fbpx
Wikipedia

July 2012 solar storm

The solar storm of 2012 was a solar storm involving an unusually large and strong coronal mass ejection that occurred on July 23, 2012. It missed Earth with a margin of approximately nine days, as the equator of the Sun rotates around its own axis with a period of about 25 days.[1]

Solar storm of 2012
The coronal mass ejection, as photographed by STEREO
DateJuly 23, 2012 (2012-07-23)
TypeCoronal mass ejection
OutcomeMissed striking the Earth by nine days
Part of Solar cycle 24

The region that produced the outburst was thus not pointed directly towards Earth at that time. The strength of the eruption has been predicted to be comparable to the 1859 Carrington Event that caused damage to electrical equipment worldwide, which at that time consisted mostly of telegraph systems.[2]

Overview edit

 
The event occurred in 2012, near the local maximum of sunspots that can be seen in this graph.

At 02:08 UT on 23 July 2012, a large coronal mass ejection (CME) was launched from the Sun.[3] The eruption emanated from solar active region 11520 and coincided with what was at most an X2.5-class solar flare.[4] The CME expelled a pair of adjacent magnetic clouds that drove a fast-moving shock wave outward from the Sun.[3] The eruption tore through Earth's orbit, hitting the STEREO-A spacecraft.[2] The spacecraft is a solar observatory equipped to measure such activity, and because it was far away from the Earth and thus not exposed to the strong electrical currents that can be induced when a CME hits the Earth's magnetosphere,[2] it survived the encounter and provided researchers with valuable data. Spacecraft observations recorded the shockwave at 20:55 UTC on 23 July while the magnetic clouds arrived two hours later. The leading shock wave associated with the CME was travelling radially at a speed of around 3,300 km/s (2,100 mi/s) relative to STEREO-A by the time it reached the spacecraft. The CME travelled from the Sun to Earth's orbit in about 20.78 hours, indicating an average speed of 2,000 km/s (1,200 mi/s).[3]

Based on the collected data, the eruption consisted of two separate ejections which were able to reach exceptionally high strength as the interplanetary medium around the Sun had been cleared by a smaller CME four days earlier.[2] Interaction between the primary CME and the preceding CMEs as they traversed the interplanetary medium also led to amplification of the magnetic field of the ejecta that continued by the time the primary CME reached Earth's orbit.[5]

The event occurred at a time of high sunspot activity during solar cycle 24.

Predicted effects edit

Had the CME hit the Earth, it is likely that it would have inflicted serious damage to electronic systems on a global scale.[2] The resulting geomagnetic storm may have had a strength of −1,150 to −600 nT, comparable to the impact of the Carrington Event.[5] A 2013 study estimated that the economic cost to the United States would have been between US$600 billion and $2.6 trillion.[6] Ying D. Liu, professor at China's State Key Laboratory of Space Weather, estimated that the recovery time from such a disaster would have been about four to ten years.[7]

Historical comparisons edit

The record fastest CME associated with the August 1972 solar storm is thought to have occurred in a similar process of earlier CMEs clearing particles in the path to Earth. This storm arrived in 14.6 hours, an even shorter duration after the parent flare erupted than for the great solar storm of 1859.

See also edit

References edit

  1. ^ Williams, David R. (July 1, 2013). "Sun Fact Sheet". NASA. Retrieved January 13, 2015.
  2. ^ a b c d e Phillips, Tony (July 23, 2014). "Near Miss: The Solar Superstorm of July 2012". NASA. Retrieved January 10, 2015.
  3. ^ a b c Riley, Pete; Caplan, Ronald M.; Giacalone, Joe; Lario, David; Liu, Ying (February 26, 2016). "Properties of the fast forward shock driven by the 2012 July 23 extreme coronal mass ejection". The Astrophysical Journal. 819 (1): 57. arXiv:1510.06088. doi:10.3847/0004-637X/819/1/57.
  4. ^ Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel (February 2018). "Extreme Space Weather Events: From Cradle to Grave". Space Science Reviews. 214 (1): 21. Bibcode:2018SSRv..214...21R. doi:10.1007/s11214-017-0456-3. S2CID 255074482.
  5. ^ a b Liu, Ying D.; Luhmann, Janet G.; Kajdič, Primož; Kilpua, Emilia K.J.; Lugaz, Noé; Nitta, Nariaki V.; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D.; Farrugia, Charles J.; Galvin, Antoinette B. (March 18, 2014). "Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections". Nature Communications. 5 (1): 3481. arXiv:1405.6088. Bibcode:2014NatCo...5.3481L. doi:10.1038/ncomms4481. PMID 24642508. S2CID 11999567.
  6. ^ Lloyd's (2013). Solar Storm Risk to the North American Electric Grid (PDF) (Report). (PDF) from the original on February 19, 2021. Retrieved September 16, 2023.
  7. ^ Sanders, Robert (March 18, 2014). . UC Berkeley News Center. Archived from the original on March 19, 2014. Retrieved January 10, 2015.
  • Gopalswamy, N.; S. Yashiro; N. Thakur; P. Mäkelä; H. Xie; S. Akiyama (2016). "The 2012 July 23 Backside Eruption: An Extreme Energetic Particle Event?". Astrophysical Journal. 833 (2): 216. arXiv:1610.05790. Bibcode:2016ApJ...833..216G. doi:10.3847/1538-4357/833/2/216.

External links edit

  • ScienceCasts: Carrington-class CME Narrowly Misses Earth on YouTube

july, 2012, solar, storm, solar, storm, 2012, solar, storm, involving, unusually, large, strong, coronal, mass, ejection, that, occurred, july, 2012, missed, earth, with, margin, approximately, nine, days, equator, rotates, around, axis, with, period, about, d. The solar storm of 2012 was a solar storm involving an unusually large and strong coronal mass ejection that occurred on July 23 2012 It missed Earth with a margin of approximately nine days as the equator of the Sun rotates around its own axis with a period of about 25 days 1 Solar storm of 2012The coronal mass ejection as photographed by STEREODateJuly 23 2012 2012 07 23 TypeCoronal mass ejectionOutcomeMissed striking the Earth by nine daysPart of Solar cycle 24 The region that produced the outburst was thus not pointed directly towards Earth at that time The strength of the eruption has been predicted to be comparable to the 1859 Carrington Event that caused damage to electrical equipment worldwide which at that time consisted mostly of telegraph systems 2 Contents 1 Overview 1 1 Predicted effects 2 Historical comparisons 3 See also 4 References 5 External linksOverview edit nbsp The event occurred in 2012 near the local maximum of sunspots that can be seen in this graph At 02 08 UT on 23 July 2012 a large coronal mass ejection CME was launched from the Sun 3 The eruption emanated from solar active region 11520 and coincided with what was at most an X2 5 class solar flare 4 The CME expelled a pair of adjacent magnetic clouds that drove a fast moving shock wave outward from the Sun 3 The eruption tore through Earth s orbit hitting the STEREO A spacecraft 2 The spacecraft is a solar observatory equipped to measure such activity and because it was far away from the Earth and thus not exposed to the strong electrical currents that can be induced when a CME hits the Earth s magnetosphere 2 it survived the encounter and provided researchers with valuable data Spacecraft observations recorded the shockwave at 20 55 UTC on 23 July while the magnetic clouds arrived two hours later The leading shock wave associated with the CME was travelling radially at a speed of around 3 300 km s 2 100 mi s relative to STEREO A by the time it reached the spacecraft The CME travelled from the Sun to Earth s orbit in about 20 78 hours indicating an average speed of 2 000 km s 1 200 mi s 3 Based on the collected data the eruption consisted of two separate ejections which were able to reach exceptionally high strength as the interplanetary medium around the Sun had been cleared by a smaller CME four days earlier 2 Interaction between the primary CME and the preceding CMEs as they traversed the interplanetary medium also led to amplification of the magnetic field of the ejecta that continued by the time the primary CME reached Earth s orbit 5 The event occurred at a time of high sunspot activity during solar cycle 24 Predicted effects edit Had the CME hit the Earth it is likely that it would have inflicted serious damage to electronic systems on a global scale 2 The resulting geomagnetic storm may have had a strength of 1 150 to 600 nT comparable to the impact of the Carrington Event 5 A 2013 study estimated that the economic cost to the United States would have been between US 600 billion and 2 6 trillion 6 Ying D Liu professor at China s State Key Laboratory of Space Weather estimated that the recovery time from such a disaster would have been about four to ten years 7 Historical comparisons editThe record fastest CME associated with the August 1972 solar storm is thought to have occurred in a similar process of earlier CMEs clearing particles in the path to Earth This storm arrived in 14 6 hours an even shorter duration after the parent flare erupted than for the great solar storm of 1859 See also editList of solar stormsReferences edit Williams David R July 1 2013 Sun Fact Sheet NASA Retrieved January 13 2015 a b c d e Phillips Tony July 23 2014 Near Miss The Solar Superstorm of July 2012 NASA Retrieved January 10 2015 a b c Riley Pete Caplan Ronald M Giacalone Joe Lario David Liu Ying February 26 2016 Properties of the fast forward shock driven by the 2012 July 23 extreme coronal mass ejection The Astrophysical Journal 819 1 57 arXiv 1510 06088 doi 10 3847 0004 637X 819 1 57 Riley Pete Baker Dan Liu Ying D Verronen Pekka Singer Howard Gudel Manuel February 2018 Extreme Space Weather Events From Cradle to Grave Space Science Reviews 214 1 21 Bibcode 2018SSRv 214 21R doi 10 1007 s11214 017 0456 3 S2CID 255074482 a b Liu Ying D Luhmann Janet G Kajdic Primoz Kilpua Emilia K J Lugaz Noe Nitta Nariaki V Mostl Christian Lavraud Benoit Bale Stuart D Farrugia Charles J Galvin Antoinette B March 18 2014 Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections Nature Communications 5 1 3481 arXiv 1405 6088 Bibcode 2014NatCo 5 3481L doi 10 1038 ncomms4481 PMID 24642508 S2CID 11999567 Lloyd s 2013 Solar Storm Risk to the North American Electric Grid PDF Report Archived PDF from the original on February 19 2021 Retrieved September 16 2023 Sanders Robert March 18 2014 Fierce solar magnetic storm barely missed Earth in 2012 UC Berkeley News Center Archived from the original on March 19 2014 Retrieved January 10 2015 Gopalswamy N S Yashiro N Thakur P Makela H Xie S Akiyama 2016 The 2012 July 23 Backside Eruption An Extreme Energetic Particle Event Astrophysical Journal 833 2 216 arXiv 1610 05790 Bibcode 2016ApJ 833 216G doi 10 3847 1538 4357 833 2 216 External links editScienceCasts Carrington class CME Narrowly Misses Earth on YouTube Portals nbsp Astronomy nbsp Stars nbsp Spaceflight nbsp Outer space nbsp Solar System Retrieved from https en wikipedia org w index php title July 2012 solar storm amp oldid 1187731472, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.