fbpx
Wikipedia

Joos–Weinberg equation

In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = 12, 32, 52 ...). The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature (see references).

It is named after Hans H. Joos and Steven Weinberg, found in the early 1960s.[1][2][3]

Statement edit

Introducing a 2(2j + 1) × 2(2j + 1) matrix;[2]

 

symmetric in any two tensor indices, which generalizes the gamma matrices in the Dirac equation,[3][4] the equation is[5]

 

or

 

 

 

 

 

(4)

Lorentz group structure edit

For the JW equations the representation of the Lorentz group is[6]

 

This representation has definite spin j. It turns out that a spin j particle in this representation satisfy field equations too. These equations are very much like the Dirac equations. It is suitable when the symmetries of charge conjugation, time reversal symmetry, and parity are good.

The representations D(j, 0) and D(0, j) can each separately represent particles of spin j. A state or quantum field in such a representation would satisfy no field equation except the Klein–Gordon equation.

Lorentz covariant tensor description of Weinberg–Joos states edit

The six-component spin-1 representation space,

 

can be labeled by a pair of anti-symmetric Lorentz indexes, [αβ], meaning that it transforms as an antisymmetric Lorentz tensor of second rank   i.e.

 

The j-fold Kronecker product T[α1β1]...[αjβj] of B[αβ]

 

 

 

 

 

(8A)

decomposes into a finite series of Lorentz-irreducible representation spaces according to

 

and necessarily contains a   sector. This sector can instantly be identified by means of a momentum independent projector operator P(j,0), designed on the basis of C(1), one of the Casimir elements (invariants)[7] of the Lie algebra of the Lorentz group, which are defined as,

 

 

 

 

 

(8B)

where Mμν are constant (2j1+1)(2j2+1) × (2j1+1)(2j2+1) matrices defining the elements of the Lorentz algebra within the   representations. The Capital Latin letter labels indicate[8] the finite dimensionality of the representation spaces under consideration which describe the internal angular momentum (spin) degrees of freedom.

The representation spaces   are eigenvectors to C(1) in (8B) according to,

 

Here we define:

 

to be the C(1) eigenvalue of the   sector. Using this notation we define the projector operator, P(j,0) in terms of C(1):[8]

 

 

 

 

 

(8C)

Such projectors can be employed to search through T[α1β1]...[αjβj] for   and exclude all the rest. Relativistic second order wave equations for any j are then straightforwardly obtained in first identifying the   sector in T[α1β1]...[αjβj] in (8A) by means of the Lorentz projector in (8C) and then imposing on the result the mass shell condition.

This algorithm is free from auxiliary conditions. The scheme also extends to half-integer spins,   in which case the Kronecker product of T[α1β1]...[αjβj] with the Dirac spinor,

 

has to be considered. The choice of the totally antisymmetric Lorentz tensor of second rank, B[αiβi], in the above equation (8A) is only optional. It is possible to start with multiple Kronecker products of totally symmetric second rank Lorentz tensors, Aαiβi. The latter option should be of interest in theories where high-spin   Joos–Weinberg fields preferably couple to symmetric tensors, such as the metric tensor in gravity.

An Example[8] edit

The

 

transforming in the Lorenz tensor spinor of second rank,

 

The Lorentz group generators within this representation space are denoted by   and given by:

 
 
 

where 1[αβ][γδ] stands for the identity in this space, 1S and MSμν are the respective unit operator and the Lorentz algebra elements within the Dirac space, while γμ are the standard gamma matrices. The [MATμν][αβ][γδ] generators express in terms of the generators in the four-vector,

 

as

 

Then, the explicit expression for the Casimir invariant C(1) in (8B) takes the form,

 

and the Lorentz projector on (3/2,0)⊕(0,3/2) is given by,

 

In effect, the (3/2,0)⊕(0,3/2) degrees of freedom, denoted by

 

are found to solve the following second order equation,

 

Expressions for the solutions can be found in.[8]

See also edit

References edit

  1. ^ Joos, Hans (1962). "Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik". Fortschritte der Physik (in German). 10 (3): 65–146. Bibcode:1962ForPh..10...65J. doi:10.1002/prop.2180100302.
  2. ^ a b Weinberg, S. (1964). (PDF). Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318. Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-28.; Weinberg, S. (1964). (PDF). Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882. Archived from the original (PDF) on 2022-03-09. Retrieved 2016-12-28.; Weinberg, S. (1969). (PDF). Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893. Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-28.
  3. ^ a b E.A. Jeffery (1978). "Component Minimization of the Bargman–Wigner wavefunction". Australian Journal of Physics. Melbourne: CSIRO. 31 (2): 137. Bibcode:1978AuJPh..31..137J. doi:10.1071/ph780137. NB: The convention for the four-gradient in this article is μ = (∂/∂t, ∇ ), same as the Wikipedia article. Jeffery's conventions are different: μ = (−i∂/∂t, ∇ ). Also Jeffery uses collects the x and y components of the momentum operator: p± = p1 ± ip2 = px ± ipy. The components p± are not to be confused with ladder operators; the factors of ±1, ±i occur from the gamma matrices.
  4. ^ Gábor Zsolt Tóth (2012). "Projection operator approach to the quantization of higher spin fields". The European Physical Journal C. 73: 2273. arXiv:1209.5673. Bibcode:2013EPJC...73.2273T. doi:10.1140/epjc/s10052-012-2273-x. S2CID 119140104.
  5. ^ D. Shay (1968). "A Lagrangian formulation of the Joos–Weinberg wave equations for spin-j particles". Il Nuovo Cimento A. 57 (2): 210–218. Bibcode:1968NCimA..57..210S. doi:10.1007/BF02891000. S2CID 117170355.
  6. ^ T. Jaroszewicz; P.S Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics. California, USA. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
  7. ^ Y. S. Kim; Marilyn E. Noz (1986). Theory and applications of the Poincaré group. Dordrecht, Holland: Reidel. ISBN 9789027721419.
  8. ^ a b c d E. G. Delgado Acosta; V. M. Banda Guzmán; M. Kirchbach (2015). "Bosonic and fermionic Weinberg-Joos (j,0) ⊕ (0,j) states of arbitrary spins as Lorentz tensors or tensor-spinors and second-order theory". The European Physical Journal A. 51 (3): 35. arXiv:1503.07230. Bibcode:2015EPJA...51...35D. doi:10.1140/epja/i2015-15035-x. S2CID 118590440.
  • V. V. Dvoeglazov (1993). "Lagrangian Formulation of the Joos–Weinberg's 2(2j+1)–theory and Its Connection with the Skew-Symmetric Tensor Description". International Journal of Geometric Methods in Modern Physics. 13 (4): 1650036. arXiv:hep-th/9305141. Bibcode:2016IJGMM..1350036D. doi:10.1142/S0219887816500365. S2CID 55918215.

joos, weinberg, equation, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, december, 2016, learn, when, remove, this, template, message, relativistic, quantum, mec. This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details December 2016 Learn how and when to remove this template message In relativistic quantum mechanics and quantum field theory the Joos Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j an integer for bosons j 1 2 3 or half integer for fermions j 1 2 3 2 5 2 The solutions to the equations are wavefunctions mathematically in the form of multi component spinor fields The spin quantum number is usually denoted by s in quantum mechanics however in this context j is more typical in the literature see references It is named after Hans H Joos and Steven Weinberg found in the early 1960s 1 2 3 Contents 1 Statement 2 Lorentz group structure 2 1 Lorentz covariant tensor description of Weinberg Joos states 2 1 1 An Example 8 3 See also 4 ReferencesStatement editIntroducing a 2 2j 1 2 2j 1 matrix 2 g m 1 m 2 m 2 j displaystyle gamma mu 1 mu 2 cdots mu 2j nbsp symmetric in any two tensor indices which generalizes the gamma matrices in the Dirac equation 3 4 the equation is 5 i ℏ 2 j g m 1 m 2 m 2 j m 1 m 2 m 2 j m c 2 j PS 0 displaystyle i hbar 2j gamma mu 1 mu 2 cdots mu 2j partial mu 1 partial mu 2 cdots partial mu 2j mc 2j Psi 0 nbsp or g m 1 m 2 m 2 j P m 1 P m 2 P m 2 j m c 2 j PS 0 displaystyle gamma mu 1 mu 2 cdots mu 2j P mu 1 P mu 2 cdots P mu 2j mc 2j Psi 0 nbsp 4 Lorentz group structure editMain article Representation theory of the Lorentz group For the JW equations the representation of the Lorentz group is 6 D J W D j 0 D 0 j displaystyle D mathrm JW D j 0 oplus D 0 j nbsp This representation has definite spin j It turns out that a spin j particle in this representation satisfy field equations too These equations are very much like the Dirac equations It is suitable when the symmetries of charge conjugation time reversal symmetry and parity are good The representations D j 0 and D 0 j can each separately represent particles of spin j A state or quantum field in such a representation would satisfy no field equation except the Klein Gordon equation Lorentz covariant tensor description of Weinberg Joos states edit The six component spin 1 representation space D J W D 1 0 D 0 1 displaystyle D mathrm JW D 1 0 oplus D 0 1 nbsp can be labeled by a pair of anti symmetric Lorentz indexes ab meaning that it transforms as an antisymmetric Lorentz tensor of second rank B a b displaystyle B alpha beta nbsp i e B a b D 1 0 D 0 1 displaystyle B alpha beta sim D 1 0 oplus D 0 1 nbsp The j fold Kronecker product T a1b1 ajbj of B ab T a 1 b 1 a j b j B a 1 b 1 B a j b j i 1 j B a i b i displaystyle T alpha 1 beta 1 cdots alpha j beta j B alpha 1 beta 1 otimes cdots otimes B alpha j beta j bigotimes i 1 j B alpha i beta i nbsp 8A decomposes into a finite series of Lorentz irreducible representation spaces according to i 1 j D i 1 0 D i 0 1 D j 0 D 0 j D j j D j k j l D j l j k D 0 0 displaystyle bigotimes i 1 j left D i 1 0 oplus D i 0 1 right to D j 0 oplus D 0 j oplus D j j oplus cdots oplus D j k j l oplus D j l j k oplus cdots oplus D 0 0 nbsp and necessarily contains a D j 0 D 0 j displaystyle D j 0 oplus D 0 j nbsp sector This sector can instantly be identified by means of a momentum independent projector operator P j 0 designed on the basis of C 1 one of the Casimir elements invariants 7 of the Lie algebra of the Lorentz group which are defined as C 1 A B 1 4 M m n A C M m n C B C 2 A B 1 4 e m n l h M m n A C M l h C B A B C 1 2 j 1 1 2 j 2 1 displaystyle begin cases left C 1 right AB frac 1 4 left M mu nu right A C left M mu nu right CB 6pt left C 2 right AB frac 1 4 varepsilon mu nu lambda eta left M mu nu right A C left M lambda eta right CB end cases qquad A B C 1 ldots 2j 1 1 2j 2 1 nbsp 8B where Mmn are constant 2j1 1 2j2 1 2j1 1 2j2 1 matrices defining the elements of the Lorentz algebra within the D j 1 j 2 D j 2 j 1 displaystyle D j 1 j 2 oplus D j 2 j 1 nbsp representations The Capital Latin letter labels indicate 8 the finite dimensionality of the representation spaces under consideration which describe the internal angular momentum spin degrees of freedom The representation spaces D j 1 j 2 D j 2 j 1 displaystyle D j 1 j 2 oplus D j 2 j 1 nbsp are eigenvectors to C 1 in 8B according to C 1 D j 1 j 2 D j 2 j 1 j 1 j 1 1 j 2 j 2 1 D j 1 j 2 D j 2 j 1 displaystyle C 1 left D j 1 j 2 oplus D j 2 j 1 right left j 1 j 1 1 j 2 j 2 1 right left D j 1 j 2 oplus D j 2 j 1 right nbsp Here we define l j 1 j 2 1 j 1 j 1 1 j 2 j 2 1 displaystyle lambda j 1 j 2 1 j 1 j 1 1 j 2 j 2 1 nbsp to be the C 1 eigenvalue of the D j 1 j 2 D j 2 j 1 displaystyle D j 1 j 2 oplus D j 2 j 1 nbsp sector Using this notation we define the projector operator P j 0 in terms of C 1 8 P j 0 a 1 b 1 a j b j r 1 s 1 r j s j k l C 1 l j k j l 1 l j 0 1 l j k j l 1 a 1 b 1 a j b j r 1 s 1 r j s j displaystyle left P j 0 right left alpha 1 beta 1 right cdots left alpha j beta j right left rho 1 sigma 1 right cdots left rho j sigma j right left prod k l left frac C 1 lambda j k j l 1 lambda j 0 1 lambda j k j l 1 right right left alpha 1 beta 1 right cdots left alpha j beta j right left rho 1 sigma 1 right cdots left rho j sigma j right nbsp 8C Such projectors can be employed to search through T a1b1 ajbj for D j 0 D 0 j displaystyle D j 0 oplus D 0 j nbsp and exclude all the rest Relativistic second order wave equations for any j are then straightforwardly obtained in first identifying the D j 0 D 0 j displaystyle D j 0 oplus D 0 j nbsp sector in T a1b1 ajbj in 8A by means of the Lorentz projector in 8C and then imposing on the result the mass shell condition This algorithm is free from auxiliary conditions The scheme also extends to half integer spins s j 1 2 displaystyle s j tfrac 1 2 nbsp in which case the Kronecker product of T a1b1 ajbj with the Dirac spinor D 1 2 0 D 0 1 2 displaystyle D left frac 1 2 0 right oplus D left 0 frac 1 2 right nbsp has to be considered The choice of the totally antisymmetric Lorentz tensor of second rank B aibi in the above equation 8A is only optional It is possible to start with multiple Kronecker products of totally symmetric second rank Lorentz tensors Aaibi The latter option should be of interest in theories where high spin D j 0 D 0 j displaystyle D j 0 oplus D 0 j nbsp Joos Weinberg fields preferably couple to symmetric tensors such as the metric tensor in gravity An Example 8 edit The 3 2 0 0 3 2 displaystyle left tfrac 3 2 0 right oplus left 0 tfrac 3 2 right nbsp transforming in the Lorenz tensor spinor of second rank ps m n 1 0 0 1 1 2 0 0 1 2 displaystyle psi mu nu 1 0 oplus 0 1 otimes left left tfrac 1 2 0 right oplus left 0 tfrac 1 2 right right nbsp The Lorentz group generators within this representation space are denoted by M m n A T S a b g d displaystyle left M mu nu ATS right alpha beta gamma delta nbsp and given by M m n A T S a b g d M m n A T a b g d 1 S 1 a b g d M m n S displaystyle left M mu nu ATS right alpha beta gamma delta left M mu nu AT right alpha beta gamma delta mathbf 1 S mathbf 1 alpha beta gamma delta left M mu nu S right nbsp 1 a b g d 1 2 g a g g b d g a d g b g displaystyle mathbf 1 alpha beta gamma delta tfrac 1 2 left g alpha gamma g beta delta g alpha delta g beta gamma right nbsp M m n S 1 2 s m n i 4 g m g n displaystyle M mu nu S tfrac 1 2 sigma mu nu frac i 4 gamma mu gamma nu nbsp where 1 ab gd stands for the identity in this space 1S and MSmn are the respective unit operator and the Lorentz algebra elements within the Dirac space while gm are the standard gamma matrices The MATmn ab gd generators express in terms of the generators in the four vector M m n V a b i g a m g b n g a n g b m displaystyle left M mu nu V right alpha beta i left g alpha mu g beta nu g alpha nu g beta mu right nbsp as M m n A T a b g d 2 1 a b k s M m n V s r 1 r k g d displaystyle left M mu nu AT right alpha beta gamma delta 2 cdot mathbf 1 alpha beta kappa sigma left M mu nu V right sigma rho mathbf 1 rho kappa gamma delta nbsp Then the explicit expression for the Casimir invariant C 1 in 8B takes the form C 1 a b g d 1 8 s a b s g d s g d s a b 22 1 a b g d displaystyle left C 1 right alpha beta gamma delta frac 1 8 left sigma alpha beta sigma gamma delta sigma gamma delta sigma alpha beta 22 cdot mathbf 1 alpha beta gamma delta right nbsp and the Lorentz projector on 3 2 0 0 3 2 is given by P 3 2 0 a b g d 1 8 s a b s g d s g d s a b 1 12 s a b s g d displaystyle left P left frac 3 2 0 right right alpha beta gamma delta frac 1 8 left sigma alpha beta sigma gamma delta sigma gamma delta sigma alpha beta right frac 1 12 sigma alpha beta sigma gamma delta nbsp In effect the 3 2 0 0 3 2 degrees of freedom denoted by w 3 2 0 p 3 2 l g d displaystyle left w pm left frac 3 2 0 right left mathbf p tfrac 3 2 lambda right right gamma delta nbsp are found to solve the following second order equation P 3 2 0 a b g d p 2 m 2 1 a b g d w 3 2 0 p 3 2 l g d 0 displaystyle left left P left frac 3 2 0 right right alpha beta gamma delta p 2 m 2 cdot mathbf 1 alpha beta gamma delta right left w pm left frac 3 2 0 right left mathbf p tfrac 3 2 lambda right right gamma delta 0 nbsp Expressions for the solutions can be found in 8 See also editHigher dimensional gamma matrices Bargmann Wigner equations alternative equations which describe free particles of any spin Higher spin theoryReferences edit Joos Hans 1962 Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik Fortschritte der Physik in German 10 3 65 146 Bibcode 1962ForPh 10 65J doi 10 1002 prop 2180100302 a b Weinberg S 1964 Feynman Rules for Any spin PDF Phys Rev 133 5B B1318 B1332 Bibcode 1964PhRv 133 1318W doi 10 1103 PhysRev 133 B1318 Archived from the original PDF on 2022 03 25 Retrieved 2016 12 28 Weinberg S 1964 Feynman Rules for Any spin II Massless Particles PDF Phys Rev 134 4B B882 B896 Bibcode 1964PhRv 134 882W doi 10 1103 PhysRev 134 B882 Archived from the original PDF on 2022 03 09 Retrieved 2016 12 28 Weinberg S 1969 Feynman Rules for Any spin III PDF Phys Rev 181 5 1893 1899 Bibcode 1969PhRv 181 1893W doi 10 1103 PhysRev 181 1893 Archived from the original PDF on 2022 03 25 Retrieved 2016 12 28 a b E A Jeffery 1978 Component Minimization of the Bargman Wigner wavefunction Australian Journal of Physics Melbourne CSIRO 31 2 137 Bibcode 1978AuJPh 31 137J doi 10 1071 ph780137 NB The convention for the four gradient in this article is m t same as the Wikipedia article Jeffery s conventions are different m i t Also Jeffery uses collects the x and y components of the momentum operator p p1 ip2 px ipy The components p are not to be confused with ladder operators the factors of 1 i occur from the gamma matrices Gabor Zsolt Toth 2012 Projection operator approach to the quantization of higher spin fields The European Physical Journal C 73 2273 arXiv 1209 5673 Bibcode 2013EPJC 73 2273T doi 10 1140 epjc s10052 012 2273 x S2CID 119140104 D Shay 1968 A Lagrangian formulation of the Joos Weinberg wave equations for spin j particles Il Nuovo Cimento A 57 2 210 218 Bibcode 1968NCimA 57 210S doi 10 1007 BF02891000 S2CID 117170355 T Jaroszewicz P S Kurzepa 1992 Geometry of spacetime propagation of spinning particles Annals of Physics California USA 216 2 226 267 Bibcode 1992AnPhy 216 226J doi 10 1016 0003 4916 92 90176 M Y S Kim Marilyn E Noz 1986 Theory and applications of the Poincare group Dordrecht Holland Reidel ISBN 9789027721419 a b c d E G Delgado Acosta V M Banda Guzman M Kirchbach 2015 Bosonic and fermionic Weinberg Joos j 0 0 j states of arbitrary spins as Lorentz tensors or tensor spinors and second order theory The European Physical Journal A 51 3 35 arXiv 1503 07230 Bibcode 2015EPJA 51 35D doi 10 1140 epja i2015 15035 x S2CID 118590440 V V Dvoeglazov 1993 Lagrangian Formulation of the Joos Weinberg s 2 2j 1 theory and Its Connection with the Skew Symmetric Tensor Description International Journal of Geometric Methods in Modern Physics 13 4 1650036 arXiv hep th 9305141 Bibcode 2016IJGMM 1350036D doi 10 1142 S0219887816500365 S2CID 55918215 Retrieved from https en wikipedia org w index php title Joos Weinberg equation amp oldid 1173481728, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.