fbpx
Wikipedia

Klein polyhedron

In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of continued fractions to higher dimensions.

Definition edit

Let   be a closed simplicial cone in Euclidean space  . The Klein polyhedron of   is the convex hull of the non-zero points of  .

Relation to continued fractions edit

Suppose   is an irrational number. In  , the cones generated by   and by   give rise to two Klein polyhedra, each of which is bounded by a sequence of adjoining line segments. Define the integer length of a line segment to be one less than the size of its intersection with   Then the integer lengths of the edges of these two Klein polyhedra encode the continued-fraction expansion of  , one matching the even terms and the other matching the odd terms.

Graphs associated with the Klein polyhedron edit

Suppose   is generated by a basis   of   (so that  ), and let   be the dual basis (so that  ). Write   for the line generated by the vector  , and   for the hyperplane orthogonal to  .

Call the vector   irrational if  ; and call the cone   irrational if all the vectors   and   are irrational.

The boundary   of a Klein polyhedron is called a sail. Associated with the sail   of an irrational cone are two graphs:

  • the graph   whose vertices are vertices of  , two vertices being joined if they are endpoints of a (one-dimensional) edge of  ;
  • the graph   whose vertices are  -dimensional faces (chambers) of  , two chambers being joined if they share an  -dimensional face.

Both of these graphs are structurally related to the directed graph   whose set of vertices is  , where vertex   is joined to vertex   if and only if   is of the form   where

 

(with  ,  ) and   is a permutation matrix. Assuming that   has been triangulated, the vertices of each of the graphs   and   can be described in terms of the graph  :

  • Given any path   in  , one can find a path   in   such that  , where   is the vector  .
  • Given any path   in  , one can find a path   in   such that  , where   is the  -dimensional standard simplex in  .

Generalization of Lagrange's theorem edit

Lagrange proved that for an irrational real number  , the continued-fraction expansion of   is periodic if and only if   is a quadratic irrational. Klein polyhedra allow us to generalize this result.

Let   be a totally real algebraic number field of degree  , and let   be the   real embeddings of  . The simplicial cone   is said to be split over   if   where   is a basis for   over  .

Given a path   in  , let  . The path is called periodic, with period  , if   for all  . The period matrix of such a path is defined to be  . A path in   or   associated with such a path is also said to be periodic, with the same period matrix.

The generalized Lagrange theorem states that for an irrational simplicial cone  , with generators   and   as above and with sail  , the following three conditions are equivalent:

  •   is split over some totally real algebraic number field of degree  .
  • For each of the   there is periodic path of vertices   in   such that the   asymptotically approach the line  ; and the period matrices of these paths all commute.
  • For each of the   there is periodic path of chambers   in   such that the   asymptotically approach the hyperplane  ; and the period matrices of these paths all commute.

Example edit

Take   and  . Then the simplicial cone   is split over  . The vertices of the sail are the points   corresponding to the even convergents   of the continued fraction for  . The path of vertices   in the positive quadrant starting at   and proceeding in a positive direction is  . Let   be the line segment joining   to  . Write   and   for the reflections of   and   in the  -axis. Let  , so that  , and let  .

Let  ,  ,  , and  .

  • The paths   and   are periodic (with period one) in  , with period matrices   and  . We have   and  .
  • The paths   and   are periodic (with period one) in  , with period matrices   and  . We have   and  .

Generalization of approximability edit

A real number   is called badly approximable if   is bounded away from zero. An irrational number is badly approximable if and only if the partial quotients of its continued fraction are bounded.[1] This fact admits of a generalization in terms of Klein polyhedra.

Given a simplicial cone   in  , where  , define the norm minimum of   as  .

Given vectors  , let  . This is the Euclidean volume of  .

Let   be the sail of an irrational simplicial cone  .

  • For a vertex   of  , define   where   are primitive vectors in   generating the edges emanating from  .
  • For a vertex   of  , define   where   are the extreme points of  .

Then   if and only if   and   are both bounded.

The quantities   and   are called determinants. In two dimensions, with the cone generated by  , they are just the partial quotients of the continued fraction of  .

See also edit

References edit

  1. ^ Bugeaud, Yann (2012). Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. Vol. 193. Cambridge: Cambridge University Press. p. 245. ISBN 978-0-521-11169-0. Zbl 1260.11001.
  • O. N. German, 2007, "Klein polyhedra and lattices with positive norm minima". Journal de théorie des nombres de Bordeaux 19: 175–190.
  • E. I. Korkina, 1995, "Two-dimensional continued fractions. The simplest examples". Proc. Steklov Institute of Mathematics 209: 124–144.
  • G. Lachaud, 1998, "Sails and Klein polyhedra" in Contemporary Mathematics 210. American Mathematical Society: 373–385.

klein, polyhedron, geometry, numbers, named, after, felix, klein, used, generalize, concept, continued, fractions, higher, dimensions, contents, definition, relation, continued, fractions, graphs, associated, with, generalization, lagrange, theorem, example, g. In the geometry of numbers the Klein polyhedron named after Felix Klein is used to generalize the concept of continued fractions to higher dimensions Contents 1 Definition 2 Relation to continued fractions 3 Graphs associated with the Klein polyhedron 4 Generalization of Lagrange s theorem 4 1 Example 5 Generalization of approximability 6 See also 7 ReferencesDefinition editLet C displaystyle textstyle C nbsp be a closed simplicial cone in Euclidean space R n displaystyle textstyle mathbb R n nbsp The Klein polyhedron of C displaystyle textstyle C nbsp is the convex hull of the non zero points of C Z n displaystyle textstyle C cap mathbb Z n nbsp Relation to continued fractions editSuppose a gt 0 displaystyle textstyle alpha gt 0 nbsp is an irrational number In R 2 displaystyle textstyle mathbb R 2 nbsp the cones generated by 1 a 1 0 displaystyle textstyle 1 alpha 1 0 nbsp and by 1 a 0 1 displaystyle textstyle 1 alpha 0 1 nbsp give rise to two Klein polyhedra each of which is bounded by a sequence of adjoining line segments Define the integer length of a line segment to be one less than the size of its intersection with Z n displaystyle textstyle mathbb Z n nbsp Then the integer lengths of the edges of these two Klein polyhedra encode the continued fraction expansion of a displaystyle textstyle alpha nbsp one matching the even terms and the other matching the odd terms Graphs associated with the Klein polyhedron editSuppose C displaystyle textstyle C nbsp is generated by a basis a i displaystyle textstyle a i nbsp of R n displaystyle textstyle mathbb R n nbsp so that C i l i a i i l i 0 displaystyle textstyle C sum i lambda i a i forall i lambda i geq 0 nbsp and let w i displaystyle textstyle w i nbsp be the dual basis so that C x i w i x 0 displaystyle textstyle C x forall i langle w i x rangle geq 0 nbsp Write D x displaystyle textstyle D x nbsp for the line generated by the vector x displaystyle textstyle x nbsp and H x displaystyle textstyle H x nbsp for the hyperplane orthogonal to x displaystyle textstyle x nbsp Call the vector x R n displaystyle textstyle x in mathbb R n nbsp irrational if H x Q n 0 displaystyle textstyle H x cap mathbb Q n 0 nbsp and call the cone C displaystyle textstyle C nbsp irrational if all the vectors a i displaystyle textstyle a i nbsp and w i displaystyle textstyle w i nbsp are irrational The boundary V displaystyle textstyle V nbsp of a Klein polyhedron is called a sail Associated with the sail V displaystyle textstyle V nbsp of an irrational cone are two graphs the graph G e V displaystyle textstyle Gamma mathrm e V nbsp whose vertices are vertices of V displaystyle textstyle V nbsp two vertices being joined if they are endpoints of a one dimensional edge of V displaystyle textstyle V nbsp the graph G f V displaystyle textstyle Gamma mathrm f V nbsp whose vertices are n 1 displaystyle textstyle n 1 nbsp dimensional faces chambers of V displaystyle textstyle V nbsp two chambers being joined if they share an n 2 displaystyle textstyle n 2 nbsp dimensional face Both of these graphs are structurally related to the directed graph Y n displaystyle textstyle Upsilon n nbsp whose set of vertices is G L n Q displaystyle textstyle mathrm GL n mathbb Q nbsp where vertex A displaystyle textstyle A nbsp is joined to vertex B displaystyle textstyle B nbsp if and only if A 1 B displaystyle textstyle A 1 B nbsp is of the form U W displaystyle textstyle UW nbsp where U 1 0 c 1 0 1 c n 1 0 0 c n displaystyle U left begin array cccc 1 amp cdots amp 0 amp c 1 vdots amp ddots amp vdots amp vdots 0 amp cdots amp 1 amp c n 1 0 amp cdots amp 0 amp c n end array right nbsp with c i Q displaystyle textstyle c i in mathbb Q nbsp c n 0 displaystyle textstyle c n neq 0 nbsp and W displaystyle textstyle W nbsp is a permutation matrix Assuming that V displaystyle textstyle V nbsp has been triangulated the vertices of each of the graphs G e V displaystyle textstyle Gamma mathrm e V nbsp and G f V displaystyle textstyle Gamma mathrm f V nbsp can be described in terms of the graph Y n displaystyle textstyle Upsilon n nbsp Given any path x 0 x 1 displaystyle textstyle x 0 x 1 ldots nbsp in G e V displaystyle textstyle Gamma mathrm e V nbsp one can find a path A 0 A 1 displaystyle textstyle A 0 A 1 ldots nbsp in Y n displaystyle textstyle Upsilon n nbsp such that x k A k e displaystyle textstyle x k A k e nbsp where e displaystyle textstyle e nbsp is the vector 1 1 R n displaystyle textstyle 1 ldots 1 in mathbb R n nbsp Given any path s 0 s 1 displaystyle textstyle sigma 0 sigma 1 ldots nbsp in G f V displaystyle textstyle Gamma mathrm f V nbsp one can find a path A 0 A 1 displaystyle textstyle A 0 A 1 ldots nbsp in Y n displaystyle textstyle Upsilon n nbsp such that s k A k D displaystyle textstyle sigma k A k Delta nbsp where D displaystyle textstyle Delta nbsp is the n 1 displaystyle textstyle n 1 nbsp dimensional standard simplex in R n displaystyle textstyle mathbb R n nbsp Generalization of Lagrange s theorem editLagrange proved that for an irrational real number a displaystyle textstyle alpha nbsp the continued fraction expansion of a displaystyle textstyle alpha nbsp is periodic if and only if a displaystyle textstyle alpha nbsp is a quadratic irrational Klein polyhedra allow us to generalize this result Let K R displaystyle textstyle K subseteq mathbb R nbsp be a totally real algebraic number field of degree n displaystyle textstyle n nbsp and let a i K R displaystyle textstyle alpha i K to mathbb R nbsp be the n displaystyle textstyle n nbsp real embeddings of K displaystyle textstyle K nbsp The simplicial cone C displaystyle textstyle C nbsp is said to be split over K displaystyle textstyle K nbsp if C x R n i a i w 1 x 1 a i w n x n 0 displaystyle textstyle C x in mathbb R n forall i alpha i omega 1 x 1 ldots alpha i omega n x n geq 0 nbsp where w 1 w n displaystyle textstyle omega 1 ldots omega n nbsp is a basis for K displaystyle textstyle K nbsp over Q displaystyle textstyle mathbb Q nbsp Given a path A 0 A 1 displaystyle textstyle A 0 A 1 ldots nbsp in Y n displaystyle textstyle Upsilon n nbsp let R k A k 1 A k 1 displaystyle textstyle R k A k 1 A k 1 nbsp The path is called periodic with period m displaystyle textstyle m nbsp if R k q m R k displaystyle textstyle R k qm R k nbsp for all k q 0 displaystyle textstyle k q geq 0 nbsp The period matrix of such a path is defined to be A m A 0 1 displaystyle textstyle A m A 0 1 nbsp A path in G e V displaystyle textstyle Gamma mathrm e V nbsp or G f V displaystyle textstyle Gamma mathrm f V nbsp associated with such a path is also said to be periodic with the same period matrix The generalized Lagrange theorem states that for an irrational simplicial cone C R n displaystyle textstyle C subseteq mathbb R n nbsp with generators a i displaystyle textstyle a i nbsp and w i displaystyle textstyle w i nbsp as above and with sail V displaystyle textstyle V nbsp the following three conditions are equivalent C displaystyle textstyle C nbsp is split over some totally real algebraic number field of degree n displaystyle textstyle n nbsp For each of the a i displaystyle textstyle a i nbsp there is periodic path of vertices x 0 x 1 displaystyle textstyle x 0 x 1 ldots nbsp in G e V displaystyle textstyle Gamma mathrm e V nbsp such that the x k displaystyle textstyle x k nbsp asymptotically approach the line D a i displaystyle textstyle D a i nbsp and the period matrices of these paths all commute For each of the w i displaystyle textstyle w i nbsp there is periodic path of chambers s 0 s 1 displaystyle textstyle sigma 0 sigma 1 ldots nbsp in G f V displaystyle textstyle Gamma mathrm f V nbsp such that the s k displaystyle textstyle sigma k nbsp asymptotically approach the hyperplane H w i displaystyle textstyle H w i nbsp and the period matrices of these paths all commute Example edit Take n 2 displaystyle textstyle n 2 nbsp and K Q 2 displaystyle textstyle K mathbb Q sqrt 2 nbsp Then the simplicial cone x y x 0 y x 2 displaystyle textstyle x y x geq 0 vert y vert leq x sqrt 2 nbsp is split over K displaystyle textstyle K nbsp The vertices of the sail are the points p k q k displaystyle textstyle p k pm q k nbsp corresponding to the even convergents p k q k displaystyle textstyle p k q k nbsp of the continued fraction for 2 displaystyle textstyle sqrt 2 nbsp The path of vertices x k displaystyle textstyle x k nbsp in the positive quadrant starting at 1 0 displaystyle textstyle 1 0 nbsp and proceeding in a positive direction is 1 0 3 2 17 12 99 70 displaystyle textstyle 1 0 3 2 17 12 99 70 ldots nbsp Let s k displaystyle textstyle sigma k nbsp be the line segment joining x k displaystyle textstyle x k nbsp to x k 1 displaystyle textstyle x k 1 nbsp Write x k displaystyle textstyle bar x k nbsp and s k displaystyle textstyle bar sigma k nbsp for the reflections of x k displaystyle textstyle x k nbsp and s k displaystyle textstyle sigma k nbsp in the x displaystyle textstyle x nbsp axis Let T 3 4 2 3 displaystyle textstyle T left begin array cc 3 amp 4 2 amp 3 end array right nbsp so that x k 1 T x k displaystyle textstyle x k 1 Tx k nbsp and let R 6 1 1 0 1 6 0 1 0 1 1 0 displaystyle textstyle R left begin array cc 6 amp 1 1 amp 0 end array right left begin array cc 1 amp 6 0 amp 1 end array right left begin array cc 0 amp 1 1 amp 0 end array right nbsp Let M e 1 2 1 2 1 4 1 4 displaystyle textstyle M mathrm e left begin array cc frac 1 2 amp frac 1 2 frac 1 4 amp frac 1 4 end array right nbsp M e 1 2 1 2 1 4 1 4 displaystyle textstyle bar M mathrm e left begin array cc frac 1 2 amp frac 1 2 frac 1 4 amp frac 1 4 end array right nbsp M f 3 1 2 0 displaystyle textstyle M mathrm f left begin array cc 3 amp 1 2 amp 0 end array right nbsp and M f 3 1 2 0 displaystyle textstyle bar M mathrm f left begin array cc 3 amp 1 2 amp 0 end array right nbsp The paths M e R k displaystyle textstyle M mathrm e R k nbsp and M e R k displaystyle textstyle bar M mathrm e R k nbsp are periodic with period one in Y 2 displaystyle textstyle Upsilon 2 nbsp with period matrices M e R M e 1 T displaystyle textstyle M mathrm e RM mathrm e 1 T nbsp and M e R M e 1 T 1 displaystyle textstyle bar M mathrm e R bar M mathrm e 1 T 1 nbsp We have x k M e R k e displaystyle textstyle x k M mathrm e R k e nbsp and x k M e R k e displaystyle textstyle bar x k bar M mathrm e R k e nbsp The paths M f R k displaystyle textstyle M mathrm f R k nbsp and M f R k displaystyle textstyle bar M mathrm f R k nbsp are periodic with period one in Y 2 displaystyle textstyle Upsilon 2 nbsp with period matrices M f R M f 1 T displaystyle textstyle M mathrm f RM mathrm f 1 T nbsp and M f R M f 1 T 1 displaystyle textstyle bar M mathrm f R bar M mathrm f 1 T 1 nbsp We have s k M f R k D displaystyle textstyle sigma k M mathrm f R k Delta nbsp and s k M f R k D displaystyle textstyle bar sigma k bar M mathrm f R k Delta nbsp Generalization of approximability editA real number a gt 0 displaystyle textstyle alpha gt 0 nbsp is called badly approximable if q p a q p q Z q gt 0 displaystyle textstyle q p alpha q p q in mathbb Z q gt 0 nbsp is bounded away from zero An irrational number is badly approximable if and only if the partial quotients of its continued fraction are bounded 1 This fact admits of a generalization in terms of Klein polyhedra Given a simplicial cone C x i w i x 0 displaystyle textstyle C x forall i langle w i x rangle geq 0 nbsp in R n displaystyle textstyle mathbb R n nbsp where w i w i 1 displaystyle textstyle langle w i w i rangle 1 nbsp define the norm minimum of C displaystyle textstyle C nbsp as N C inf i w i x x Z n C 0 displaystyle textstyle N C inf prod i langle w i x rangle x in mathbb Z n cap C setminus 0 nbsp Given vectors v 1 v m Z n displaystyle textstyle mathbf v 1 ldots mathbf v m in mathbb Z n nbsp let v 1 v m i 1 lt lt i n det v i 1 v i n displaystyle textstyle mathbf v 1 ldots mathbf v m sum i 1 lt cdots lt i n vert det mathbf v i 1 cdots mathbf v i n vert nbsp This is the Euclidean volume of i l i v i i 0 l i 1 displaystyle textstyle sum i lambda i mathbf v i forall i 0 leq lambda i leq 1 nbsp Let V displaystyle textstyle V nbsp be the sail of an irrational simplicial cone C displaystyle textstyle C nbsp For a vertex x displaystyle textstyle x nbsp of G e V displaystyle textstyle Gamma mathrm e V nbsp define x v 1 v m displaystyle textstyle x mathbf v 1 ldots mathbf v m nbsp where v 1 v m displaystyle textstyle mathbf v 1 ldots mathbf v m nbsp are primitive vectors in Z n displaystyle textstyle mathbb Z n nbsp generating the edges emanating from x displaystyle textstyle x nbsp For a vertex s displaystyle textstyle sigma nbsp of G f V displaystyle textstyle Gamma mathrm f V nbsp define s v 1 v m displaystyle textstyle sigma mathbf v 1 ldots mathbf v m nbsp where v 1 v m displaystyle textstyle mathbf v 1 ldots mathbf v m nbsp are the extreme points of s displaystyle textstyle sigma nbsp Then N C gt 0 displaystyle textstyle N C gt 0 nbsp if and only if x x G e V displaystyle textstyle x x in Gamma mathrm e V nbsp and s s G f V displaystyle textstyle sigma sigma in Gamma mathrm f V nbsp are both bounded The quantities x displaystyle textstyle x nbsp and s displaystyle textstyle sigma nbsp are called determinants In two dimensions with the cone generated by 1 a 1 0 displaystyle textstyle 1 alpha 1 0 nbsp they are just the partial quotients of the continued fraction of a displaystyle textstyle alpha nbsp See also editBuilding mathematics References edit Bugeaud Yann 2012 Distribution modulo one and Diophantine approximation Cambridge Tracts in Mathematics Vol 193 Cambridge Cambridge University Press p 245 ISBN 978 0 521 11169 0 Zbl 1260 11001 O N German 2007 Klein polyhedra and lattices with positive norm minima Journal de theorie des nombres de Bordeaux 19 175 190 E I Korkina 1995 Two dimensional continued fractions The simplest examples Proc Steklov Institute of Mathematics 209 124 144 G Lachaud 1998 Sails and Klein polyhedra in Contemporary Mathematics 210 American Mathematical Society 373 385 Retrieved from https en wikipedia org w index php title Klein polyhedron amp oldid 1030016527, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.