fbpx
Wikipedia

Leopoldt's conjecture

In algebraic number theory, Leopoldt's conjecture, introduced by H.-W. Leopoldt (1962, 1975), states that the p-adic regulator of a number field does not vanish. The p-adic regulator is an analogue of the usual regulator defined using p-adic logarithms instead of the usual logarithms, introduced by H.-W. Leopoldt (1962).

Leopoldt proposed a definition of a p-adic regulator Rp attached to K and a prime number p. The definition of Rp uses an appropriate determinant with entries the p-adic logarithm of a generating set of units of K (up to torsion), in the manner of the usual regulator. The conjecture, which for general K is still open As of 2009, then comes out as the statement that Rp is not zero.

Formulation edit

Let K be a number field and for each prime P of K above some fixed rational prime p, let UP denote the local units at P and let U1,P denote the subgroup of principal units in UP. Set

 

Then let E1 denote the set of global units ε that map to U1 via the diagonal embedding of the global units in E.

Since   is a finite-index subgroup of the global units, it is an abelian group of rank  , where   is the number of real embeddings of   and   the number of pairs of complex embeddings. Leopoldt's conjecture states that the  -module rank of the closure of   embedded diagonally in   is also  

Leopoldt's conjecture is known in the special case where   is an abelian extension of   or an abelian extension of an imaginary quadratic number field: Ax (1965) reduced the abelian case to a p-adic version of Baker's theorem, which was proved shortly afterwards by Brumer (1967). Mihăilescu (2009, 2011) has announced a proof of Leopoldt's conjecture for all CM-extensions of  .

Colmez (1988) expressed the residue of the p-adic Dedekind zeta function of a totally real field at s = 1 in terms of the p-adic regulator. As a consequence, Leopoldt's conjecture for those fields is equivalent to their p-adic Dedekind zeta functions having a simple pole at s = 1.

References edit

  • Ax, James (1965), "On the units of an algebraic number field", Illinois Journal of Mathematics, 9 (4): 584–589, doi:10.1215/ijm/1256059299, ISSN 0019-2082, MR 0181630, Zbl 0132.28303
  • Brumer, Armand (1967), "On the units of algebraic number fields", Mathematika, 14 (2): 121–124, doi:10.1112/S0025579300003703, ISSN 0025-5793, MR 0220694, Zbl 0171.01105
  • Colmez, Pierre (1988), "Résidu en s=1 des fonctions zêta p-adiques", Inventiones Mathematicae, 91 (2): 371–389, Bibcode:1988InMat..91..371C, doi:10.1007/BF01389373, ISSN 0020-9910, MR 0922806, S2CID 118434651, Zbl 0651.12010
  • Kolster, M. (2001) [1994], "Leopoldt's conjecture", Encyclopedia of Mathematics, EMS Press
  • Leopoldt, Heinrich-Wolfgang (1962), "Zur Arithmetik in abelschen Zahlkörpern", Journal für die reine und angewandte Mathematik, 1962 (209): 54–71, doi:10.1515/crll.1962.209.54, ISSN 0075-4102, MR 0139602, S2CID 117123955, Zbl 0204.07101
  • Leopoldt, H. W. (1975), "Eine p-adische Theorie der Zetawerte II", Journal für die reine und angewandte Mathematik, 1975 (274/275): 224–239, doi:10.1515/crll.1975.274-275.224, S2CID 118013793, Zbl 0309.12009.
  • Mihăilescu, Preda (2009), The T and T* components of Λ - modules and Leopoldt's conjecture, arXiv:0905.1274, Bibcode:2009arXiv0905.1274M
  • Mihăilescu, Preda (2011), Leopoldt's Conjecture for CM fields, arXiv:1105.4544, Bibcode:2011arXiv1105.4544M
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323 (Second ed.), Berlin: Springer-Verlag, ISBN 978-3-540-37888-4, MR 2392026, Zbl 1136.11001
  • Washington, Lawrence C. (1997), Introduction to Cyclotomic Fields (Second ed.), New York: Springer, ISBN 0-387-94762-0, Zbl 0966.11047.

leopoldt, conjecture, algebraic, number, theory, introduced, leopoldt, 1962, 1975, states, that, adic, regulator, number, field, does, vanish, adic, regulator, analogue, usual, regulator, defined, using, adic, logarithms, instead, usual, logarithms, introduced. In algebraic number theory Leopoldt s conjecture introduced by H W Leopoldt 1962 1975 states that the p adic regulator of a number field does not vanish The p adic regulator is an analogue of the usual regulator defined using p adic logarithms instead of the usual logarithms introduced by H W Leopoldt 1962 Leopoldt proposed a definition of a p adic regulator Rp attached to K and a prime number p The definition of Rp uses an appropriate determinant with entries the p adic logarithm of a generating set of units of K up to torsion in the manner of the usual regulator The conjecture which for general K is still open As of 2009 update then comes out as the statement that Rp is not zero Formulation editLet K be a number field and for each prime P of K above some fixed rational prime p let UP denote the local units at P and let U1 P denote the subgroup of principal units in UP Set U 1 P p U 1 P displaystyle U 1 prod P p U 1 P nbsp Then let E1 denote the set of global units e that map to U1 via the diagonal embedding of the global units in E Since E 1 displaystyle E 1 nbsp is a finite index subgroup of the global units it is an abelian group of rank r 1 r 2 1 displaystyle r 1 r 2 1 nbsp where r 1 displaystyle r 1 nbsp is the number of real embeddings of K displaystyle K nbsp and r 2 displaystyle r 2 nbsp the number of pairs of complex embeddings Leopoldt s conjecture states that the Z p displaystyle mathbb Z p nbsp module rank of the closure of E 1 displaystyle E 1 nbsp embedded diagonally in U 1 displaystyle U 1 nbsp is also r 1 r 2 1 displaystyle r 1 r 2 1 nbsp Leopoldt s conjecture is known in the special case where K displaystyle K nbsp is an abelian extension of Q displaystyle mathbb Q nbsp or an abelian extension of an imaginary quadratic number field Ax 1965 reduced the abelian case to a p adic version of Baker s theorem which was proved shortly afterwards by Brumer 1967 Mihăilescu 2009 2011 has announced a proof of Leopoldt s conjecture for all CM extensions of Q displaystyle mathbb Q nbsp Colmez 1988 expressed the residue of the p adic Dedekind zeta function of a totally real field at s 1 in terms of the p adic regulator As a consequence Leopoldt s conjecture for those fields is equivalent to their p adic Dedekind zeta functions having a simple pole at s 1 References editAx James 1965 On the units of an algebraic number field Illinois Journal of Mathematics 9 4 584 589 doi 10 1215 ijm 1256059299 ISSN 0019 2082 MR 0181630 Zbl 0132 28303 Brumer Armand 1967 On the units of algebraic number fields Mathematika 14 2 121 124 doi 10 1112 S0025579300003703 ISSN 0025 5793 MR 0220694 Zbl 0171 01105 Colmez Pierre 1988 Residu en s 1 des fonctions zeta p adiques Inventiones Mathematicae 91 2 371 389 Bibcode 1988InMat 91 371C doi 10 1007 BF01389373 ISSN 0020 9910 MR 0922806 S2CID 118434651 Zbl 0651 12010 Kolster M 2001 1994 Leopoldt s conjecture Encyclopedia of Mathematics EMS Press Leopoldt Heinrich Wolfgang 1962 Zur Arithmetik in abelschen Zahlkorpern Journal fur die reine und angewandte Mathematik 1962 209 54 71 doi 10 1515 crll 1962 209 54 ISSN 0075 4102 MR 0139602 S2CID 117123955 Zbl 0204 07101 Leopoldt H W 1975 Eine p adische Theorie der Zetawerte II Journal fur die reine und angewandte Mathematik 1975 274 275 224 239 doi 10 1515 crll 1975 274 275 224 S2CID 118013793 Zbl 0309 12009 Mihăilescu Preda 2009 TheTandT components of L modules and Leopoldt s conjecture arXiv 0905 1274 Bibcode 2009arXiv0905 1274M Mihăilescu Preda 2011 Leopoldt s Conjecture for CM fields arXiv 1105 4544 Bibcode 2011arXiv1105 4544M Neukirch Jurgen Schmidt Alexander Wingberg Kay 2008 Cohomology of Number Fields Grundlehren der Mathematischen Wissenschaften vol 323 Second ed Berlin Springer Verlag ISBN 978 3 540 37888 4 MR 2392026 Zbl 1136 11001 Washington Lawrence C 1997 Introduction to Cyclotomic Fields Second ed New York Springer ISBN 0 387 94762 0 Zbl 0966 11047 Retrieved from https en wikipedia org w index php title Leopoldt 27s conjecture amp oldid 1136247182, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.