fbpx
Wikipedia

Alternative stress measures

In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined:[1][2][3]

  1. The Kirchhoff stress ().
  2. The nominal stress ().
  3. The Piola–Kirchhoff stress tensors
    1. The first Piola–Kirchhoff stress (). This stress tensor is the transpose of the nominal stress ().
    2. The second Piola–Kirchhoff stress or PK2 stress ().
  4. The Biot stress ()

Definitions edit

Consider the situation shown in the following figure. The following definitions use the notations shown in the figure.

 
Quantities used in the definition of stress measures

In the reference configuration  , the outward normal to a surface element   is   and the traction acting on that surface (assuming it deforms like a generic vector belonging to the deformation) is   leading to a force vector  . In the deformed configuration  , the surface element changes to   with outward normal   and traction vector   leading to a force  . Note that this surface can either be a hypothetical cut inside the body or an actual surface. The quantity   is the deformation gradient tensor,   is its determinant.

Cauchy stress edit

The Cauchy stress (or true stress) is a measure of the force acting on an element of area in the deformed configuration. This tensor is symmetric and is defined via

 

or

 

where   is the traction and   is the normal to the surface on which the traction acts.

Kirchhoff stress edit

The quantity,

 

is called the Kirchhoff stress tensor, with   the determinant of  . It is used widely in numerical algorithms in metal plasticity (where there is no change in volume during plastic deformation). It can be called weighted Cauchy stress tensor as well.

Piola–Kirchhoff stress edit

Nominal stress/First Piola–Kirchhoff stress edit

The nominal stress   is the transpose of the first Piola–Kirchhoff stress (PK1 stress, also called engineering stress)   and is defined via

 

or

 

This stress is unsymmetric and is a two-point tensor like the deformation gradient.
The asymmetry derives from the fact that, as a tensor, it has one index attached to the reference configuration and one to the deformed configuration.[4]

Second Piola–Kirchhoff stress edit

If we pull back   to the reference configuration we obtain the traction acting on that surface before the deformation   assuming it behaves like a generic vector belonging to the deformation. In particular we have

 

or,

 

The PK2 stress ( ) is symmetric and is defined via the relation

 

Therefore,

 

Biot stress edit

The Biot stress is useful because it is energy conjugate to the right stretch tensor  . The Biot stress is defined as the symmetric part of the tensor   where   is the rotation tensor obtained from a polar decomposition of the deformation gradient. Therefore, the Biot stress tensor is defined as

 

The Biot stress is also called the Jaumann stress.

The quantity   does not have any physical interpretation. However, the unsymmetrized Biot stress has the interpretation

 

Relations edit

Relations between Cauchy stress and nominal stress edit

From Nanson's formula relating areas in the reference and deformed configurations:

 

Now,

 

Hence,

 

or,

 

or,

 

In index notation,

 

Therefore,

 

Note that   and   are (generally) not symmetric because   is (generally) not symmetric.

Relations between nominal stress and second P–K stress edit

Recall that

 

and

 

Therefore,

 

or (using the symmetry of  ),

 

In index notation,

 

Alternatively, we can write

 

Relations between Cauchy stress and second P–K stress edit

Recall that

 

In terms of the 2nd PK stress, we have

 

Therefore,

 

In index notation,

 

Since the Cauchy stress (and hence the Kirchhoff stress) is symmetric, the 2nd PK stress is also symmetric.

Alternatively, we can write

 

or,

 

Clearly, from definition of the push-forward and pull-back operations, we have

 

and

 

Therefore,   is the pull back of   by   and   is the push forward of  .

Summary of conversion formula edit

Key:

 
 
Conversion formulae
Equation for            
              (non isotropy)
              (non isotropy)
             
             
             
    (non isotropy)   (non isotropy)        

See also edit

References edit

  1. ^ J. Bonet and R. W. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press.
  2. ^ R. W. Ogden, 1984, Non-linear Elastic Deformations, Dover.
  3. ^ L. D. Landau, E. M. Lifshitz, Theory of Elasticity, third edition
  4. ^ Three-Dimensional Elasticity. Elsevier. 1 April 1988. ISBN 978-0-08-087541-5.

alternative, stress, measures, continuum, mechanics, most, commonly, used, measure, stress, cauchy, stress, tensor, often, called, simply, stress, tensor, true, stress, however, several, alternative, measures, stress, defined, kirchhoff, stress, displaystyle, . In continuum mechanics the most commonly used measure of stress is the Cauchy stress tensor often called simply the stress tensor or true stress However several alternative measures of stress can be defined 1 2 3 The Kirchhoff stress t displaystyle boldsymbol tau The nominal stress N displaystyle boldsymbol N The Piola Kirchhoff stress tensors The first Piola Kirchhoff stress P displaystyle boldsymbol P This stress tensor is the transpose of the nominal stress P N T displaystyle boldsymbol P boldsymbol N T The second Piola Kirchhoff stress or PK2 stress S displaystyle boldsymbol S The Biot stress T displaystyle boldsymbol T Contents 1 Definitions 1 1 Cauchy stress 1 2 Kirchhoff stress 1 3 Piola Kirchhoff stress 1 3 1 Nominal stress First Piola Kirchhoff stress 1 3 2 Second Piola Kirchhoff stress 1 4 Biot stress 2 Relations 2 1 Relations between Cauchy stress and nominal stress 2 2 Relations between nominal stress and second P K stress 2 3 Relations between Cauchy stress and second P K stress 2 4 Summary of conversion formula 3 See also 4 ReferencesDefinitions editConsider the situation shown in the following figure The following definitions use the notations shown in the figure nbsp Quantities used in the definition of stress measures In the reference configuration W 0 displaystyle Omega 0 nbsp the outward normal to a surface element d G 0 displaystyle d Gamma 0 nbsp is N n 0 displaystyle mathbf N equiv mathbf n 0 nbsp and the traction acting on that surface assuming it deforms like a generic vector belonging to the deformation is t 0 displaystyle mathbf t 0 nbsp leading to a force vector d f 0 displaystyle d mathbf f 0 nbsp In the deformed configuration W displaystyle Omega nbsp the surface element changes to d G displaystyle d Gamma nbsp with outward normal n displaystyle mathbf n nbsp and traction vector t displaystyle mathbf t nbsp leading to a force d f displaystyle d mathbf f nbsp Note that this surface can either be a hypothetical cut inside the body or an actual surface The quantity F displaystyle boldsymbol F nbsp is the deformation gradient tensor J displaystyle J nbsp is its determinant Cauchy stress edit The Cauchy stress or true stress is a measure of the force acting on an element of area in the deformed configuration This tensor is symmetric and is defined via d f t d G s T n d G displaystyle d mathbf f mathbf t d Gamma boldsymbol sigma T cdot mathbf n d Gamma nbsp or t s T n displaystyle mathbf t boldsymbol sigma T cdot mathbf n nbsp where t displaystyle mathbf t nbsp is the traction and n displaystyle mathbf n nbsp is the normal to the surface on which the traction acts Kirchhoff stress edit The quantity t J s displaystyle boldsymbol tau J boldsymbol sigma nbsp is called the Kirchhoff stress tensor with J displaystyle J nbsp the determinant of F displaystyle boldsymbol F nbsp It is used widely in numerical algorithms in metal plasticity where there is no change in volume during plastic deformation It can be called weighted Cauchy stress tensor as well Piola Kirchhoff stress edit Main article Piola Kirchhoff stress tensor Nominal stress First Piola Kirchhoff stress edit The nominal stress N P T displaystyle boldsymbol N boldsymbol P T nbsp is the transpose of the first Piola Kirchhoff stress PK1 stress also called engineering stress P displaystyle boldsymbol P nbsp and is defined via d f t d G N T n 0 d G 0 P n 0 d G 0 displaystyle d mathbf f mathbf t d Gamma boldsymbol N T cdot mathbf n 0 d Gamma 0 boldsymbol P cdot mathbf n 0 d Gamma 0 nbsp or t 0 t d G d G 0 N T n 0 P n 0 displaystyle mathbf t 0 mathbf t dfrac d Gamma d Gamma 0 boldsymbol N T cdot mathbf n 0 boldsymbol P cdot mathbf n 0 nbsp This stress is unsymmetric and is a two point tensor like the deformation gradient The asymmetry derives from the fact that as a tensor it has one index attached to the reference configuration and one to the deformed configuration 4 Second Piola Kirchhoff stress edit If we pull back d f displaystyle d mathbf f nbsp to the reference configuration we obtain the traction acting on that surface before the deformation d f 0 displaystyle d mathbf f 0 nbsp assuming it behaves like a generic vector belonging to the deformation In particular we have d f 0 F 1 d f displaystyle d mathbf f 0 boldsymbol F 1 cdot d mathbf f nbsp or d f 0 F 1 N T n 0 d G 0 F 1 t 0 d G 0 displaystyle d mathbf f 0 boldsymbol F 1 cdot boldsymbol N T cdot mathbf n 0 d Gamma 0 boldsymbol F 1 cdot mathbf t 0 d Gamma 0 nbsp The PK2 stress S displaystyle boldsymbol S nbsp is symmetric and is defined via the relation d f 0 S T n 0 d G 0 F 1 t 0 d G 0 displaystyle d mathbf f 0 boldsymbol S T cdot mathbf n 0 d Gamma 0 boldsymbol F 1 cdot mathbf t 0 d Gamma 0 nbsp Therefore S T n 0 F 1 t 0 displaystyle boldsymbol S T cdot mathbf n 0 boldsymbol F 1 cdot mathbf t 0 nbsp Biot stress edit The Biot stress is useful because it is energy conjugate to the right stretch tensor U displaystyle boldsymbol U nbsp The Biot stress is defined as the symmetric part of the tensor P T R displaystyle boldsymbol P T cdot boldsymbol R nbsp where R displaystyle boldsymbol R nbsp is the rotation tensor obtained from a polar decomposition of the deformation gradient Therefore the Biot stress tensor is defined as T 1 2 R T P P T R displaystyle boldsymbol T tfrac 1 2 boldsymbol R T cdot boldsymbol P boldsymbol P T cdot boldsymbol R nbsp The Biot stress is also called the Jaumann stress The quantity T displaystyle boldsymbol T nbsp does not have any physical interpretation However the unsymmetrized Biot stress has the interpretation R T d f P T R T n 0 d G 0 displaystyle boldsymbol R T d mathbf f boldsymbol P T cdot boldsymbol R T cdot mathbf n 0 d Gamma 0 nbsp Relations editRelations between Cauchy stress and nominal stress edit From Nanson s formula relating areas in the reference and deformed configurations n d G J F T n 0 d G 0 displaystyle mathbf n d Gamma J boldsymbol F T cdot mathbf n 0 d Gamma 0 nbsp Now s T n d G d f N T n 0 d G 0 displaystyle boldsymbol sigma T cdot mathbf n d Gamma d mathbf f boldsymbol N T cdot mathbf n 0 d Gamma 0 nbsp Hence s T J F T n 0 d G 0 N T n 0 d G 0 displaystyle boldsymbol sigma T cdot J boldsymbol F T cdot mathbf n 0 d Gamma 0 boldsymbol N T cdot mathbf n 0 d Gamma 0 nbsp or N T J F 1 s T J s T F T displaystyle boldsymbol N T J boldsymbol F 1 cdot boldsymbol sigma T J boldsymbol sigma T cdot boldsymbol F T nbsp or N J F 1 s and N T P J s T F T displaystyle boldsymbol N J boldsymbol F 1 cdot boldsymbol sigma qquad text and qquad boldsymbol N T boldsymbol P J boldsymbol sigma T cdot boldsymbol F T nbsp In index notation N I j J F I k 1 s k j and P i J J s k i F J k 1 displaystyle N Ij J F Ik 1 sigma kj qquad text and qquad P iJ J sigma ki F Jk 1 nbsp Therefore J s F N F P T displaystyle J boldsymbol sigma boldsymbol F cdot boldsymbol N boldsymbol F cdot boldsymbol P T nbsp Note that N displaystyle boldsymbol N nbsp and P displaystyle boldsymbol P nbsp are generally not symmetric because F displaystyle boldsymbol F nbsp is generally not symmetric Relations between nominal stress and second P K stress edit Recall that N T n 0 d G 0 d f displaystyle boldsymbol N T cdot mathbf n 0 d Gamma 0 d mathbf f nbsp and d f F d f 0 F S T n 0 d G 0 displaystyle d mathbf f boldsymbol F cdot d mathbf f 0 boldsymbol F cdot boldsymbol S T cdot mathbf n 0 d Gamma 0 nbsp Therefore N T n 0 F S T n 0 displaystyle boldsymbol N T cdot mathbf n 0 boldsymbol F cdot boldsymbol S T cdot mathbf n 0 nbsp or using the symmetry of S displaystyle boldsymbol S nbsp N S F T and P F S displaystyle boldsymbol N boldsymbol S cdot boldsymbol F T qquad text and qquad boldsymbol P boldsymbol F cdot boldsymbol S nbsp In index notation N I j S I K F j K T and P i J F i K S K J displaystyle N Ij S IK F jK T qquad text and qquad P iJ F iK S KJ nbsp Alternatively we can write S N F T and S F 1 P displaystyle boldsymbol S boldsymbol N cdot boldsymbol F T qquad text and qquad boldsymbol S boldsymbol F 1 cdot boldsymbol P nbsp Relations between Cauchy stress and second P K stress edit Recall that N J F 1 s displaystyle boldsymbol N J boldsymbol F 1 cdot boldsymbol sigma nbsp In terms of the 2nd PK stress we have S F T J F 1 s displaystyle boldsymbol S cdot boldsymbol F T J boldsymbol F 1 cdot boldsymbol sigma nbsp Therefore S J F 1 s F T F 1 t F T displaystyle boldsymbol S J boldsymbol F 1 cdot boldsymbol sigma cdot boldsymbol F T boldsymbol F 1 cdot boldsymbol tau cdot boldsymbol F T nbsp In index notation S I J F I k 1 t k l F J l 1 displaystyle S IJ F Ik 1 tau kl F Jl 1 nbsp Since the Cauchy stress and hence the Kirchhoff stress is symmetric the 2nd PK stress is also symmetric Alternatively we can write s J 1 F S F T displaystyle boldsymbol sigma J 1 boldsymbol F cdot boldsymbol S cdot boldsymbol F T nbsp or t F S F T displaystyle boldsymbol tau boldsymbol F cdot boldsymbol S cdot boldsymbol F T nbsp Clearly from definition of the push forward and pull back operations we have S f t F 1 t F T displaystyle boldsymbol S varphi boldsymbol tau boldsymbol F 1 cdot boldsymbol tau cdot boldsymbol F T nbsp and t f S F S F T displaystyle boldsymbol tau varphi boldsymbol S boldsymbol F cdot boldsymbol S cdot boldsymbol F T nbsp Therefore S displaystyle boldsymbol S nbsp is the pull back of t displaystyle boldsymbol tau nbsp by F displaystyle boldsymbol F nbsp and t displaystyle boldsymbol tau nbsp is the push forward of S displaystyle boldsymbol S nbsp Summary of conversion formula edit Key J det F C F T F U 2 F R U R T R 1 displaystyle J det left boldsymbol F right quad boldsymbol C boldsymbol F T boldsymbol F boldsymbol U 2 quad boldsymbol F boldsymbol R boldsymbol U quad boldsymbol R T boldsymbol R 1 nbsp P J s F T t J s S J F 1 s F T T R T P M C S displaystyle boldsymbol P J boldsymbol sigma boldsymbol F T quad boldsymbol tau J boldsymbol sigma quad boldsymbol S J boldsymbol F 1 boldsymbol sigma boldsymbol F T quad boldsymbol T boldsymbol R T boldsymbol P quad boldsymbol M boldsymbol C boldsymbol S nbsp Conversion formulae Equation for s displaystyle boldsymbol sigma nbsp t displaystyle boldsymbol tau nbsp P displaystyle boldsymbol P nbsp S displaystyle boldsymbol S nbsp T displaystyle boldsymbol T nbsp M displaystyle boldsymbol M nbsp s displaystyle boldsymbol sigma nbsp s displaystyle boldsymbol sigma nbsp J 1 t displaystyle J 1 boldsymbol tau nbsp J 1 P F T displaystyle J 1 boldsymbol P boldsymbol F T nbsp J 1 F S F T displaystyle J 1 boldsymbol F boldsymbol S boldsymbol F T nbsp J 1 R T F T displaystyle J 1 boldsymbol R boldsymbol T boldsymbol F T nbsp J 1 F T M F T displaystyle J 1 boldsymbol F T boldsymbol M boldsymbol F T nbsp non isotropy t displaystyle boldsymbol tau nbsp J s displaystyle J boldsymbol sigma nbsp t displaystyle boldsymbol tau nbsp P F T displaystyle boldsymbol P boldsymbol F T nbsp F S F T displaystyle boldsymbol F boldsymbol S boldsymbol F T nbsp R T F T displaystyle boldsymbol R boldsymbol T boldsymbol F T nbsp F T M F T displaystyle boldsymbol F T boldsymbol M boldsymbol F T nbsp non isotropy P displaystyle boldsymbol P nbsp J s F T displaystyle J boldsymbol sigma boldsymbol F T nbsp t F T displaystyle boldsymbol tau boldsymbol F T nbsp P displaystyle boldsymbol P nbsp F S displaystyle boldsymbol F boldsymbol S nbsp R T displaystyle boldsymbol R boldsymbol T nbsp F T M displaystyle boldsymbol F T boldsymbol M nbsp S displaystyle boldsymbol S nbsp J F 1 s F T displaystyle J boldsymbol F 1 boldsymbol sigma boldsymbol F T nbsp F 1 t F T displaystyle boldsymbol F 1 boldsymbol tau boldsymbol F T nbsp F 1 P displaystyle boldsymbol F 1 boldsymbol P nbsp S displaystyle boldsymbol S nbsp U 1 T displaystyle boldsymbol U 1 boldsymbol T nbsp C 1 M displaystyle boldsymbol C 1 boldsymbol M nbsp T displaystyle boldsymbol T nbsp J R T s F T displaystyle J boldsymbol R T boldsymbol sigma boldsymbol F T nbsp R T t F T displaystyle boldsymbol R T boldsymbol tau boldsymbol F T nbsp R T P displaystyle boldsymbol R T boldsymbol P nbsp U S displaystyle boldsymbol U boldsymbol S nbsp T displaystyle boldsymbol T nbsp U 1 M displaystyle boldsymbol U 1 boldsymbol M nbsp M displaystyle boldsymbol M nbsp J F T s F T displaystyle J boldsymbol F T boldsymbol sigma boldsymbol F T nbsp non isotropy F T t F T displaystyle boldsymbol F T boldsymbol tau boldsymbol F T nbsp non isotropy F T P displaystyle boldsymbol F T boldsymbol P nbsp C S displaystyle boldsymbol C boldsymbol S nbsp U T displaystyle boldsymbol U boldsymbol T nbsp M displaystyle boldsymbol M nbsp See also editStress physics Finite strain theory Continuum mechanics Hyperelastic material Cauchy elastic material Critical plane analysisReferences edit J Bonet and R W Wood Nonlinear Continuum Mechanics for Finite Element Analysis Cambridge University Press R W Ogden 1984 Non linear Elastic Deformations Dover L D Landau E M Lifshitz Theory of Elasticity third edition Three Dimensional Elasticity Elsevier 1 April 1988 ISBN 978 0 08 087541 5 Retrieved from https en wikipedia org w index php title Alternative stress measures amp oldid 1172435814 Kirchhoff stress, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.