fbpx
Wikipedia

Kazhdan–Lusztig polynomial

In the mathematical field of representation theory, a Kazhdan–Lusztig polynomial is a member of a family of integral polynomials introduced by David Kazhdan and George Lusztig (1979). They are indexed by pairs of elements y, w of a Coxeter group W, which can in particular be the Weyl group of a Lie group.

Motivation and history

In the spring of 1978 Kazhdan and Lusztig were studying Springer representations of the Weyl group of an algebraic group on  -adic cohomology groups related to conjugacy classes which are unipotent. They found a new construction of these representations over the complex numbers (Kazhdan & Lusztig 1980a). The representation had two natural bases, and the transition matrix between these two bases is essentially given by the Kazhdan–Lusztig polynomials. The actual Kazhdan–Lusztig construction of their polynomials is more elementary. Kazhdan and Lusztig used this to construct a canonical basis in the Hecke algebra of the Coxeter group and its representations.

In their first paper Kazhdan and Lusztig mentioned that their polynomials were related to the failure of local Poincaré duality for Schubert varieties. In Kazhdan & Lusztig (1980b) they reinterpreted this in terms of the intersection cohomology of Mark Goresky and Robert MacPherson, and gave another definition of such a basis in terms of the dimensions of certain intersection cohomology groups.

The two bases for the Springer representation reminded Kazhdan and Lusztig of the two bases for the Grothendieck group of certain infinite dimensional representations of semisimple Lie algebras, given by Verma modules and simple modules. This analogy, and the work of Jens Carsten Jantzen and Anthony Joseph relating primitive ideals of enveloping algebras to representations of Weyl groups, led to the Kazhdan–Lusztig conjectures.

Definition

Fix a Coxeter group W with generating set S, and write   for the length of an element w (the smallest length of an expression for w as a product of elements of S). The Hecke algebra of W has a basis of elements   for   over the ring  , with multiplication defined by

 

The quadratic second relation implies that each generator Ts is invertible in the Hecke algebra, with inverse Ts−1 = q−1Ts + q−1 − 1. These inverses satisfy the relation (Ts−1 + 1)(Ts−1q−1) = 0 (obtained by multiplying the quadratic relation for Ts by −Ts−2q−1), and also the braid relations. From this it follows that the Hecke algebra has an automorphism D that sends q1/2 to q−1/2 and each Ts to Ts−1. More generally one has  ; also D can be seen to be an involution.

The Kazhdan–Lusztig polynomials Pyw(q) are indexed by a pair of elements y, w of W, and uniquely determined by the following properties.

  • They are 0 unless yw (in the Bruhat order of W), 1 if y = w, and for y < w their degree is at most ((w) − (y) − 1)/2.
  • The elements
 
are invariant under the involution D of the Hecke algebra. The elements   form a basis of the Hecke algebra as a  -module, called the Kazhdan–Lusztig basis.

To establish existence of the Kazhdan–Lusztig polynomials, Kazhdan and Lusztig gave a simple recursive procedure for computing the polynomials Pyw(q) in terms of more elementary polynomials denoted Ryw(q). defined by

 

They can be computed using the recursion relations

 

The Kazhdan–Lusztig polynomials can then be computed recursively using the relation

 

using the fact that the two terms on the left are polynomials in q1/2 and q−1/2 without constant terms. These formulas are tiresome to use by hand for rank greater than about 3, but are well adapted for computers, and the only limit on computing Kazhdan–Lusztig polynomials with them is that for large rank the number of such polynomials exceeds the storage capacity of computers.

Examples

  • If yw then Py,w has constant term 1.
  • If yw and (w) − (y) ∈ {0, 1, 2} then Py,w = 1.
  • If w = w0 is the longest element of a finite Coxeter group then Py,w = 1 for all y.
  • If W is the Coxeter group A1 or A2 (or more generally any Coxeter group of rank at most 2) then Py,w is 1 if yw and 0 otherwise.
  • If W is the Coxeter group A3 with generating set S = {a, b, c} with a and c commuting then Pb,bacb = 1 + q and Pac,acbca = 1 + q, giving examples of non-constant polynomials.
  • The simple values of Kazhdan–Lusztig polynomials for low rank groups are not typical of higher rank groups. For example, for the split form of E8 the most complicated Lusztig–Vogan polynomial (a variation of Kazhdan–Lusztig polynomials: see below) is
 
  • Polo (1999) showed that any polynomial with constant term 1 and non-negative integer coefficients is the Kazhdan–Lusztig polynomial for some pair of elements of some symmetric group.

Kazhdan–Lusztig conjectures

The Kazhdan–Lusztig polynomials arise as transition coefficients between their canonical basis and the natural basis of the Hecke algebra. The Inventiones paper also put forth two equivalent conjectures, known now as Kazhdan–Lusztig conjectures, which related the values of their polynomials at 1 with representations of complex semisimple Lie groups and Lie algebras, addressing a long-standing problem in representation theory.

Let W be a finite Weyl group. For each w ∈ W denote by Mw be the Verma module of highest weight w(ρ) − ρ where ρ is the half-sum of positive roots (or Weyl vector), and let Lw be its irreducible quotient, the simple highest weight module of highest weight w(ρ) − ρ. Both Mw and Lw are locally-finite weight modules over the complex semisimple Lie algebra g with the Weyl group W, and therefore admit an algebraic character. Let us write ch(X) for the character of a g-module X. The Kazhdan–Lusztig conjectures state:

 
 

where w0 is the element of maximal length of the Weyl group.

These conjectures were proved over characteristic 0 algebraically closed fields independently by Alexander Beilinson and Joseph Bernstein (1981) and by Jean-Luc Brylinski and Masaki Kashiwara (1981). The methods introduced in the course of the proof have guided development of representation theory throughout the 1980s and 1990s, under the name geometric representation theory.

Remarks

1. The two conjectures are known to be equivalent. Moreover, Borho–Jantzen's translation principle implies that w(ρ) − ρ can be replaced by w(λ + ρ) − ρ for any dominant integral weight λ. Thus, the Kazhdan–Lusztig conjectures describe the Jordan–Hölder multiplicities of Verma modules in any regular integral block of Bernstein–Gelfand–Gelfand category O.

2. A similar interpretation of all coefficients of Kazhdan–Lusztig polynomials follows from the Jantzen conjecture, which roughly says that individual coefficients of Py,w are multiplicities of Ly in certain subquotient of the Verma module determined by a canonical filtration, the Jantzen filtration. The Jantzen conjecture in regular integral case was proved in a later paper of Beilinson and Bernstein (1993).

3. David Vogan showed as a consequence of the conjectures that

 

and that Extj(My, Lw) vanishes if j + (w) + (y) is odd, so the dimensions of all such Ext groups in category O are determined in terms of coefficients of Kazhdan–Lusztig polynomials. This result demonstrates that all coefficients of the Kazhdan–Lusztig polynomials of a finite Weyl group are non-negative integers. However, positivity for the case of a finite Weyl group W was already known from the interpretation of coefficients of the Kazhdan–Lusztig polynomials as the dimensions of intersection cohomology groups, irrespective of the conjectures. Conversely, the relation between Kazhdan–Lusztig polynomials and the Ext groups theoretically can be used to prove the conjectures, although this approach to proving them turned out to be more difficult to carry out.

4. Some special cases of the Kazhdan–Lusztig conjectures are easy to verify. For example, M1 is the antidominant Verma module, which is known to be simple. This means that M1 = L1, establishing the second conjecture for w = 1, since the sum reduces to a single term. On the other hand, the first conjecture for w = w0 follows from the Weyl character formula and the formula for the character of a Verma module, together with the fact that all Kazhdan–Lusztig polynomials   are equal to 1.

5. Kashiwara (1990) proved a generalization of the Kazhdan–Lusztig conjectures to symmetrizable Kac–Moody algebras.

Relation to intersection cohomology of Schubert varieties

By the Bruhat decomposition the space G/B of the algebraic group G with Weyl group W is a disjoint union of affine spaces Xw parameterized by elements w of W. The closures of these spaces Xw are called Schubert varieties, and Kazhdan and Lusztig, following a suggestion of Deligne, showed how to express Kazhdan–Lusztig polynomials in terms of intersection cohomology groups of Schubert varieties.

More precisely, the Kazhdan–Lusztig polynomial Py,w(q) is equal to

 

where each term on the right means: take the complex IC of sheaves whose hyperhomology is the intersection homology of the Schubert variety of w (the closure of the cell Xw), take its cohomology of degree 2i, and then take the dimension of the stalk of this sheaf at any point of the cell Xy whose closure is the Schubert variety of y. The odd-dimensional cohomology groups do not appear in the sum because they are all zero.

This gave the first proof that all coefficients of Kazhdan–Lusztig polynomials for finite Weyl groups are non-negative integers.

Generalization to real groups

Lusztig–Vogan polynomials (also called Kazhdan–Lusztig polynomials or Kazhdan–Lusztig–Vogan polynomials) were introduced in Lusztig & Vogan (1983). They are analogous to Kazhdan–Lusztig polynomials, but are tailored to representations of real semisimple Lie groups, and play major role in the conjectural description of their unitary duals. Their definition is more complicated, reflecting relative complexity of representations of real groups compared to complex groups.

The distinction, in the cases directly connection to representation theory, is explained on the level of double cosets; or in other terms of actions on analogues of complex flag manifolds G/B where G is a complex Lie group and B a Borel subgroup. The original (K-L) case is then about the details of decomposing

 ,

a classical theme of the Bruhat decomposition, and before that of Schubert cells in a Grassmannian. The L-V case takes a real form GR of G, a maximal compact subgroup KR in that semisimple group GR, and makes the complexification K of KR. Then the relevant object of study is

 .

In March 2007, it was announced[by whom?] that the L–V polynomials had been calculated for the split form of E8.

Generalization to other objects in representation theory

The second paper of Kazhdan and Lusztig established a geometric setting for definition of Kazhdan–Lusztig polynomials, namely, the geometry of singularities of Schubert varieties in the flag variety. Much of the later work of Lusztig explored analogues of Kazhdan–Lusztig polynomials in the context of other natural singular algebraic varieties arising in representation theory, in particular, closures of nilpotent orbits and quiver varieties. It turned out that the representation theory of quantum groups, modular Lie algebras and affine Hecke algebras are all tightly controlled by appropriate analogues of Kazhdan–Lusztig polynomials. They admit an elementary description, but the deeper properties of these polynomials necessary for representation theory follow from sophisticated techniques of modern algebraic geometry and homological algebra, such as the use of intersection cohomology, perverse sheaves and Beilinson–Bernstein–Deligne decomposition.

The coefficients of the Kazhdan–Lusztig polynomials are conjectured to be the dimensions of some homomorphism spaces in Soergel's bimodule category. This is the only known positive interpretation of these coefficients for arbitrary Coxeter groups.

Combinatorial theory

Combinatorial properties of Kazhdan–Lusztig polynomials and their generalizations are a topic of active current research. Given their significance in representation theory and algebraic geometry, attempts have been undertaken to develop the theory of Kazhdan–Lusztig polynomials in purely combinatorial fashion, relying to some extent on geometry, but without reference to intersection cohomology and other advanced techniques. This has led to exciting developments in algebraic combinatorics, such as pattern-avoidance phenomenon. Some references are given in the textbook of Björner & Brenti (2005). A research monograph on the subject is Billey & Lakshmibai (2000).

As of 2005, there is no known combinatorial interpretation of all the coefficients of the Kazhdan–Lusztig polynomials (as the cardinalities of some natural sets) even for the symmetric groups, though explicit formulas exist in many special cases.


Inequality

Kobayashi (2013) proved that values of Kazhdan–Lusztig polynomials at   for crystallographic Coxeter groups satisfy certain strict inequality: Let   be a crystallographic Coxeter system and   its Kazhdan–Lusztig polynomials. If   and  , then there exists a reflection   such that  .

References

  • Beilinson, Alexandre; Bernstein, Joseph (1981), Localisation de g-modules, Sér. I Math., vol. 292, Paris: C. R. Acad. Sci., pp. 15–18.
  • Beilinson, Alexandre; Bernstein, Joseph (1993), A proof of the Jantzen conjectures, Advances in Soviet Mathematics, vol. 16, pp. 1–50.
  • Billey, Sara; Lakshmibai, V. (2000), Singular loci of Schubert varieties, Progress in Mathematics, vol. 182, Boston, MA: Birkhäuser, ISBN 0-8176-4092-4.
  • Björner, Anders; Brenti, Francesco (2005), "Ch. 5: Kazhdan–Lusztig and R-polynomials", Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231, Springer, ISBN 978-3-540-44238-7.
  • Brenti, Francesco (2003), "Kazhdan–Lusztig Polynomials: History, Problems, and Combinatorial Invariance", Séminaire Lotharingien de Combinatoire, Ellwangen: Haus Schönenberg, 49: Research article B49b.
  • Brylinski, Jean-Luc; Kashiwara, Masaki (October 1981), "Kazhdan–Lusztig conjecture and holonomic systems", Inventiones Mathematicae, Springer-Verlag, 64 (3): 387–410, Bibcode:1981InMat..64..387B, doi:10.1007/BF01389272, ISSN 0020-9910, S2CID 18403883.
  • Kashiwara, Masaki (1990), "The Kazhdan–Lusztig conjecture for symmetrizable KacMoody algebras", The Grothendieck Festschrift, II, Progress in Mathematics, vol. 87, Boston: Birkhauser, pp. 407–433, MR 1106905.
  • Kazhdan, David; Lusztig, George (June 1979), "Representations of Coxeter groups and Hecke algebras", Inventiones Mathematicae, Springer-Verlag, 53 (2): 165–184, Bibcode:1979InMat..53..165K, doi:10.1007/BF01390031, ISSN 0020-9910, S2CID 120098142.
  • Kazhdan, David; Lusztig, George (1980a), "A topological approach to Springer's representations", Advances in Mathematics, 38 (2): 222–228, doi:10.1016/0001-8708(80)90005-5.
  • Kazhdan, David; Lusztig, George (1980b), Schubert varieties and Poincaré duality, Proceedings of Symposia in Pure Mathematics, vol. XXXVI, American Mathematical Society, pp. 185–203, doi:10.1090/pspum/036/573434, ISBN 9780821814390.
  • Lusztig, George; Vogan, David (1983), "Singularities of closures of K-orbits on flag manifolds.", Inventiones Mathematicae, Springer-Verlag, 71 (2): 365–379, Bibcode:1983InMat..71..365L, doi:10.1007/BF01389103, ISSN 0020-9910, S2CID 120917588.
  • Polo, Patrick (1999), "Construction of arbitrary Kazhdan–Lusztig polynomials in symmetric groups", Representation Theory, 3 (4): 90–104, doi:10.1090/S1088-4165-99-00074-6, ISSN 1088-4165, MR 1698201.
  • Soergel, Wolfgang (2006), "Kazhdan–Lusztig polynomials and indecomposable bimodules over polynomial rings", Journal of the Institute of Mathematics of Jussieu, 6 (3): 501–525, arXiv:math/0403496, doi:10.1017/S1474748007000023, S2CID 120459494.
  • Kobayashi, Masato (2013), "Inequalities on Bruhat graphs, R- and Kazhdan-Lusztig polynomials", Journal of Combinatorial Theory, Series A, 120 (2): 470–482, doi:10.1016/j.jcta.2012.10.001, S2CID 205929043.

External links

  • Readings from Spring 2005 course on Kazhdan–Lusztig Theory at U.C. Davis by Monica Vazirani
  • Goresky, Mark. "Tables of Kazhdan–Lusztig polynomials".
  • The GAP programs for computing Kazhdan–Lusztig polynomials.
  • Fokko du Cloux's Coxeter software for computing Kazhdan–Lusztig polynomials for any Coxeter group
  • Atlas software for computing Kazhdan–Lusztig-Vogan polynomials.

kazhdan, lusztig, polynomial, mathematical, field, representation, theory, displaystyle, member, family, integral, polynomials, introduced, david, kazhdan, george, lusztig, 1979, they, indexed, pairs, elements, coxeter, group, which, particular, weyl, group, g. In the mathematical field of representation theory a Kazhdan Lusztig polynomial P y w q displaystyle P y w q is a member of a family of integral polynomials introduced by David Kazhdan and George Lusztig 1979 They are indexed by pairs of elements y w of a Coxeter group W which can in particular be the Weyl group of a Lie group Contents 1 Motivation and history 2 Definition 3 Examples 4 Kazhdan Lusztig conjectures 4 1 Remarks 5 Relation to intersection cohomology of Schubert varieties 6 Generalization to real groups 7 Generalization to other objects in representation theory 8 Combinatorial theory 9 Inequality 10 References 11 External linksMotivation and history EditIn the spring of 1978 Kazhdan and Lusztig were studying Springer representations of the Weyl group of an algebraic group on ℓ displaystyle ell adic cohomology groups related to conjugacy classes which are unipotent They found a new construction of these representations over the complex numbers Kazhdan amp Lusztig 1980a The representation had two natural bases and the transition matrix between these two bases is essentially given by the Kazhdan Lusztig polynomials The actual Kazhdan Lusztig construction of their polynomials is more elementary Kazhdan and Lusztig used this to construct a canonical basis in the Hecke algebra of the Coxeter group and its representations In their first paper Kazhdan and Lusztig mentioned that their polynomials were related to the failure of local Poincare duality for Schubert varieties In Kazhdan amp Lusztig 1980b they reinterpreted this in terms of the intersection cohomology of Mark Goresky and Robert MacPherson and gave another definition of such a basis in terms of the dimensions of certain intersection cohomology groups The two bases for the Springer representation reminded Kazhdan and Lusztig of the two bases for the Grothendieck group of certain infinite dimensional representations of semisimple Lie algebras given by Verma modules and simple modules This analogy and the work of Jens Carsten Jantzen and Anthony Joseph relating primitive ideals of enveloping algebras to representations of Weyl groups led to the Kazhdan Lusztig conjectures Definition EditFix a Coxeter group W with generating set S and write ℓ w displaystyle ell w for the length of an element w the smallest length of an expression for w as a product of elements of S The Hecke algebra of W has a basis of elements T w displaystyle T w for w W displaystyle w in W over the ring Z q 1 2 q 1 2 displaystyle mathbb Z q 1 2 q 1 2 with multiplication defined by T y T w T y w if ℓ y w ℓ y ℓ w T s 1 T s q 0 if s S displaystyle begin aligned T y T w amp T yw amp amp mbox if ell yw ell y ell w T s 1 T s q amp 0 amp amp mbox if s in S end aligned The quadratic second relation implies that each generator Ts is invertible in the Hecke algebra with inverse Ts 1 q 1Ts q 1 1 These inverses satisfy the relation Ts 1 1 Ts 1 q 1 0 obtained by multiplying the quadratic relation for Ts by Ts 2q 1 and also the braid relations From this it follows that the Hecke algebra has an automorphism D that sends q1 2 to q 1 2 and each Ts to Ts 1 More generally one has D T w T w 1 1 displaystyle D T w T w 1 1 also D can be seen to be an involution The Kazhdan Lusztig polynomials Pyw q are indexed by a pair of elements y w of W and uniquely determined by the following properties They are 0 unless y w in the Bruhat order of W 1 if y w and for y lt w their degree is at most ℓ w ℓ y 1 2 The elementsC w q ℓ w 2 y w P y w T y displaystyle C w q frac ell w 2 sum y leq w P y w T y dd are invariant under the involution D of the Hecke algebra The elements C w displaystyle C w form a basis of the Hecke algebra as a Z q 1 2 q 1 2 displaystyle mathbb Z q 1 2 q 1 2 module called the Kazhdan Lusztig basis To establish existence of the Kazhdan Lusztig polynomials Kazhdan and Lusztig gave a simple recursive procedure for computing the polynomials Pyw q in terms of more elementary polynomials denoted Ryw q defined by T y 1 1 x D R x y q ℓ x T x displaystyle T y 1 1 sum x D R x y q ell x T x They can be computed using the recursion relations R x y 0 if x y 1 if x y R s x s y if s x lt x and s y lt y R x s y s if x s lt x and y s lt y q 1 R s x y q R s x s y if s x gt x and s y lt y displaystyle R x y begin cases 0 amp mbox if x not leq y 1 amp mbox if x y R sx sy amp mbox if sx lt x mbox and sy lt y R xs ys amp mbox if xs lt x mbox and ys lt y q 1 R sx y qR sx sy amp mbox if sx gt x mbox and sy lt y end cases The Kazhdan Lusztig polynomials can then be computed recursively using the relation q 1 2 ℓ w ℓ x D P x w q 1 2 ℓ x ℓ w P x w x lt y w 1 ℓ x ℓ y q 1 2 ℓ x 2 ℓ y ℓ w D R x y P y w displaystyle q frac 1 2 ell w ell x D P x w q frac 1 2 ell x ell w P x w sum x lt y leq w 1 ell x ell y q frac 1 2 ell x 2 ell y ell w D R x y P y w using the fact that the two terms on the left are polynomials in q1 2 and q 1 2 without constant terms These formulas are tiresome to use by hand for rank greater than about 3 but are well adapted for computers and the only limit on computing Kazhdan Lusztig polynomials with them is that for large rank the number of such polynomials exceeds the storage capacity of computers Examples EditIf y w then Py w has constant term 1 If y w and ℓ w ℓ y 0 1 2 then Py w 1 If w w0 is the longest element of a finite Coxeter group then Py w 1 for all y If W is the Coxeter group A1 or A2 or more generally any Coxeter group of rank at most 2 then Py w is 1 if y w and 0 otherwise If W is the Coxeter group A3 with generating set S a b c with a and c commuting then Pb bacb 1 q and Pac acbca 1 q giving examples of non constant polynomials The simple values of Kazhdan Lusztig polynomials for low rank groups are not typical of higher rank groups For example for the split form of E8 the most complicated Lusztig Vogan polynomial a variation of Kazhdan Lusztig polynomials see below is152 q 22 3 472 q 21 38 791 q 20 293 021 q 19 1 370 892 q 18 4 067 059 q 17 7 964 012 q 16 11 159 003 q 15 11 808 808 q 14 9 859 915 q 13 6 778 956 q 12 3 964 369 q 11 2 015 441 q 10 906 567 q 9 363 611 q 8 129 820 q 7 41 239 q 6 11 426 q 5 2 677 q 4 492 q 3 61 q 2 3 q displaystyle begin aligned 152q 22 amp 3 472q 21 38 791q 20 293 021q 19 1 370 892q 18 4 067 059q 17 7 964 012q 16 amp 11 159 003q 15 11 808 808q 14 9 859 915q 13 6 778 956q 12 3 964 369q 11 2 015 441q 10 amp 906 567q 9 363 611q 8 129 820q 7 41 239q 6 11 426q 5 2 677q 4 492q 3 61q 2 3q end aligned dd Polo 1999 showed that any polynomial with constant term 1 and non negative integer coefficients is the Kazhdan Lusztig polynomial for some pair of elements of some symmetric group Kazhdan Lusztig conjectures EditThe Kazhdan Lusztig polynomials arise as transition coefficients between their canonical basis and the natural basis of the Hecke algebra The Inventiones paper also put forth two equivalent conjectures known now as Kazhdan Lusztig conjectures which related the values of their polynomials at 1 with representations of complex semisimple Lie groups and Lie algebras addressing a long standing problem in representation theory Let W be a finite Weyl group For each w W denote by Mw be the Verma module of highest weight w r r where r is the half sum of positive roots or Weyl vector and let Lw be its irreducible quotient the simple highest weight module of highest weight w r r Both Mw and Lw are locally finite weight modules over the complex semisimple Lie algebra g with the Weyl group W and therefore admit an algebraic character Let us write ch X for the character of a g module X The Kazhdan Lusztig conjectures state ch L w y w 1 ℓ w ℓ y P y w 1 ch M y displaystyle operatorname ch L w sum y leq w 1 ell w ell y P y w 1 operatorname ch M y ch M w y w P w 0 w w 0 y 1 ch L y displaystyle operatorname ch M w sum y leq w P w 0 w w 0 y 1 operatorname ch L y where w0 is the element of maximal length of the Weyl group These conjectures were proved over characteristic 0 algebraically closed fields independently by Alexander Beilinson and Joseph Bernstein 1981 and by Jean Luc Brylinski and Masaki Kashiwara 1981 The methods introduced in the course of the proof have guided development of representation theory throughout the 1980s and 1990s under the name geometric representation theory Remarks Edit 1 The two conjectures are known to be equivalent Moreover Borho Jantzen s translation principle implies that w r r can be replaced by w l r r for any dominant integral weight l Thus the Kazhdan Lusztig conjectures describe the Jordan Holder multiplicities of Verma modules in any regular integral block of Bernstein Gelfand Gelfand category O 2 A similar interpretation of all coefficients of Kazhdan Lusztig polynomials follows from the Jantzen conjecture which roughly says that individual coefficients of Py w are multiplicities of Ly in certain subquotient of the Verma module determined by a canonical filtration the Jantzen filtration The Jantzen conjecture in regular integral case was proved in a later paper of Beilinson and Bernstein 1993 3 David Vogan showed as a consequence of the conjectures that P y w q i q i dim Ext ℓ w ℓ y 2 i M y L w displaystyle P y w q sum i q i dim operatorname Ext ell w ell y 2i M y L w and that Extj My Lw vanishes if j ℓ w ℓ y is odd so the dimensions of all such Ext groups in category O are determined in terms of coefficients of Kazhdan Lusztig polynomials This result demonstrates that all coefficients of the Kazhdan Lusztig polynomials of a finite Weyl group are non negative integers However positivity for the case of a finite Weyl group W was already known from the interpretation of coefficients of the Kazhdan Lusztig polynomials as the dimensions of intersection cohomology groups irrespective of the conjectures Conversely the relation between Kazhdan Lusztig polynomials and the Ext groups theoretically can be used to prove the conjectures although this approach to proving them turned out to be more difficult to carry out 4 Some special cases of the Kazhdan Lusztig conjectures are easy to verify For example M1 is the antidominant Verma module which is known to be simple This means that M1 L1 establishing the second conjecture for w 1 since the sum reduces to a single term On the other hand the first conjecture for w w0 follows from the Weyl character formula and the formula for the character of a Verma module together with the fact that all Kazhdan Lusztig polynomials P y w 0 displaystyle P y w 0 are equal to 1 5 Kashiwara 1990 proved a generalization of the Kazhdan Lusztig conjectures to symmetrizable Kac Moody algebras Relation to intersection cohomology of Schubert varieties EditBy the Bruhat decomposition the space G B of the algebraic group G with Weyl group W is a disjoint union of affine spaces Xw parameterized by elements w of W The closures of these spaces Xw are called Schubert varieties and Kazhdan and Lusztig following a suggestion of Deligne showed how to express Kazhdan Lusztig polynomials in terms of intersection cohomology groups of Schubert varieties More precisely the Kazhdan Lusztig polynomial Py w q is equal to P y w q i q i dim I H X y 2 i X w displaystyle P y w q sum i q i dim IH X y 2i overline X w where each term on the right means take the complex IC of sheaves whose hyperhomology is the intersection homology of the Schubert variety of w the closure of the cell Xw take its cohomology of degree 2i and then take the dimension of the stalk of this sheaf at any point of the cell Xy whose closure is the Schubert variety of y The odd dimensional cohomology groups do not appear in the sum because they are all zero This gave the first proof that all coefficients of Kazhdan Lusztig polynomials for finite Weyl groups are non negative integers Generalization to real groups EditLusztig Vogan polynomials also called Kazhdan Lusztig polynomials or Kazhdan Lusztig Vogan polynomials were introduced in Lusztig amp Vogan 1983 They are analogous to Kazhdan Lusztig polynomials but are tailored to representations of real semisimple Lie groups and play major role in the conjectural description of their unitary duals Their definition is more complicated reflecting relative complexity of representations of real groups compared to complex groups The distinction in the cases directly connection to representation theory is explained on the level of double cosets or in other terms of actions on analogues of complex flag manifolds G B where G is a complex Lie group and B a Borel subgroup The original K L case is then about the details of decomposing B G B displaystyle B backslash G B a classical theme of the Bruhat decomposition and before that of Schubert cells in a Grassmannian The L V case takes a real form GR of G a maximal compact subgroup KR in that semisimple group GR and makes the complexification K of KR Then the relevant object of study is K G B displaystyle K backslash G B In March 2007 it was announced by whom that the L V polynomials had been calculated for the split form of E8 Generalization to other objects in representation theory EditThe second paper of Kazhdan and Lusztig established a geometric setting for definition of Kazhdan Lusztig polynomials namely the geometry of singularities of Schubert varieties in the flag variety Much of the later work of Lusztig explored analogues of Kazhdan Lusztig polynomials in the context of other natural singular algebraic varieties arising in representation theory in particular closures of nilpotent orbits and quiver varieties It turned out that the representation theory of quantum groups modular Lie algebras and affine Hecke algebras are all tightly controlled by appropriate analogues of Kazhdan Lusztig polynomials They admit an elementary description but the deeper properties of these polynomials necessary for representation theory follow from sophisticated techniques of modern algebraic geometry and homological algebra such as the use of intersection cohomology perverse sheaves and Beilinson Bernstein Deligne decomposition The coefficients of the Kazhdan Lusztig polynomials are conjectured to be the dimensions of some homomorphism spaces in Soergel s bimodule category This is the only known positive interpretation of these coefficients for arbitrary Coxeter groups Combinatorial theory EditCombinatorial properties of Kazhdan Lusztig polynomials and their generalizations are a topic of active current research Given their significance in representation theory and algebraic geometry attempts have been undertaken to develop the theory of Kazhdan Lusztig polynomials in purely combinatorial fashion relying to some extent on geometry but without reference to intersection cohomology and other advanced techniques This has led to exciting developments in algebraic combinatorics such as pattern avoidance phenomenon Some references are given in the textbook of Bjorner amp Brenti 2005 A research monograph on the subject is Billey amp Lakshmibai 2000 As of 2005 update there is no known combinatorial interpretation of all the coefficients of the Kazhdan Lusztig polynomials as the cardinalities of some natural sets even for the symmetric groups though explicit formulas exist in many special cases Inequality EditKobayashi 2013 proved that values of Kazhdan Lusztig polynomials at q 1 displaystyle q 1 for crystallographic Coxeter groups satisfy certain strict inequality Let W S displaystyle W S be a crystallographic Coxeter system and P u w q displaystyle P uw q its Kazhdan Lusztig polynomials If u lt w displaystyle u lt w and P u w 1 gt 1 displaystyle P uw 1 gt 1 then there exists a reflection t displaystyle t such that P u w 1 gt P t u w 1 gt 0 displaystyle P uw 1 gt P tu w 1 gt 0 References EditBeilinson Alexandre Bernstein Joseph 1981 Localisation de g modules Ser I Math vol 292 Paris C R Acad Sci pp 15 18 Beilinson Alexandre Bernstein Joseph 1993 A proof of the Jantzen conjectures Advances in Soviet Mathematics vol 16 pp 1 50 Billey Sara Lakshmibai V 2000 Singular loci of Schubert varieties Progress in Mathematics vol 182 Boston MA Birkhauser ISBN 0 8176 4092 4 Bjorner Anders Brenti Francesco 2005 Ch 5 Kazhdan Lusztig and R polynomials Combinatorics of Coxeter Groups Graduate Texts in Mathematics vol 231 Springer ISBN 978 3 540 44238 7 Brenti Francesco 2003 Kazhdan Lusztig Polynomials History Problems and Combinatorial Invariance Seminaire Lotharingien de Combinatoire Ellwangen Haus Schonenberg 49 Research article B49b Brylinski Jean Luc Kashiwara Masaki October 1981 Kazhdan Lusztig conjecture and holonomic systems Inventiones Mathematicae Springer Verlag 64 3 387 410 Bibcode 1981InMat 64 387B doi 10 1007 BF01389272 ISSN 0020 9910 S2CID 18403883 Kashiwara Masaki 1990 The Kazhdan Lusztig conjecture for symmetrizable KacMoody algebras The Grothendieck Festschrift II Progress in Mathematics vol 87 Boston Birkhauser pp 407 433 MR 1106905 Kazhdan David Lusztig George June 1979 Representations of Coxeter groups and Hecke algebras Inventiones Mathematicae Springer Verlag 53 2 165 184 Bibcode 1979InMat 53 165K doi 10 1007 BF01390031 ISSN 0020 9910 S2CID 120098142 Kazhdan David Lusztig George 1980a A topological approach to Springer s representations Advances in Mathematics 38 2 222 228 doi 10 1016 0001 8708 80 90005 5 Kazhdan David Lusztig George 1980b Schubert varieties and Poincare duality Proceedings of Symposia in Pure Mathematics vol XXXVI American Mathematical Society pp 185 203 doi 10 1090 pspum 036 573434 ISBN 9780821814390 Lusztig George Vogan David 1983 Singularities of closures of K orbits on flag manifolds Inventiones Mathematicae Springer Verlag 71 2 365 379 Bibcode 1983InMat 71 365L doi 10 1007 BF01389103 ISSN 0020 9910 S2CID 120917588 Polo Patrick 1999 Construction of arbitrary Kazhdan Lusztig polynomials in symmetric groups Representation Theory 3 4 90 104 doi 10 1090 S1088 4165 99 00074 6 ISSN 1088 4165 MR 1698201 Soergel Wolfgang 2006 Kazhdan Lusztig polynomials and indecomposable bimodules over polynomial rings Journal of the Institute of Mathematics of Jussieu 6 3 501 525 arXiv math 0403496 doi 10 1017 S1474748007000023 S2CID 120459494 Kobayashi Masato 2013 Inequalities on Bruhat graphs R and Kazhdan Lusztig polynomials Journal of Combinatorial Theory Series A 120 2 470 482 doi 10 1016 j jcta 2012 10 001 S2CID 205929043 External links EditReadings from Spring 2005 course on Kazhdan Lusztig Theory at U C Davis by Monica Vazirani Goresky Mark Tables of Kazhdan Lusztig polynomials The GAP programs for computing Kazhdan Lusztig polynomials Fokko du Cloux s Coxeter software for computing Kazhdan Lusztig polynomials for any Coxeter group Atlas software for computing Kazhdan Lusztig Vogan polynomials Retrieved from https en wikipedia org w index php title Kazhdan Lusztig polynomial amp oldid 1139779353, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.