fbpx
Wikipedia

Kapteyn series

Kapteyn series is a series expansion of analytic functions on a domain in terms of the Bessel function of the first kind. Kapteyn series are named after Willem Kapteyn, who first studied such series in 1893.[1][2] Let be a function analytic on the domain

with . Then can be expanded in the form

where

The path of the integration is the boundary of . Here , and for , is defined by

Kapteyn's series are important in physical problems. Among other applications, the solution of Kepler's equation can be expressed via a Kapteyn series:[2][3]

Relation between the Taylor coefficients and the coefficients of a function

Let us suppose that the Taylor series of   reads as

 

Then the   coefficients in the Kapteyn expansion of   can be determined as follows.[4]: 571 

 

Examples

The Kapteyn series of the powers of   are found by Kapteyn himself:[1]: 103,  [4]: 565 

 

For   it follows (see also [4]: 567 )

 

and for   [4]: 566 

 

Furthermore, inside the region  ,[4]: 559 

 

See also

References

  1. ^ a b Kapteyn, W. (1893). Recherches sur les functions de Fourier-Bessel. Ann. Sci. de l’École Norm. Sup., 3, 91-120.
  2. ^ a b Baricz, Árpád; Jankov Maširević, Dragana; Pogány, Tibor K. (2017). "Series of Bessel and Kummer-Type Functions". Lecture Notes in Mathematics. Cham: Springer International Publishing. doi:10.1007/978-3-319-74350-9. ISBN 978-3-319-74349-3. ISSN 0075-8434.
  3. ^ Borghi, Riccardo (2021). "Solving Kepler's equation via nonlinear sequence transformations". arXiv:2112.15154 [math.CA].
  4. ^ a b c d e Watson, G. N. (2011-06-06). A treatise on the theory of Bessel functions (1944 ed.). Cambridge University Press. OL 22965724M.

kapteyn, series, series, expansion, analytic, functions, domain, terms, bessel, function, first, kind, named, after, willem, kapteyn, first, studied, such, series, 1893, displaystyle, function, analytic, domain, displaystyle, left, mathbb, omega, left, frac, s. Kapteyn series is a series expansion of analytic functions on a domain in terms of the Bessel function of the first kind Kapteyn series are named after Willem Kapteyn who first studied such series in 1893 1 2 Let f displaystyle f be a function analytic on the domain D a z C W z z exp 1 z 2 1 1 z 2 a displaystyle D a left z in mathbb C Omega z left frac z exp sqrt 1 z 2 1 sqrt 1 z 2 right leq a right with a lt 1 displaystyle a lt 1 Then f displaystyle f can be expanded in the form f z a 0 2 n 1 a n J n n z z D a displaystyle f z alpha 0 2 sum n 1 infty alpha n J n nz quad z in D a where a n 1 2 p i 8 n z f z d z displaystyle alpha n frac 1 2 pi i oint Theta n z f z dz The path of the integration is the boundary of D a displaystyle D a Here 8 0 z 1 z displaystyle Theta 0 z 1 z and for n gt 0 displaystyle n gt 0 8 n z displaystyle Theta n z is defined by 8 n z 1 4 k 0 n 2 n 2 k 2 n k 1 k n z 2 2 k n displaystyle Theta n z frac 1 4 sum k 0 left frac n 2 right frac n 2k 2 n k 1 k left frac nz 2 right 2k n Kapteyn s series are important in physical problems Among other applications the solution E displaystyle E of Kepler s equation M E e sin E displaystyle M E e sin E can be expressed via a Kapteyn series 2 3 E M 2 n 1 sin n M n J n n e displaystyle E M 2 sum n 1 infty frac sin nM n J n ne Contents 1 Relation between the Taylor coefficients and the UNIQ postMath 0000000F QINU coefficients of a function 2 Examples 3 See also 4 ReferencesRelation between the Taylor coefficients and the a n displaystyle alpha n coefficients of a function EditLet us suppose that the Taylor series of f displaystyle f reads as f z n 0 a n z n displaystyle f z sum n 0 infty a n z n Then the a n displaystyle alpha n coefficients in the Kapteyn expansion of f displaystyle f can be determined as follows 4 571 a 0 a 0 a n 1 4 k 0 n 2 n 2 k 2 n k 1 k n 2 n 2 k 1 a n 2 k n 1 displaystyle begin aligned alpha 0 amp a 0 alpha n amp frac 1 4 sum k 0 left frac n 2 right frac n 2k 2 n k 1 k n 2 n 2k 1 a n 2k quad n geq 1 end aligned Examples EditThe Kapteyn series of the powers of z displaystyle z are found by Kapteyn himself 1 103 4 565 z 2 n n 2 m 0 n m 1 n 2 m n 1 m J n 2 m n 2 m z z D 1 displaystyle left frac z 2 right n n 2 sum m 0 infty frac n m 1 n 2m n 1 m J n 2m n 2m z quad z in D 1 For n 1 displaystyle n 1 it follows see also 4 567 z 2 k 0 J 2 k 1 2 k 1 z 2 k 1 2 displaystyle z 2 sum k 0 infty frac J 2k 1 2k 1 z 2k 1 2 and for n 2 displaystyle n 2 4 566 z 2 2 k 1 J 2 k 2 k z k 2 displaystyle z 2 2 sum k 1 infty frac J 2k 2kz k 2 Furthermore inside the region D 1 displaystyle D 1 4 559 1 1 z 1 2 k 1 J k k z displaystyle frac 1 1 z 1 2 sum k 1 infty J k kz See also EditSchlomilch s seriesReferences Edit a b Kapteyn W 1893 Recherches sur les functions de Fourier Bessel Ann Sci de l Ecole Norm Sup 3 91 120 a b Baricz Arpad Jankov Masirevic Dragana Pogany Tibor K 2017 Series of Bessel and Kummer Type Functions Lecture Notes in Mathematics Cham Springer International Publishing doi 10 1007 978 3 319 74350 9 ISBN 978 3 319 74349 3 ISSN 0075 8434 Borghi Riccardo 2021 Solving Kepler s equation via nonlinear sequence transformations arXiv 2112 15154 math CA a b c d e Watson G N 2011 06 06 A treatise on the theory of Bessel functions 1944 ed Cambridge University Press OL 22965724M Retrieved from https en wikipedia org w index php title Kapteyn series amp oldid 1109861691, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.