007. PMID 11736558. S2CID 11401195.
  8. ^ Kostelecký, V. Alan; Mewes, Matthew (13 November 2008). "Astrophysical tests of Lorentz and CPT violation with photons". The Astrophysical Journal. 689 (1). IOP Publishing: L1–L4. arXiv:0809.2846. Bibcode:2008ApJ...689L...1K. doi:10.1086/595815. ISSN 0004-637X.
  9. ^ a b c d e f g Kostelecký, V. Alan; Mewes, Matthew (29 July 2009). "Electrodynamics with Lorentz-violating operators of arbitrary dimension". Physical Review D. 80 (1): 015020. arXiv:0905.0031. Bibcode:2009PhRvD..80a5020K. doi:10.1103/physrevd.80.015020. ISSN 1550-7998. S2CID 119241509.
  10. ^ Carroll, Sean M.; Field, George B. (29 September 1997). "Is there evidence for cosmic anisotropy in the polarization of distant radio sources?". Physical Review Letters. 79 (13): 2394–2397. arXiv:astro-ph/9704263. Bibcode:1997PhRvL..79.2394C. doi:10.1103/physrevlett.79.2394. ISSN 0031-9007. S2CID 13943605.
  11. ^ a b Kostelecký, V. Alan; Mewes, Matthew (14 May 2013). "Constraints on Relativity Violations from Gamma-Ray Bursts". Physical Review Letters. 110 (20): 201601. arXiv:1301.5367. Bibcode:2013PhRvL.110t1601K. doi:10.1103/physrevlett.110.201601. ISSN 0031-9007. PMID 25167393.
  12. ^ Stecker, Floyd W. (2011). "A new limit on Planck scale Lorentz violation from γ-ray burst polarization". Astroparticle Physics. 35 (2): 95–97. arXiv:1102.2784. Bibcode:2011APh....35...95S. doi:10.1016/j.astropartphys.2011.06.007. ISSN 0927-6505. S2CID 119280055.
  13. ^ Laurent, P.; Götz, D.; Binétruy, P.; Covino, S.; Fernandez-Soto, A. (28 June 2011). "Constraints on Lorentz invariance violation using integral/IBIS observations of GRB041219A". Physical Review D. 83 (12). American Physical Society (APS): 121301(R). arXiv:1106.1068. Bibcode:2011PhRvD..83l1301L. doi:10.1103/physrevd.83.121301. ISSN 1550-7998. S2CID 53603505.
  14. ^ Toma, Kenji; Mukohyama, Shinji; Yonetoku, Daisuke; Murakami, Toshio; Gunji, Shuichi; Mihara, Tatehiro; et al. (13 December 2012). "Strict limit on CPT violation from polarization of γ-ray bursts". Physical Review Letters. 109 (24). American Physical Society (APS): 241104. arXiv:1208.5288. Bibcode:2012PhRvL.109x1104T. doi:10.1103/physrevlett.109.241104. ISSN 0031-9007. PMID 23368301. S2CID 42198517.
  15. ^ Kostelecký, V. Alan; Mewes, Matthew (2 October 2006). "Sensitive polarimetric search for relativity violations in gamma-ray bursts". Physical Review Letters. 97 (14): 140401. arXiv:hep-ph/0607084. Bibcode:2006PhRvL..97n0401K. doi:10.1103/physrevlett.97.140401. hdl:2022/19617. ISSN 0031-9007. PMID 17155222. S2CID 1451493.
  16. ^ Kostelecký, V. Alan; Mewes, Matthew (3 July 2007). "Lorentz-Violating Electrodynamics and the Cosmic Microwave Background". Physical Review Letters. 99 (1): 011601. arXiv:astro-ph/0702379. Bibcode:2007PhRvL..99a1601K. doi:10.1103/physrevlett.99.011601. hdl:2022/18696. ISSN 0031-9007. PMID 17678146. S2CID 30064523.
  17. ^ Komatsu, E.; Smith, K. M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M. R.; Page, L.; Spergel, D.N.; Halpern, M.; Hill, R. S.; Kogut, A.; Limon, M.; Meyer, S.S.; Odegard, N.; Tucker, G.S.; Weiland, J.L.; Wollack, E.; Wright, E.L. (11 January 2011). "Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation". The Astrophysical Journal Supplement Series. 192 (2): 18. arXiv:1001.4538. Bibcode:2011ApJS..192...18K. doi:10.1088/0067-0049/192/2/18. ISSN 0067-0049.
  18. ^ Xia, Jun-Qing; Li, Hong; Zhang, Xinmin (2010). "Probing CPT violation with CMB polarization measurements". Physics Letters B. 687 (2–3): 129–132. arXiv:0908.1876. Bibcode:2010PhLB..687..129X. doi:10.1016/j.physletb.2010.03.038. ISSN 0370-2693.
  19. ^ Brown, M.L.; et al. (QUaD Collaboration) (2009). "Improved measurements of the temperature and polarization of the CMB from QUaD". Astrophys. J. 705: 978. arXiv:0906.1003. doi:10.1088/0004-637X/705/1/978. S2CID 1918381.
  20. ^ Pagano, Luca; de Bernardis, Paolo; de Troia, Grazia; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Natoli, Paolo; Piacentini, Francesco; Polenta, Gianluca (24 August 2009). "CMB polarization systematics, cosmological birefringence, and the gravitational waves background". Physical Review D. 80 (4): 043522. arXiv:0905.1651. Bibcode:2009PhRvD..80d3522P. doi:10.1103/physrevd.80.043522. ISSN 1550-7998. S2CID 118421845.
  21. ^ Wu, E.Y.S.; Ade, P.; Bock, J.; Bowden, M.; Brown, M.L.; Cahill, G.; et al. (21 April 2009). "Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter" (PDF). Physical Review Letters. 102 (16): 161302. arXiv:0811.0618. Bibcode:2009PhRvL.102p1302W. doi:10.1103/physrevlett.102.161302. ISSN 0031-9007. PMID 19518694. S2CID 84181915.
  22. ^ Kahniashvili, Tina; Durrer, Ruth; Maravin, Yurii (22 December 2008). "Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data". Physical Review D. 78 (12): 123009. arXiv:0807.2593. Bibcode:2008PhRvD..78l3009K. doi:10.1103/physrevd.78.123009. ISSN 1550-7998.
  23. ^ Komatsu, E.; Dunkley, J.; Nolta, M. R.; Bennett, C. L.; Gold, B.; Hinshaw, G.; et al. (1 January 2009). "Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation". The Astrophysical Journal Supplement Series. 180 (2): 330–376. arXiv:0803.0547. Bibcode:2009ApJS..180..330K. doi:10.1088/0067-0049/180/2/330. ISSN 0067-0049. S2CID 119290314.
  24. ^ Xia, J.-Q.; Li, H.; Wang, X.; Zhang, X. (19 March 2008). "Testing CPT symmetry with CMB measurements". Astronomy & Astrophysics. 483 (3): 715–718. arXiv:0710.3325. Bibcode:2008A&A...483..715X. doi:10.1051/0004-6361:200809410. ISSN 0004-6361. S2CID 6795044.
  25. ^ Cabella, Paolo; Natoli, Paolo; Silk, Joseph (28 December 2007). "Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis". Physical Review D. 76 (12): 123014. arXiv:0705.0810. Bibcode:2007PhRvD..76l3014C. doi:10.1103/physrevd.76.123014. ISSN 1550-7998. S2CID 118717161.
  26. ^ Feng, Bo; Li, Mingzhe; Xia, Jun-Qing; Chen, Xuelei; Zhang, Xinmin (7 June 2006). "Searching for CPT violation with cosmic microwave background data from WMAP and Boomerang". Physical Review Letters. 96 (22): 221302. arXiv:astro-ph/0601095. Bibcode:2006PhRvL..96v1302F. doi:10.1103/physrevlett.96.221302. ISSN 0031-9007. PMID 16803298. S2CID 29494306.
  27. ^ Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha (17 August 2009). "A constraint on Planck-scale modifications to electrodynamics with CMB polarization data". Journal of Cosmology and Astroparticle Physics. 2009 (8): 021. arXiv:0904.3201. Bibcode:2009JCAP...08..021G. doi:10.1088/1475-7516/2009/08/021. ISSN 1475-7516. S2CID 18811259.
  28. ^ Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Couturier, C.; Granot, J.; et al. (4 June 2013). "Constraints on Lorentz invariance violation fromFermi-Large Area Telescope observations of gamma-ray bursts". Physical Review D. 87 (12). American Physical Society (APS): 122001. arXiv:1305.3463. Bibcode:2013PhRvD..87l2001V. doi:10.1103/physrevd.87.122001. ISSN 1550-7998. S2CID 119222087.
  29. ^ Abdo, A.A.; et al. (Fermi LAT and GBM Collaborations) (2009). "Fermi observations of high-energy gamma-ray emission from GRB 080916C". Science. 323 (5922): 1688–93. Bibcode:2009Sci...323.1688A. doi:10.1126/science.1169101. OSTI 1357451. PMID 19228997. S2CID 7821247.
  30. ^ Aharonian, F.; Akhperjanian, A.G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; et al. (22 October 2008). "Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304". Physical Review Letters. 101 (17): 170402. arXiv:0810.3475. Bibcode:2008PhRvL.101q0402A. doi:10.1103/physrevlett.101.170402. ISSN 0031-9007. PMID 18999724. S2CID 15789937.
  31. ^ Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; et al. (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope". Physics Letters B. 668 (4): 253–257. arXiv:0708.2889. Bibcode:2008PhLB..668..253M. doi:10.1016/j.physletb.2008.08.053. ISSN 0370-2693. S2CID 5103618.
  32. ^ Boggs, Steven E.; Wunderer, C. B.; Hurley, K.; Coburn, W. (20 July 2004). "Testing Lorentz Invariance with GRB 021206". The Astrophysical Journal. 611 (2). IOP Publishing: L77–L80. arXiv:astro-ph/0310307. Bibcode:2004ApJ...611L..77B. doi:10.1086/423933. ISSN 0004-637X. S2CID 15649601.
  33. ^ Baynes, Fred N.; Tobar, Michael E.; Luiten, Andre N. (26 June 2012). "Oscillating Test of the Isotropic Shift of the Speed of Light". Physical Review Letters. 108 (26). American Physical Society (APS): 260801. Bibcode:2012PhRvL.108z0801B. doi:10.1103/physrevlett.108.260801. ISSN 0031-9007. PMID 23004951.
  34. ^ Parker, Stephen R.; Mewes, Matthew; Stanwix, Paul L.; Tobar, Michael E. (3 May 2011). "Cavity Bounds on Higher-Order Lorentz-Violating Coefficients". Physical Review Letters. 106 (18): 180401. arXiv:1102.0081. Bibcode:2011PhRvL.106r0401P. doi:10.1103/physrevlett.106.180401. ISSN 0031-9007. PMID 21635069. S2CID 23180659.
  35. ^ Hohensee, Michael A.; Stanwix, Paul L.; Tobar, Michael E.; Parker, Stephen R.; Phillips, David F.; Walsworth, Ronald L. (5 October 2010). "Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators". Physical Review D. 82 (7): 076001. arXiv:1006.1376. Bibcode:2010PhRvD..82g6001H. doi:10.1103/physrevd.82.076001. ISSN 1550-7998. S2CID 2612817.
  36. ^ a b Bocquet, J.-P.; Moricciani, D.; Bellini, V.; Beretta, M.; Casano, L.; et al. (17 June 2010). "Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons". Physical Review Letters. 104 (24): 241601. arXiv:1005.5230. Bibcode:2010PhRvL.104x1601B. doi:10.1103/physrevlett.104.241601. ISSN 0031-9007. PMID 20867292. S2CID 20890367.
  37. ^ Herrmann, S.; Senger, A.; Möhle, K.; Nagel, M.; Kovalchuk, E. V.; Peters, A. (12 November 2009). "Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level". Physical Review D. 80 (10): 105011. arXiv:1002.1284. Bibcode:2009PhRvD..80j5011H. doi:10.1103/physrevd.80.105011. ISSN 1550-7998. S2CID 118346408.
  38. ^ Tobar, Michael E.; Ivanov, Eugene N.; Stanwix, Paul L.; le Floch, Jean-Michel G.; Hartnett, John G. (22 December 2009). "Rotating odd-parity Lorentz invariance test in electrodynamics". Physical Review D. 80 (12). American Physical Society (APS): 125024. arXiv:0909.2076. Bibcode:2009PhRvD..80l5024T. doi:10.1103/physrevd.80.125024. ISSN 1550-7998. S2CID 119175604.
  39. ^ Eisele, Ch.; Nevsky, A. Yu.; Schiller, S. (25 August 2009). "Laboratory Test of the Isotropy of Light Propagation at the 10−17 Level" (PDF). Physical Review Letters. 103 (9). American Physical Society (APS): 090401. Bibcode:2009PhRvL.103i0401E. doi:10.1103/physrevlett.103.090401. ISSN 0031-9007. PMID 19792767. S2CID 33875626.
  40. ^ Müller, Holger; Stanwix, Paul Louis; Tobar, Michael Edmund; Ivanov, Eugene; Wolf, Peter; Herrmann, Sven; Senger, Alexander; Kovalchuk, Evgeny; Peters, Achim (30 July 2007). "Tests of Relativity by Complementary Rotating Michelson-Morley Experiments". Physical Review Letters. 99 (5): 050401. arXiv:0706.2031. Bibcode:2007PhRvL..99e0401M. doi:10.1103/physrevlett.99.050401. ISSN 0031-9007. PMID 17930733. S2CID 33003084.
  41. ^ Stanwix, Paul L.; Tobar, Michael E.; Wolf, Peter; Locke, Clayton R.; Ivanov, Eugene N. (4 October 2006). "Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators". Physical Review D. 74 (8): 081101(R). arXiv:gr-qc/0609072. Bibcode:2006PhRvD..74h1101S. doi:10.1103/physrevd.74.081101. ISSN 1550-7998. S2CID 3222284.
  42. ^ Wolf, Peter; Bize, Sébastien; Clairon, André; Santarelli, Giorgio; Tobar, Michael E.; Luiten, André N. (15 September 2004). "Improved test of Lorentz invariance in electrodynamics". Physical Review D. 70 (5). American Physical Society (APS): 051902. arXiv:hep-ph/0407232. Bibcode:2004PhRvD..70e1902W. doi:10.1103/physrevd.70.051902. ISSN 1550-7998. S2CID 19178203.
  43. ^ Wolf, Peter; Tobar, Michael E.; Bize, Sébastien; Clairon, André; Luiten, André N.; Santarelli, Giorgio (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance". General Relativity and Gravitation. 36 (10): 2351–2372. arXiv:gr-qc/0401017. Bibcode:2004GReGr..36.2351W. doi:10.1023/b:gerg.0000046188.87741.51. ISSN 0001-7701. S2CID 8799879.
  44. ^ Müller, Holger; Herrmann, Sven; Saenz, Alejandro; Peters, Achim; Lämmerzahl, Claus (24 December 2003). "Optical cavity tests of Lorentz invariance for the electron". Physical Review D. 68 (11): 116006. arXiv:hep-ph/0401016. Bibcode:2003PhRvD..68k6006M. doi:10.1103/physrevd.68.116006. ISSN 0556-2821. S2CID 51302132.
  45. ^ Müller, Holger; Herrmann, Sven; Braxmaier, Claus; Schiller, Stephan; Peters, Achim (10 July 2003). "Modern Michelson-Morley Experiment using Cryogenic Optical Resonators". Physical Review Letters. 91 (2): 020401. arXiv:physics/0305117. Bibcode:2003PhRvL..91b0401M. doi:10.1103/physrevlett.91.020401. ISSN 0031-9007. PMID 12906465. S2CID 15770750.
  46. ^ Lipa, J. A.; Nissen, J. A.; Wang, S.; Stricker, D. A.; Avaloff, D. (12 February 2003). "New Limit on Signals of Lorentz Violation in Electrodynamics". Physical Review Letters. 90 (6): 060403. arXiv:physics/0302093. Bibcode:2003PhRvL..90f0403L. doi:10.1103/physrevlett.90.060403. ISSN 0031-9007. PMID 12633280. S2CID 38353693.
  47. ^ Hohensee, Michael A.; Lehnert, Ralf; Phillips, David F.; Walsworth, Ronald L. (21 August 2009). "Limits on isotropic Lorentz violation in QED from collider physics". Physical Review D. 80 (3): 036010. arXiv:0809.3442. Bibcode:2009PhRvD..80c6010H. doi:10.1103/physrevd.80.036010. ISSN 1550-7998. S2CID 3723253.
  48. ^ Hohensee, Michael A.; Lehnert, Ralf; Phillips, David F.; Walsworth, Ronald L. (1 April 2009). "Particle-Accelerator Constraints on Isotropic Modifications of the Speed of Light". Physical Review Letters. 102 (17): 170402. arXiv:0904.2031. Bibcode:2009PhRvL.102q0402H. doi:10.1103/physrevlett.102.170402. ISSN 0031-9007. PMID 19518765. S2CID 13682668.
  49. ^ Altschul, Brett (14 October 2011). "Bounding Lorentz violation at particle colliders by tracking the motion of charged particles". Physical Review D. 84 (7): 076006. arXiv:1108.3827. Bibcode:2011PhRvD..84g6006A. doi:10.1103/physrevd.84.076006. ISSN 1550-7998. S2CID 118502052.
  50. ^ Reinhardt, Sascha; Saathoff, Guido; Buhr, Henrik; Carlson, Lars A.; Wolf, Andreas; et al. (11 November 2007). "Test of relativistic time dilation with fast optical atomic clocks at different velocities". Nature Physics. 3 (12). Springer Science and Business Media LLC: 861–864. Bibcode:2007NatPh...3..861R. doi:10.1038/nphys778. ISSN 1745-2473.
  51. ^ Klinkhamer, F. R.; Risse, M. (26 June 2008). "Addendum: Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory". Physical Review D. 77 (11): 117901. arXiv:0806.4351. Bibcode:2008PhRvD..77k7901K. doi:10.1103/physrevd.77.117901. ISSN 1550-7998. S2CID 118461658.
  52. ^ Klinkhamer, F. R.; Schreck, M. (24 October 2008). "New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory". Physical Review D. 78 (8): 085026. arXiv:0809.3217. Bibcode:2008PhRvD..78h5026K. doi:10.1103/physrevd.78.085026. ISSN 1550-7998. S2CID 119293488.
  53. ^ Kostelecký, V. Alan; Russell, Neil (10 March 2011). "Data tables for Lorentz and CPT violation". Reviews of Modern Physics. 83 (1). American Physical Society (APS): 11–31. arXiv:0801.0287. Bibcode:2011RvMP...83...11K. doi:10.1103/revmodphys.83.11. ISSN 0034-6861. S2CID 3236027.

lorentz, violating, electrodynamics, searches, lorentz, violation, involving, photons, provide, possible, test, relativity, examples, range, from, modern, versions, classic, michelson, morley, experiment, that, utilize, highly, stable, electromagnetic, resonan. Searches for Lorentz violation involving photons provide one possible test of relativity Examples range from modern versions of the classic Michelson Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources Due to the extreme distances involved astrophysical studies have achieved sensitivities on the order of parts in 1038 Contents 1 Minimal Lorentz violating electrodynamics 2 Nonminimal Lorentz violating electrodynamics 3 Experiments 3 1 Vacuum birefringence 3 2 Vacuum dispersion 3 3 Resonant cavities 3 4 Other experiments 4 See also 5 External links 6 ReferencesMinimal Lorentz violating electrodynamics editThe most general framework for studies of relativity violations is an effective field theory called the Standard Model Extension SME 1 2 3 Lorentz violating operators in the SME are classified by their mass dimension d displaystyle d nbsp To date the most widely studied limit of the SME is the minimal SME 4 which limits attention to operators of renormalizable mass dimension d 3 4 displaystyle d 3 4 nbsp in flat spacetime Within the minimal SME photons are governed by the Lagrangian density L 14FmnFmn 12 kAF kϵklmnAlFmn 14 kF klmnFklFmn displaystyle mathcal L textstyle 1 over 4 F mu nu F mu nu textstyle 1 over 2 k mathrm AF kappa epsilon kappa lambda mu nu A lambda F mu nu textstyle 1 over 4 k mathrm F kappa lambda mu nu F kappa lambda F mu nu nbsp The first term on the right hand side is the conventional Maxwell Lagrangian and gives rise to the usual source free Maxwell equations The next term violates both Lorentz and CPT invariance and is constructed from a dimension d 3 displaystyle d 3 nbsp operator and a constant coefficient for Lorentz violation kAF k displaystyle k mathrm AF kappa nbsp 5 6 The second term introduces Lorentz violation but preserves CPT invariance It consists of a dimension d 4 displaystyle d 4 nbsp operator contracted with constant coefficients for Lorentz violation kF klmn displaystyle k mathrm F kappa lambda mu nu nbsp 7 There are a total of four independent kAF k displaystyle k mathrm AF kappa nbsp coefficients and nineteen kF klmn displaystyle k mathrm F kappa lambda mu nu nbsp coefficients Both Lorentz violating terms are invariant under observer Lorentz transformations implying that the physics in independent of observer or coordinate choice However the coefficient tensors kAF k displaystyle k mathrm AF kappa nbsp and kF klmn displaystyle k mathrm F kappa lambda mu nu nbsp are outside the control of experimenters and can be viewed as constant background fields that fill the entire Universe introducing directionality to the otherwise isotropic spacetime Photons interact with these background fields and experience frame dependent effects violating Lorentz invariance The mathematics describing Lorentz violation in photons is similar to that of conventional electromagnetism in dielectrics As a result many of the effects of Lorentz violation are also seen in light passing through transparent materials These include changes in the speed that can depend on frequency polarization and direction of propagation Consequently Lorentz violation can introduce dispersion in light propagating in empty space It can also introduce birefringence an effect seen in crystals such as calcite The best constraints on Lorentz violation come from constraints on birefringence in light from astrophysical sources 8 Nonminimal Lorentz violating electrodynamics editThe full SME incorporates general relativity and curved spacetimes It also includes operators of arbitrary nonrenormalizable dimension d 5 displaystyle d geq 5 nbsp The general gauge invariant photon sector was constructed in 2009 by Kostelecky and Mewes 9 It was shown that the more general theory could be written in a form similar to the minimal case L 14FmnFmn 12ϵklmnAl k AF kFmn 14Fkl k F klmnFmn displaystyle mathcal L textstyle 1 over 4 F mu nu F mu nu textstyle 1 over 2 epsilon kappa lambda mu nu A lambda hat k mathrm AF kappa F mu nu textstyle 1 over 4 F kappa lambda hat k mathrm F kappa lambda mu nu F mu nu nbsp where the constant coefficients are promoted to operators k AF k displaystyle hat k mathrm AF kappa nbsp and k F klmn displaystyle hat k mathrm F kappa lambda mu nu nbsp which take the form of power series in spacetime derivatives The k AF k displaystyle hat k mathrm AF kappa nbsp operator contains all the CPT odd d 3 5 7 displaystyle d 3 5 7 ldots nbsp terms while the CPT even terms with d 4 6 8 displaystyle d 4 6 8 ldots nbsp are in k F klmn displaystyle hat k mathrm F kappa lambda mu nu nbsp While the nonrenormalizable terms give many of the same types of signatures as the d 3 4 displaystyle d 3 4 nbsp case the effects generally grow faster with frequency due to the additional derivatives More complex directional dependence typically also arises Vacuum dispersion of light without birefringence is another feature that is found which does not arise in the minimal SME 9 Experiments editVacuum birefringence edit Birefringence of light occurs when the solutions to the modified Lorentz violating Maxwell equations give rise to polarization dependent speeds 9 10 11 Light propagates as the combination of two orthogonal polarizations that propagate at slightly different phase velocities A gradual change in the relative phase results as one of the polarizations outpaces the other The total polarization the sum of the two evolves as the light propagates in contrast to the Lorentz invariant case where the polarization of light remains fixed when propagating in a vacuum In the CPT odd case d odd birefringence causes a simple rotation of the polarization The CPT even case d even gives more complicated behavior as linearly polarized light evolves into elliptically polarizations 9 The quantity determining the size of the effect is the change in relative phase Dϕ 2pDvt l displaystyle Delta phi 2 pi Delta v t lambda nbsp where Dv displaystyle Delta v nbsp is the difference in phase speeds t displaystyle t nbsp is the propagation time and l displaystyle lambda nbsp is the wavelength For d gt 3 displaystyle d gt 3 nbsp the highest sensitivities are achieved by considering high energy photons from distant sources giving large values to the ratio t l displaystyle t lambda nbsp that enhance the sensitivity to Dv displaystyle Delta v nbsp The best constraints on vacuum birefringence from d gt 3 displaystyle d gt 3 nbsp Lorentz violation come from polarimetry studies of gamma ray bursts GRB 11 12 13 14 For example sensitivities of 10 38 to the d 4 displaystyle d 4 nbsp coefficients for Lorentz violation have been achieved For d 3 displaystyle d 3 nbsp the velocity difference Dv displaystyle Delta v nbsp is proportional to the wavelength canceling the l displaystyle lambda nbsp dependence in the phase shift implying there is no benefit to considering higher energies As a result maximum sensitivity is achieved by studying the most distant source available the cosmic microwave background CMB Constraints on d 3 displaystyle d 3 nbsp coefficients for Lorentz violation from the CMB currently stand at around 10 43 GeV 15 16 17 18 19 20 21 22 23 24 25 26 27 Vacuum dispersion edit Lorentz violation with d 4 displaystyle d neq 4 nbsp can lead to frequency dependent light speeds 9 To search for this effect researchers compare the arrival times of photons from distant sources of pulsed radiation such as GRB or pulsars Assuming photons of all energies are produced within a narrow window of time dispersion would cause higher energy photons to run ahead or behind lower energy photons leading to otherwise unexplained energy dependence in the arrival time For two photons of two different energies the difference in arrival times is approximately given by the ratio Dt DvL c2 displaystyle Delta t Delta vL c 2 nbsp where Dv displaystyle Delta v nbsp is the difference in the group velocity and L displaystyle L nbsp is the distance traveled Sensitivity to Lorentz violation is then increased by considering very distant sources with rapidly changing time profiles The speed difference Dv displaystyle Delta v nbsp grows as Ed 4 displaystyle E d 4 nbsp so higher energy sources provide better sensitivity to effects from d gt 4 displaystyle d gt 4 nbsp Lorentz violation making GRB an ideal source 9 28 29 30 31 32 Dispersion may or may not be accompanied by birefringence Polarization studies typically achieved sensitivities well beyond those achievable through dispersion As a result most searches for dispersion focus on Lorentz violation that leads to dispersion but not birefringence The SME shows that dispersion without birefringence can only arise from operators of even dimension d displaystyle d nbsp Consequently the energy dependence in the light speed from nonbirefringent Lorentz violation can be quadratic E2 displaystyle E 2 nbsp or quartic E4 displaystyle E 4 nbsp or any other even power of energy Odd powers of energy such as linear E displaystyle E nbsp and cubic E3 displaystyle E 3 nbsp do not arise in effective field theory Resonant cavities edit While extreme sensitivity to Lorentz violation is achieved in astrophysical studies most forms of Lorentz violation have little to no effect on light propagating in a vacuum These types of violations cannot be tested using astrophysical tests but can be sought in laboratory based experiments involving electromagnetic fields The primary examples are the modern Michelson Morley experiments based on electromagnetic resonant cavities which have achieved sensitivities on the order of parts in 1018 to Lorentz violation 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Resonant cavities support electromagnetic standing waves that oscillate at well defined frequencies determined by the Maxwell equations and the geometry of the cavity The Lorentz violating modifications to the Maxwell equations lead to tiny shifts in the resonant frequencies Experimenters search for these tiny shifts by comparing two or more cavities at different orientations Since rotation symmetry violation is a form of Lorentz violation the resonant frequencies may depend on the orientation of the cavity So two cavities with different orientations may give different frequencies even if they are otherwise identical A typical experiment compares the frequencies of two identical cavities oriented at right angles in the laboratory To distinguish between frequency differences of more conventional origins such as small defects in the cavities and Lorentz violation the cavities are typically placed on a turntable and rotated in the laboratory The orientation dependence from Lorentz violation would cause the frequency difference to change as the cavities rotate Several classes of cavity experiment exist with different sensitivities to different types of Lorentz violation Microwave and optical cavities have been used to constrain d 4 displaystyle d 4 nbsp violations Microwave experiments have also placed some bounds on nonminimal d 6 displaystyle d 6 nbsp and d 8 displaystyle d 8 nbsp violations However for d gt 4 displaystyle d gt 4 nbsp the effects of Lorentz violation grow with frequency so optical cavities provide better sensitivity to nonrenormalizable violations all else being equal The geometrical symmetries of the cavity also affect the sensitivity since parity symmetric cavities are only directly sensitive to parity even coefficients for Lorentz violation Ring resonators provide a complementary class of cavity experiment that can test parity odd violations In a ring resonator two modes propagating in opposites directions in the same ring are compared rather than modes in two different cavities Other experiments edit A number of other searches for Lorentz violation in photons have been performed that do not fall under the above categories These include accelerator based experiments 47 48 36 49 atomic clocks 50 and threshold analyses 9 51 52 The results of experimental searches of Lorentz invariance violation in the photon sector of the SME are summarized in the Data Tables for Lorentz and CPT violation 53 See also editStandard Model Extension Lorentz violating neutrino oscillations Antimatter tests of Lorentz violation Bumblebee models Tests of special relativity Test theories of special relativityExternal links editBackground information on Lorentz and CPT violation Data Tables for Lorentz and CPT ViolationReferences edit Colladay Don Kostelecky V Alan 1 May 1997 CPT violation and the standard model Physical Review D 55 11 6760 6774 arXiv hep ph 9703464 Bibcode 1997PhRvD 55 6760C doi 10 1103 physrevd 55 6760 ISSN 0556 2821 S2CID 7651433 Colladay D Kostelecky V Alan 26 October 1998 Lorentz violating extension of the standard model Physical Review D 58 11 116002 arXiv hep ph 9809521 Bibcode 1998PhRvD 58k6002C doi 10 1103 physrevd 58 116002 hdl 2022 18992 ISSN 0556 2821 S2CID 4013391 Kostelecky V Alan 17 May 2004 Gravity Lorentz violation and the standard model Physical Review D 69 10 105009 arXiv hep th 0312310 Bibcode 2004PhRvD 69j5009K doi 10 1103 physrevd 69 105009 hdl 2022 18692 ISSN 1550 7998 S2CID 55185765 Kostelecky V Alan Mewes Matthew 23 September 2002 Signals for Lorentz violation in electrodynamics Physical Review D 66 5 056005 arXiv hep ph 0205211 Bibcode 2002PhRvD 66e6005K doi 10 1103 physrevd 66 056005 hdl 2022 19024 ISSN 0556 2821 S2CID 21309077 Carroll Sean M Field George B Jackiw Roman 15 February 1990 Limits on a Lorentz and parity violating modification of electrodynamics Physical Review D 41 4 American Physical Society APS 1231 1240 Bibcode 1990PhRvD 41 1231C doi 10 1103 physrevd 41 1231 ISSN 0556 2821 PMID 10012457 Jackiw R Kostelecky V Alan 3 May 1999 Radiatively Induced Lorentz and CPT Violation in Electrodynamics Physical Review Letters 82 18 3572 3575 arXiv hep ph 9901358 Bibcode 1999PhRvL 82 3572J doi 10 1103 physrevlett 82 3572 hdl 2022 18677 ISSN 0031 9007 S2CID 119471418 Kostelecky V Alan Mewes Matthew 29 November 2001 Cosmological Constraints on Lorentz Violation in Electrodynamics Physical Review Letters 87 25 251304 arXiv hep ph 0111026 Bibcode 2001PhRvL 87y1304K doi 10 1103 physrevlett 87 251304 hdl 2022 19023 ISSN 0031 9007 PMID 11736558 S2CID 11401195 Kostelecky V Alan Mewes Matthew 13 November 2008 Astrophysical tests of Lorentz and CPT violation with photons The Astrophysical Journal 689 1 IOP Publishing L1 L4 arXiv 0809 2846 Bibcode 2008ApJ 689L 1K doi 10 1086 595815 ISSN 0004 637X a b c d e f g Kostelecky V Alan Mewes Matthew 29 July 2009 Electrodynamics with Lorentz violating operators of arbitrary dimension Physical Review D 80 1 015020 arXiv 0905 0031 Bibcode 2009PhRvD 80a5020K doi 10 1103 physrevd 80 015020 ISSN 1550 7998 S2CID 119241509 Carroll Sean M Field George B 29 September 1997 Is there evidence for cosmic anisotropy in the polarization of distant radio sources Physical Review Letters 79 13 2394 2397 arXiv astro ph 9704263 Bibcode 1997PhRvL 79 2394C doi 10 1103 physrevlett 79 2394 ISSN 0031 9007 S2CID 13943605 a b Kostelecky V Alan Mewes Matthew 14 May 2013 Constraints on Relativity Violations from Gamma Ray Bursts Physical Review Letters 110 20 201601 arXiv 1301 5367 Bibcode 2013PhRvL 110t1601K doi 10 1103 physrevlett 110 201601 ISSN 0031 9007 PMID 25167393 Stecker Floyd W 2011 A new limit on Planck scale Lorentz violation from g ray burst polarization Astroparticle Physics 35 2 95 97 arXiv 1102 2784 Bibcode 2011APh 35 95S doi 10 1016 j astropartphys 2011 06 007 ISSN 0927 6505 S2CID 119280055 Laurent P Gotz D Binetruy P Covino S Fernandez Soto A 28 June 2011 Constraints on Lorentz invariance violation using integral IBIS observations of GRB041219A Physical Review D 83 12 American Physical Society APS 121301 R arXiv 1106 1068 Bibcode 2011PhRvD 83l1301L doi 10 1103 physrevd 83 121301 ISSN 1550 7998 S2CID 53603505 Toma Kenji Mukohyama Shinji Yonetoku Daisuke Murakami Toshio Gunji Shuichi Mihara Tatehiro et al 13 December 2012 Strict limit on CPT violation from polarization of g ray bursts Physical Review Letters 109 24 American Physical Society APS 241104 arXiv 1208 5288 Bibcode 2012PhRvL 109x1104T doi 10 1103 physrevlett 109 241104 ISSN 0031 9007 PMID 23368301 S2CID 42198517 Kostelecky V Alan Mewes Matthew 2 October 2006 Sensitive polarimetric search for relativity violations in gamma ray bursts Physical Review Letters 97 14 140401 arXiv hep ph 0607084 Bibcode 2006PhRvL 97n0401K doi 10 1103 physrevlett 97 140401 hdl 2022 19617 ISSN 0031 9007 PMID 17155222 S2CID 1451493 Kostelecky V Alan Mewes Matthew 3 July 2007 Lorentz Violating Electrodynamics and the Cosmic Microwave Background Physical Review Letters 99 1 011601 arXiv astro ph 0702379 Bibcode 2007PhRvL 99a1601K doi 10 1103 physrevlett 99 011601 hdl 2022 18696 ISSN 0031 9007 PMID 17678146 S2CID 30064523 Komatsu E Smith K M Dunkley J Bennett C L Gold B Hinshaw G Jarosik N Larson D Nolta M R Page L Spergel D N Halpern M Hill R S Kogut A Limon M Meyer S S Odegard N Tucker G S Weiland J L Wollack E Wright E L 11 January 2011 Seven year Wilkinson Microwave Anisotropy Probe WMAP observations Cosmological interpretation The Astrophysical Journal Supplement Series 192 2 18 arXiv 1001 4538 Bibcode 2011ApJS 192 18K doi 10 1088 0067 0049 192 2 18 ISSN 0067 0049 Xia Jun Qing Li Hong Zhang Xinmin 2010 Probing CPT violation with CMB polarization measurements Physics Letters B 687 2 3 129 132 arXiv 0908 1876 Bibcode 2010PhLB 687 129X doi 10 1016 j physletb 2010 03 038 ISSN 0370 2693 Brown M L et al QUaD Collaboration 2009 Improved measurements of the temperature and polarization of the CMB from QUaD Astrophys J 705 978 arXiv 0906 1003 doi 10 1088 0004 637X 705 1 978 S2CID 1918381 Pagano Luca de Bernardis Paolo de Troia Grazia Gubitosi Giulia Masi Silvia Melchiorri Alessandro Natoli Paolo Piacentini Francesco Polenta Gianluca 24 August 2009 CMB polarization systematics cosmological birefringence and the gravitational waves background Physical Review D 80 4 043522 arXiv 0905 1651 Bibcode 2009PhRvD 80d3522P doi 10 1103 physrevd 80 043522 ISSN 1550 7998 S2CID 118421845 Wu E Y S Ade P Bock J Bowden M Brown M L Cahill G et al 21 April 2009 Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter PDF Physical Review Letters 102 16 161302 arXiv 0811 0618 Bibcode 2009PhRvL 102p1302W doi 10 1103 physrevlett 102 161302 ISSN 0031 9007 PMID 19518694 S2CID 84181915 Kahniashvili Tina Durrer Ruth Maravin Yurii 22 December 2008 Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data Physical Review D 78 12 123009 arXiv 0807 2593 Bibcode 2008PhRvD 78l3009K doi 10 1103 physrevd 78 123009 ISSN 1550 7998 Komatsu E Dunkley J Nolta M R Bennett C L Gold B Hinshaw G et al 1 January 2009 Five year Wilkinson Microwave Anisotropy Probe observations Cosmological interpretation The Astrophysical Journal Supplement Series 180 2 330 376 arXiv 0803 0547 Bibcode 2009ApJS 180 330K doi 10 1088 0067 0049 180 2 330 ISSN 0067 0049 S2CID 119290314 Xia J Q Li H Wang X Zhang X 19 March 2008 Testing CPT symmetry with CMB measurements Astronomy amp Astrophysics 483 3 715 718 arXiv 0710 3325 Bibcode 2008A amp A 483 715X doi 10 1051 0004 6361 200809410 ISSN 0004 6361 S2CID 6795044 Cabella Paolo Natoli Paolo Silk Joseph 28 December 2007 Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data A wavelet analysis Physical Review D 76 12 123014 arXiv 0705 0810 Bibcode 2007PhRvD 76l3014C doi 10 1103 physrevd 76 123014 ISSN 1550 7998 S2CID 118717161 Feng Bo Li Mingzhe Xia Jun Qing Chen Xuelei Zhang Xinmin 7 June 2006 Searching for CPT violation with cosmic microwave background data from WMAP and Boomerang Physical Review Letters 96 22 221302 arXiv astro ph 0601095 Bibcode 2006PhRvL 96v1302F doi 10 1103 physrevlett 96 221302 ISSN 0031 9007 PMID 16803298 S2CID 29494306 Gubitosi Giulia Pagano Luca Amelino Camelia Giovanni Melchiorri Alessandro Cooray Asantha 17 August 2009 A constraint on Planck scale modifications to electrodynamics with CMB polarization data Journal of Cosmology and Astroparticle Physics 2009 8 021 arXiv 0904 3201 Bibcode 2009JCAP 08 021G doi 10 1088 1475 7516 2009 08 021 ISSN 1475 7516 S2CID 18811259 Vasileiou V Jacholkowska A Piron F Bolmont J Couturier C Granot J et al 4 June 2013 Constraints on Lorentz invariance violation fromFermi Large Area Telescope observations of gamma ray bursts Physical Review D 87 12 American Physical Society APS 122001 arXiv 1305 3463 Bibcode 2013PhRvD 87l2001V doi 10 1103 physrevd 87 122001 ISSN 1550 7998 S2CID 119222087 Abdo A A et al Fermi LAT and GBM Collaborations 2009 Fermi observations of high energy gamma ray emission from GRB 080916C Science 323 5922 1688 93 Bibcode 2009Sci 323 1688A doi 10 1126 science 1169101 OSTI 1357451 PMID 19228997 S2CID 7821247 Aharonian F Akhperjanian A G Barres de Almeida U Bazer Bachi A R Becherini Y Behera B et al 22 October 2008 Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155 304 Physical Review Letters 101 17 170402 arXiv 0810 3475 Bibcode 2008PhRvL 101q0402A doi 10 1103 physrevlett 101 170402 ISSN 0031 9007 PMID 18999724 S2CID 15789937 Albert J Aliu E Anderhub H Antonelli L A Antoranz P et al 2008 Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope Physics Letters B 668 4 253 257 arXiv 0708 2889 Bibcode 2008PhLB 668 253M doi 10 1016 j physletb 2008 08 053 ISSN 0370 2693 S2CID 5103618 Boggs Steven E Wunderer C B Hurley K Coburn W 20 July 2004 Testing Lorentz Invariance with GRB 021206 The Astrophysical Journal 611 2 IOP Publishing L77 L80 arXiv astro ph 0310307 Bibcode 2004ApJ 611L 77B doi 10 1086 423933 ISSN 0004 637X S2CID 15649601 Baynes Fred N Tobar Michael E Luiten Andre N 26 June 2012 Oscillating Test of the Isotropic Shift of the Speed of Light Physical Review Letters 108 26 American Physical Society APS 260801 Bibcode 2012PhRvL 108z0801B doi 10 1103 physrevlett 108 260801 ISSN 0031 9007 PMID 23004951 Parker Stephen R Mewes Matthew Stanwix Paul L Tobar Michael E 3 May 2011 Cavity Bounds on Higher Order Lorentz Violating Coefficients Physical Review Letters 106 18 180401 arXiv 1102 0081 Bibcode 2011PhRvL 106r0401P doi 10 1103 physrevlett 106 180401 ISSN 0031 9007 PMID 21635069 S2CID 23180659 Hohensee Michael A Stanwix Paul L Tobar Michael E Parker Stephen R Phillips David F Walsworth Ronald L 5 October 2010 Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators Physical Review D 82 7 076001 arXiv 1006 1376 Bibcode 2010PhRvD 82g6001H doi 10 1103 physrevd 82 076001 ISSN 1550 7998 S2CID 2612817 a b Bocquet J P Moricciani D Bellini V Beretta M Casano L et al 17 June 2010 Limits on Light Speed Anisotropies from Compton Scattering of High Energy Electrons Physical Review Letters 104 24 241601 arXiv 1005 5230 Bibcode 2010PhRvL 104x1601B doi 10 1103 physrevlett 104 241601 ISSN 0031 9007 PMID 20867292 S2CID 20890367 Herrmann S Senger A Mohle K Nagel M Kovalchuk E V Peters A 12 November 2009 Rotating optical cavity experiment testing Lorentz invariance at the 10 17 level Physical Review D 80 10 105011 arXiv 1002 1284 Bibcode 2009PhRvD 80j5011H doi 10 1103 physrevd 80 105011 ISSN 1550 7998 S2CID 118346408 Tobar Michael E Ivanov Eugene N Stanwix Paul L le Floch Jean Michel G Hartnett John G 22 December 2009 Rotating odd parity Lorentz invariance test in electrodynamics Physical Review D 80 12 American Physical Society APS 125024 arXiv 0909 2076 Bibcode 2009PhRvD 80l5024T doi 10 1103 physrevd 80 125024 ISSN 1550 7998 S2CID 119175604 Eisele Ch Nevsky A Yu Schiller S 25 August 2009 Laboratory Test of the Isotropy of Light Propagation at the 10 17 Level PDF Physical Review Letters 103 9 American Physical Society APS 090401 Bibcode 2009PhRvL 103i0401E doi 10 1103 physrevlett 103 090401 ISSN 0031 9007 PMID 19792767 S2CID 33875626 Muller Holger Stanwix Paul Louis Tobar Michael Edmund Ivanov Eugene Wolf Peter Herrmann Sven Senger Alexander Kovalchuk Evgeny Peters Achim 30 July 2007 Tests of Relativity by Complementary Rotating Michelson Morley Experiments Physical Review Letters 99 5 050401 arXiv 0706 2031 Bibcode 2007PhRvL 99e0401M doi 10 1103 physrevlett 99 050401 ISSN 0031 9007 PMID 17930733 S2CID 33003084 Stanwix Paul L Tobar Michael E Wolf Peter Locke Clayton R Ivanov Eugene N 4 October 2006 Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators Physical Review D 74 8 081101 R arXiv gr qc 0609072 Bibcode 2006PhRvD 74h1101S doi 10 1103 physrevd 74 081101 ISSN 1550 7998 S2CID 3222284 Wolf Peter Bize Sebastien Clairon Andre Santarelli Giorgio Tobar Michael E Luiten Andre N 15 September 2004 Improved test of Lorentz invariance in electrodynamics Physical Review D 70 5 American Physical Society APS 051902 arXiv hep ph 0407232 Bibcode 2004PhRvD 70e1902W doi 10 1103 physrevd 70 051902 ISSN 1550 7998 S2CID 19178203 Wolf Peter Tobar Michael E Bize Sebastien Clairon Andre Luiten Andre N Santarelli Giorgio 2004 Whispering Gallery Resonators and Tests of Lorentz Invariance General Relativity and Gravitation 36 10 2351 2372 arXiv gr qc 0401017 Bibcode 2004GReGr 36 2351W doi 10 1023 b gerg 0000046188 87741 51 ISSN 0001 7701 S2CID 8799879 Muller Holger Herrmann Sven Saenz Alejandro Peters Achim Lammerzahl Claus 24 December 2003 Optical cavity tests of Lorentz invariance for the electron Physical Review D 68 11 116006 arXiv hep ph 0401016 Bibcode 2003PhRvD 68k6006M doi 10 1103 physrevd 68 116006 ISSN 0556 2821 S2CID 51302132 Muller Holger Herrmann Sven Braxmaier Claus Schiller Stephan Peters Achim 10 July 2003 Modern Michelson Morley Experiment using Cryogenic Optical Resonators Physical Review Letters 91 2 020401 arXiv physics 0305117 Bibcode 2003PhRvL 91b0401M doi 10 1103 physrevlett 91 020401 ISSN 0031 9007 PMID 12906465 S2CID 15770750 Lipa J A Nissen J A Wang S Stricker D A Avaloff D 12 February 2003 New Limit on Signals of Lorentz Violation in Electrodynamics Physical Review Letters 90 6 060403 arXiv physics 0302093 Bibcode 2003PhRvL 90f0403L doi 10 1103 physrevlett 90 060403 ISSN 0031 9007 PMID 12633280 S2CID 38353693 Hohensee Michael A Lehnert Ralf Phillips David F Walsworth Ronald L 21 August 2009 Limits on isotropic Lorentz violation in QED from collider physics Physical Review D 80 3 036010 arXiv 0809 3442 Bibcode 2009PhRvD 80c6010H doi 10 1103 physrevd 80 036010 ISSN 1550 7998 S2CID 3723253 Hohensee Michael A Lehnert Ralf Phillips David F Walsworth Ronald L 1 April 2009 Particle Accelerator Constraints on Isotropic Modifications of the Speed of Light Physical Review Letters 102 17 170402 arXiv 0904 2031 Bibcode 2009PhRvL 102q0402H doi 10 1103 physrevlett 102 170402 ISSN 0031 9007 PMID 19518765 S2CID 13682668 Altschul Brett 14 October 2011 Bounding Lorentz violation at particle colliders by tracking the motion of charged particles Physical Review D 84 7 076006 arXiv 1108 3827 Bibcode 2011PhRvD 84g6006A doi 10 1103 physrevd 84 076006 ISSN 1550 7998 S2CID 118502052 Reinhardt Sascha Saathoff Guido Buhr Henrik Carlson Lars A Wolf Andreas et al 11 November 2007 Test of relativistic time dilation with fast optical atomic clocks at different velocities Nature Physics 3 12 Springer Science and Business Media LLC 861 864 Bibcode 2007NatPh 3 861R doi 10 1038 nphys778 ISSN 1745 2473 Klinkhamer F R Risse M 26 June 2008 Addendum Ultrahigh energy cosmic ray bounds on nonbirefringent modified Maxwell theory Physical Review D 77 11 117901 arXiv 0806 4351 Bibcode 2008PhRvD 77k7901K doi 10 1103 physrevd 77 117901 ISSN 1550 7998 S2CID 118461658 Klinkhamer F R Schreck M 24 October 2008 New two sided bound on the isotropic Lorentz violating parameter of modified Maxwell theory Physical Review D 78 8 085026 arXiv 0809 3217 Bibcode 2008PhRvD 78h5026K doi 10 1103 physrevd 78 085026 ISSN 1550 7998 S2CID 119293488 Kostelecky V Alan Russell Neil 10 March 2011 Data tables for Lorentz and CPT violation Reviews of Modern Physics 83 1 American Physical Society APS 11 31 arXiv 0801 0287 Bibcode 2011RvMP 83 11K doi 10 1103 revmodphys 83 11 ISSN 0034 6861 S2CID 3236027 Retrieved from https en wikipedia org w index php title Lorentz violating electrodynamics amp oldid 1193885084, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.