fbpx
Wikipedia

Joback method

The Joback method[1] (often named Joback/Reid method) predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only.

Basic principles edit

Group-contribution method edit

 
Principle of a group-contribution method

The Joback method is a group-contribution method. These kinds of methods use basic structural information of a chemical molecule, like a list of simple functional groups, add parameters to these functional groups, and calculate thermophysical and transport properties as a function of the sum of group parameters.

Joback assumes that there are no interactions between the groups, and therefore only uses additive contributions and no contributions for interactions between groups. Other group-contribution methods, especially methods like UNIFAC, which estimate mixture properties like activity coefficients, use both simple additive group parameters and group-interaction parameters. The big advantage of using only simple group parameters is the small number of needed parameters. The number of needed group-interaction parameters gets very high for an increasing number of groups (1 for two groups, 3 for three groups, 6 for four groups, 45 for ten groups and twice as much if the interactions are not symmetric).

Nine of the properties are single temperature-independent values, mostly estimated by a simple sum of group contribution plus an addend. Two of the estimated properties are temperature-dependent: the ideal-gas heat capacity and the dynamic viscosity of liquids. The heat-capacity polynomial uses 4 parameters, and the viscosity equation only 2. In both cases the equation parameters are calculated by group contributions.

History edit

The Joback method is an extension of the Lydersen method[2] and uses very similar groups, formulas, and parameters for the three properties the Lydersen already supported (critical temperature, critical pressure, critical volume).

Joback extended the range of supported properties, created new parameters and modified slightly the formulas of the old Lydersen method.

Model strengths and weaknesses edit

Strengths edit

The popularity and success of the Joback method mainly originates from the single group list for all properties. This allows one to get all eleven supported properties from a single analysis of the molecular structure.

The Joback method additionally uses a very simple and easy to assign group scheme, which makes the method usable for people with only basic chemical knowledge.

Weaknesses edit

 
Systematic errors of the Joback method (normal boiling point)

Newer developments of estimation methods[3][4] have shown that the quality of the Joback method is limited. The original authors already stated themselves in the original article abstract: "High accuracy is not claimed, but the proposed methods are often as or more accurate than techniques in common use today."

The list of groups does not cover many common molecules sufficiently. Especially aromatic compounds are not differentiated from normal ring-containing components. This is a severe problem because aromatic and aliphatic components differ strongly.

The data base Joback and Reid used for obtaining the group parameters was rather small and covered only a limited number of different molecules. The best coverage has been achieved for normal boiling points (438 components), and the worst for heats of fusion (155 components). Current developments that can use data banks, like the Dortmund Data Bank or the DIPPR data base, have a much broader coverage.

The formula used for the prediction of the normal boiling point shows another problem. Joback assumed a constant contribution of added groups in homologous series like the alkanes. This doesn't describe the real behavior of the normal boiling points correctly.[5] Instead of the constant contribution, a decrease of the contribution with increasing number of groups must be applied. The chosen formula of the Joback method leads to high deviations for large and small molecules and an acceptable good estimation only for mid-sized components.

Formulas edit

In the following formulas Gi denotes a group contribution. Gi are counted for every single available group. If a group is present multiple times, each occurrence is counted separately.

Normal boiling point edit

 

Melting point edit

 

Critical temperature edit

 

This critical-temperature equation needs a normal boiling point Tb. If an experimental value is available, it is recommended to use this boiling point. It is, on the other hand, also possible to input the normal boiling point estimated by the Joback method. This will lead to a higher error.

Critical pressure edit

 

where Na is the number of atoms in the molecular structure (including hydrogens).

Critical volume edit

 

Heat of formation (ideal gas, 298 K) edit

 

Gibbs energy of formation (ideal gas, 298 K) edit

 

Heat capacity (ideal gas) edit

 

The Joback method uses a four-parameter polynomial to describe the temperature dependency of the ideal-gas heat capacity. These parameters are valid from 273Β K to about 1000Β K. But you are able to extend it to 1500K if you don't mind a bit of uncertainty here and there.

Heat of vaporization at normal boiling point edit

 

Heat of fusion edit

 

Liquid dynamic viscosity edit

 

where Mw is the molecular weight.

The method uses a two-parameter equation to describe the temperature dependency of the dynamic viscosity. The authors state that the parameters are valid from the melting temperature up to 0.7 of the critical temperature (TrΒ <Β 0.7).

Group contributions edit

Group Tc Pc Vc Tb Tm Hform Gform a b c d Hfusion Hvap Ξ·a Ξ·b
Critical-state data Temperatures
of phase transitions
Chemical caloric
properties
Ideal-gas heat capacities Enthalpies
of phase transitions
Dynamic viscosity
Non-ring groups
βˆ’CH3 0.0141 βˆ’0.0012 65 23.58 βˆ’5.10 βˆ’76.45 βˆ’43.96 1.95E+1 βˆ’8.08Eβˆ’3 1.53Eβˆ’4 βˆ’9.67Eβˆ’8 0.908 2.373 548.29 βˆ’1.719
βˆ’CH2βˆ’ 0.0189 0.0000 56 22.88 11.27 βˆ’20.64 8.42 βˆ’9.09Eβˆ’1 9.50Eβˆ’2 βˆ’5.44Eβˆ’5 1.19Eβˆ’8 2.590 2.226 94.16 βˆ’0.199
>CHβˆ’ 0.0164 0.0020 41 21.74 12.64 29.89 58.36 βˆ’2.30E+1 2.04Eβˆ’1 βˆ’2.65Eβˆ’4 1.20Eβˆ’7 0.749 1.691 βˆ’322.15 1.187
>C< 0.0067 0.0043 27 18.25 46.43 82.23 116.02 βˆ’6.62E+1 4.27Eβˆ’1 βˆ’6.41Eβˆ’4 3.01Eβˆ’7 βˆ’1.460 0.636 βˆ’573.56 2.307
=CH2 0.0113 βˆ’0.0028 56 18.18 βˆ’4.32 βˆ’9.630 3.77 2.36E+1 βˆ’3.81Eβˆ’2 1.72Eβˆ’4 βˆ’1.03Eβˆ’7 βˆ’0.473 1.724 495.01 βˆ’1.539
=CHβˆ’ 0.0129 βˆ’0.0006 46 24.96 8.73 37.97 48.53 βˆ’8.00 1.05Eβˆ’1 βˆ’9.63Eβˆ’5 3.56Eβˆ’8 2.691 2.205 82.28 βˆ’0.242
=C< 0.0117 0.0011 38 24.14 11.14 83.99 92.36 βˆ’2.81E+1 2.08Eβˆ’1 βˆ’3.06Eβˆ’4 1.46Eβˆ’7 3.063 2.138 n.Β a. n.Β a.
=C= 0.0026 0.0028 36 26.15 17.78 142.14 136.70 2.74E+1 βˆ’5.57Eβˆ’2 1.01Eβˆ’4 βˆ’5.02Eβˆ’8 4.720 2.661 n.Β a. n.Β a.
≑CH 0.0027 βˆ’0.0008 46 9.20 βˆ’11.18 79.30 77.71 2.45E+1 βˆ’2.71Eβˆ’2 1.11Eβˆ’4 βˆ’6.78Eβˆ’8 2.322 1.155 n.Β a. n.Β a.
≑Cβˆ’ 0.0020 0.0016 37 27.38 64.32 115.51 109.82 7.87 2.01Eβˆ’2 βˆ’8.33Eβˆ’6 1.39E-9 4.151 3.302 n.Β a. n.Β a.
Ring groups
βˆ’CH2βˆ’ 0.0100 0.0025 48 27.15 7.75 βˆ’26.80 βˆ’3.68 βˆ’6.03 8.54Eβˆ’2 βˆ’8.00Eβˆ’6 βˆ’1.80Eβˆ’8 0.490 2.398 307.53 βˆ’0.798
>CHβˆ’ 0.0122 0.0004 38 21.78 19.88 8.67 40.99 βˆ’2.05E+1 1.62Eβˆ’1 βˆ’1.60Eβˆ’4 6.24Eβˆ’8 3.243 1.942 βˆ’394.29 1.251
>C< 0.0042 0.0061 27 21.32 60.15 79.72 87.88 βˆ’9.09E+1 5.57Eβˆ’1 βˆ’9.00Eβˆ’4 4.69Eβˆ’7 βˆ’1.373 0.644 n.Β a. n.Β a.
=CHβˆ’ 0.0082 0.0011 41 26.73 8.13 2.09 11.30 βˆ’2.14 5.74Eβˆ’2 βˆ’1.64Eβˆ’6 βˆ’1.59Eβˆ’8 1.101 2.544 259.65 βˆ’0.702
=C< 0.0143 0.0008 32 31.01 37.02 46.43 54.05 βˆ’8.25 1.01Eβˆ’1 βˆ’1.42Eβˆ’4 6.78Eβˆ’8 2.394 3.059 -245.74 0.912
Halogen groups
βˆ’F 0.0111 βˆ’0.0057 27 βˆ’0.03 βˆ’15.78 βˆ’251.92 βˆ’247.19 2.65E+1 βˆ’9.13Eβˆ’2 1.91Eβˆ’4 βˆ’1.03Eβˆ’7 1.398 βˆ’0.670 n.Β a. n.Β a.
βˆ’Cl 0.0105 βˆ’0.0049 58 38.13 13.55 βˆ’71.55 βˆ’64.31 3.33E+1 βˆ’9.63Eβˆ’2 1.87Eβˆ’4 βˆ’9.96Eβˆ’8 2.515 4.532 625.45 βˆ’1.814
βˆ’Br 0.0133 0.0057 71 66.86 43.43 βˆ’29.48 βˆ’38.06 2.86E+1 βˆ’6.49Eβˆ’2 1.36Eβˆ’4 βˆ’7.45Eβˆ’8 3.603 6.582 738.91 βˆ’2.038
βˆ’I 0.0068 βˆ’0.0034 97 93.84 41.69 21.06 5.74 3.21E+1 βˆ’6.41Eβˆ’2 1.26Eβˆ’4 βˆ’6.87Eβˆ’8 2.724 9.520 809.55 βˆ’2.224
Oxygen groups
βˆ’OH (alcohol) 0.0741 0.0112 28 92.88 44.45 βˆ’208.04 βˆ’189.20 2.57E+1 βˆ’6.91Eβˆ’2 1.77Eβˆ’4 βˆ’9.88Eβˆ’8 2.406 16.826 2173.72 βˆ’5.057
βˆ’OH (phenol) 0.0240 0.0184 βˆ’25 76.34 82.83 βˆ’221.65 βˆ’197.37 βˆ’2.81 1.11Eβˆ’1 βˆ’1.16Eβˆ’4 4.94Eβˆ’8 4.490 12.499 3018.17 βˆ’7.314
βˆ’Oβˆ’ (non-ring) 0.0168 0.0015 18 22.42 22.23 βˆ’132.22 βˆ’105.00 2.55E+1 βˆ’6.32Eβˆ’2 1.11Eβˆ’4 βˆ’5.48Eβˆ’8 1.188 2.410 122.09 βˆ’0.386
βˆ’Oβˆ’ (ring) 0.0098 0.0048 13 31.22 23.05 βˆ’138.16 βˆ’98.22 1.22E+1 βˆ’1.26Eβˆ’2 6.03Eβˆ’5 βˆ’3.86Eβˆ’8 5.879 4.682 440.24 βˆ’0.953
>C=O (non-ring) 0.0380 0.0031 62 76.75 61.20 βˆ’133.22 βˆ’120.50 6.45 6.70Eβˆ’2 βˆ’3.57Eβˆ’5 2.86Eβˆ’9 4.189 8.972 340.35 βˆ’0.350
>C=O (ring) 0.0284 0.0028 55 94.97 75.97 βˆ’164.50 βˆ’126.27 3.04E+1 βˆ’8.29Eβˆ’2 2.36Eβˆ’4 βˆ’1.31Eβˆ’7 0. 6.645 n.Β a. n.Β a.
O=CHβˆ’ (aldehyde) 0.0379 0.0030 82 72.24 36.90 βˆ’162.03 βˆ’143.48 3.09E+1 βˆ’3.36Eβˆ’2 1.60Eβˆ’4 βˆ’9.88Eβˆ’8 3.197 9.093 740.92 βˆ’1.713
βˆ’COOH (acid) 0.0791 0.0077 89 169.09 155.50 βˆ’426.72 βˆ’387.87 2.41E+1 4.27Eβˆ’2 8.04Eβˆ’5 βˆ’6.87Eβˆ’8 11.051 19.537 1317.23 βˆ’2.578
βˆ’COOβˆ’ (ester) 0.0481 0.0005 82 81.10 53.60 βˆ’337.92 βˆ’301.95 2.45E+1 4.02Eβˆ’2 4.02Eβˆ’5 βˆ’4.52Eβˆ’8 6.959 9.633 483.88 βˆ’0.966
=O (other than above) 0.0143 0.0101 36 βˆ’10.50 2.08 βˆ’247.61 βˆ’250.83 6.82 1.96Eβˆ’2 1.27Eβˆ’5 βˆ’1.78Eβˆ’8 3.624 5.909 675.24 βˆ’1.340
Nitrogen groups
βˆ’NH2 0.0243 0.0109 38 73.23 66.89 βˆ’22.02 14.07 2.69E+1 βˆ’4.12Eβˆ’2 1.64Eβˆ’4 βˆ’9.76Eβˆ’8 3.515 10.788 n.Β a. n.Β a.
>NH (non-ring) 0.0295 0.0077 35 50.17 52.66 53.47 89.39 βˆ’1.21 7.62Eβˆ’2 βˆ’4.86Eβˆ’5 1.05Eβˆ’8 5.099 6.436 n.Β a. n.Β a.
>NH (ring) 0.0130 0.0114 29 52.82 101.51 31.65 75.61 1.18E+1 βˆ’2.30Eβˆ’2 1.07Eβˆ’4 βˆ’6.28Eβˆ’8 7.490 6.930 n.Β a. n.Β a.
>Nβˆ’ (non-ring) 0.0169 0.0074 9 11.74 48.84 123.34 163.16 βˆ’3.11E+1 2.27Eβˆ’1 βˆ’3.20Eβˆ’4 1.46Eβˆ’7 4.703 1.896 n.Β a. n.Β a.
βˆ’N= (non-ring) 0.0255 -0.0099 n.Β a. 74.60 n.Β a. 23.61 n.Β a. n.Β a. n.Β a. n.Β a. n.Β a. n.Β a. 3.335 n.Β a. n.Β a.
βˆ’N= (ring) 0.0085 0.0076 34 57.55 68.40 55.52 79.93 8.83 βˆ’3.84E-3 4.35Eβˆ’5 βˆ’2.60Eβˆ’8 3.649 6.528 n.Β a. n.Β a.
=NH n.Β a. n.Β a. n.Β a. 83.08 68.91 93.70 119.66 5.69 βˆ’4.12Eβˆ’3 1.28Eβˆ’4 βˆ’8.88Eβˆ’8 n.Β a. 12.169 n.Β a. n.Β a.
βˆ’CN 0.0496 βˆ’0.0101 91 125.66 59.89 88.43 89.22 3.65E+1 βˆ’7.33Eβˆ’2 1.84Eβˆ’4 βˆ’1.03Eβˆ’7 2.414 12.851 n.Β a. n.Β a.
βˆ’NO2 0.0437 0.0064 91 152.54 127.24 βˆ’66.57 βˆ’16.83 2.59E+1 βˆ’3.74Eβˆ’3 1.29Eβˆ’4 βˆ’8.88Eβˆ’8 9.679 16.738 n.Β a. n.Β a.
Sulfur groups
βˆ’SH 0.0031 0.0084 63 63.56 20.09 βˆ’17.33 βˆ’22.99 3.53E+1 βˆ’7.58Eβˆ’2 1.85Eβˆ’4 βˆ’1.03Eβˆ’7 2.360 6.884 n.Β a. n.Β a.
βˆ’Sβˆ’ (non-ring) 0.0119 0.0049 54 68.78 34.40 41.87 33.12 1.96E+1 βˆ’5.61Eβˆ’3 4.02Eβˆ’5 βˆ’2.76Eβˆ’8 4.130 6.817 n.Β a. n.Β a.
βˆ’Sβˆ’ (ring) 0.0019 0.0051 38 52.10 79.93 39.10 27.76 1.67E+1 4.81Eβˆ’3 2.77Eβˆ’5 βˆ’2.11Eβˆ’8 1.557 5.984 n.Β a. n.Β a.

Example calculation edit

 

Acetone (propanone) is the simplest ketone and is separated into three groups in the Joback method: two methyl groups (βˆ’CH3) and one ketone group (C=O). Since the methyl group is present twice, its contributions have to be added twice.

βˆ’CH3 >C=O (non-ring)
Property No. of groups Group value No. of groups Group value   Estimated value Unit
Tc
2
0.0141
1
0.0380
0.0662
500.5590
K
Pc
2
βˆ’1.20Eβˆ’03
1
3.10Eβˆ’03
7.00Eβˆ’04
48.0250
bar
Vc
2
65.0000
1
62.0000
192.0000
209.5000
mL/mol
Tb
2
23.5800
1
76.7500
123.9100
322.1100
K
Tm
2
βˆ’5.1000
1
61.2000
51.0000
173.5000
K
Hformation
2
βˆ’76.4500
1
βˆ’133.2200
βˆ’286.1200
βˆ’217.8300
kJ/mol
Gformation
2
βˆ’43.9600
1
βˆ’120.5000
βˆ’208.4200
βˆ’154.5400
kJ/mol
Cp: a
2
1.95E+01
1
6.45E+00
4.55E+01
Cp: b
2
βˆ’8.08Eβˆ’03
1
6.70Eβˆ’02
5.08Eβˆ’02
Cp: c
2
1.53Eβˆ’04
1
βˆ’3.57Eβˆ’05
2.70Eβˆ’04
Cp: d
2
βˆ’9.67Eβˆ’08
1
2.86Eβˆ’09
βˆ’1.91Eβˆ’07
Cp
at TΒ =Β 300Β K
75.3264
J/(molΒ·K)
Hfusion
2
0.9080
1
4.1890
6.0050
5.1250
kJ/mol
Hvap
2
2.3730
1
8.9720
13.7180
29.0180
kJ/mol
Ξ·a
2
548.2900
1
340.3500
1436.9300
Ξ·b
2
βˆ’1.7190
1
βˆ’0.3500
βˆ’3.7880
Ξ·
at TΒ =Β 300Β K
0.0002942
PaΒ·s

References edit

  1. ^ Joback K.Β G., Reid R.Β C., "Estimation of Pure-Component Properties from Group-Contributions", Chem. Eng. Commun., 57, 233–243, 1987.
  2. ^ Lydersen A.Β L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin, 1955.
  3. ^ Constantinou L., Gani R., "New Group Contribution Method for Estimating Properties of Pure Compounds", AIChE J., 40(10), 1697–1710, 1994.
  4. ^ Nannoolal Y., Rarey J., Ramjugernath J., "Estimation of pure component properties Part 2. Estimation of critical property data by group contribution", Fluid Phase Equilib., 252(1–2), 1–27, 2007.
  5. ^ Stein S.Β E., Brown R.Β L., "Estimation of Normal Boiling Points from Group Contributions", J. Chem. Inf. Comput. Sci. 34, 581–587 (1994).

External links edit

  • Online molecular drawing and property estimation tool with the Joback method
  • Online property estimation with the Joback method
  • Strummyk TV

joback, method, often, named, joback, reid, method, predicts, eleven, important, commonly, used, pure, component, thermodynamic, properties, from, molecular, structure, only, contents, basic, principles, group, contribution, method, history, model, strengths, . The Joback method 1 often named Joback Reid method predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only Contents 1 Basic principles 1 1 Group contribution method 1 2 History 2 Model strengths and weaknesses 2 1 Strengths 2 2 Weaknesses 3 Formulas 3 1 Normal boiling point 3 2 Melting point 3 3 Critical temperature 3 4 Critical pressure 3 5 Critical volume 3 6 Heat of formation ideal gas 298 K 3 7 Gibbs energy of formation ideal gas 298 K 3 8 Heat capacity ideal gas 3 9 Heat of vaporization at normal boiling point 3 10 Heat of fusion 3 11 Liquid dynamic viscosity 4 Group contributions 5 Example calculation 6 References 7 External linksBasic principles editGroup contribution method edit nbsp Principle of a group contribution method The Joback method is a group contribution method These kinds of methods use basic structural information of a chemical molecule like a list of simple functional groups add parameters to these functional groups and calculate thermophysical and transport properties as a function of the sum of group parameters Joback assumes that there are no interactions between the groups and therefore only uses additive contributions and no contributions for interactions between groups Other group contribution methods especially methods like UNIFAC which estimate mixture properties like activity coefficients use both simple additive group parameters and group interaction parameters The big advantage of using only simple group parameters is the small number of needed parameters The number of needed group interaction parameters gets very high for an increasing number of groups 1 for two groups 3 for three groups 6 for four groups 45 for ten groups and twice as much if the interactions are not symmetric Nine of the properties are single temperature independent values mostly estimated by a simple sum of group contribution plus an addend Two of the estimated properties are temperature dependent the ideal gas heat capacity and the dynamic viscosity of liquids The heat capacity polynomial uses 4 parameters and the viscosity equation only 2 In both cases the equation parameters are calculated by group contributions History edit The Joback method is an extension of the Lydersen method 2 and uses very similar groups formulas and parameters for the three properties the Lydersen already supported critical temperature critical pressure critical volume Joback extended the range of supported properties created new parameters and modified slightly the formulas of the old Lydersen method Model strengths and weaknesses editStrengths edit The popularity and success of the Joback method mainly originates from the single group list for all properties This allows one to get all eleven supported properties from a single analysis of the molecular structure The Joback method additionally uses a very simple and easy to assign group scheme which makes the method usable for people with only basic chemical knowledge Weaknesses edit nbsp Systematic errors of the Joback method normal boiling point Newer developments of estimation methods 3 4 have shown that the quality of the Joback method is limited The original authors already stated themselves in the original article abstract High accuracy is not claimed but the proposed methods are often as or more accurate than techniques in common use today The list of groups does not cover many common molecules sufficiently Especially aromatic compounds are not differentiated from normal ring containing components This is a severe problem because aromatic and aliphatic components differ strongly The data base Joback and Reid used for obtaining the group parameters was rather small and covered only a limited number of different molecules The best coverage has been achieved for normal boiling points 438 components and the worst for heats of fusion 155 components Current developments that can use data banks like the Dortmund Data Bank or the DIPPR data base have a much broader coverage The formula used for the prediction of the normal boiling point shows another problem Joback assumed a constant contribution of added groups in homologous series like the alkanes This doesn t describe the real behavior of the normal boiling points correctly 5 Instead of the constant contribution a decrease of the contribution with increasing number of groups must be applied The chosen formula of the Joback method leads to high deviations for large and small molecules and an acceptable good estimation only for mid sized components Formulas editIn the following formulas Gi denotes a group contribution Gi are counted for every single available group If a group is present multiple times each occurrence is counted separately Normal boiling point edit T b K 198 2 T b i displaystyle T text b text K 198 2 sum T text b i nbsp Melting point edit T m K 122 5 T m i displaystyle T text m text K 122 5 sum T text m i nbsp Critical temperature edit T c K T b 0 584 0 965 T c i T c i 2 1 displaystyle T text c text K T text b left 0 584 0 965 sum T text c i left sum T text c i right 2 right 1 nbsp This critical temperature equation needs a normal boiling point Tb If an experimental value is available it is recommended to use this boiling point It is on the other hand also possible to input the normal boiling point estimated by the Joback method This will lead to a higher error Critical pressure edit P c bar 0 113 0 0032 N a P c i 2 displaystyle P text c text bar left 0 113 0 0032 N text a sum P text c i right 2 nbsp where Na is the number of atoms in the molecular structure including hydrogens Critical volume edit V c cm 3 mol 17 5 V c i displaystyle V text c text cm 3 text mol 17 5 sum V text c i nbsp Heat of formation ideal gas 298 K edit H formation kJ mol 68 29 H form i displaystyle H text formation text kJ text mol 68 29 sum H text form i nbsp Gibbs energy of formation ideal gas 298 K edit G formation kJ mol 53 88 G form i displaystyle G text formation text kJ text mol 53 88 sum G text form i nbsp Heat capacity ideal gas edit C P J mol K a i 37 93 b i 0 210 T c i 3 91 10 4 T 2 d i 2 06 10 7 T 3 displaystyle C P text J text mol cdot text K sum a i 37 93 left sum b i 0 210 right T left sum c i 3 91 cdot 10 4 right T 2 left sum d i 2 06 cdot 10 7 right T 3 nbsp The Joback method uses a four parameter polynomial to describe the temperature dependency of the ideal gas heat capacity These parameters are valid from 273 K to about 1000 K But you are able to extend it to 1500K if you don t mind a bit of uncertainty here and there Heat of vaporization at normal boiling point edit D H vap kJ mol 15 30 H vap i displaystyle Delta H text vap text kJ text mol 15 30 sum H text vap i nbsp Heat of fusion edit D H fus kJ mol 0 88 H fus i displaystyle Delta H text fus text kJ text mol 0 88 sum H text fus i nbsp Liquid dynamic viscosity edit h L Pa s M w e x p h a 597 82 T h b 11 202 displaystyle eta text L text Pa cdot text s M text w exp left left sum eta a 597 82 right T sum eta b 11 202 right nbsp where Mw is the molecular weight The method uses a two parameter equation to describe the temperature dependency of the dynamic viscosity The authors state that the parameters are valid from the melting temperature up to 0 7 of the critical temperature Tr lt 0 7 Group contributions editGroup Tc Pc Vc Tb Tm Hform Gform a b c d Hfusion Hvap ha hb Critical state data Temperaturesof phase transitions Chemical caloricproperties Ideal gas heat capacities Enthalpiesof phase transitions Dynamic viscosity Non ring groups CH3 0 0141 0 0012 65 23 58 5 10 76 45 43 96 1 95E 1 8 08E 3 1 53E 4 9 67E 8 0 908 2 373 548 29 1 719 CH2 0 0189 0 0000 56 22 88 11 27 20 64 8 42 9 09E 1 9 50E 2 5 44E 5 1 19E 8 2 590 2 226 94 16 0 199 gt CH 0 0164 0 0020 41 21 74 12 64 29 89 58 36 2 30E 1 2 04E 1 2 65E 4 1 20E 7 0 749 1 691 322 15 1 187 gt C lt 0 0067 0 0043 27 18 25 46 43 82 23 116 02 6 62E 1 4 27E 1 6 41E 4 3 01E 7 1 460 0 636 573 56 2 307 CH2 0 0113 0 0028 56 18 18 4 32 9 630 3 77 2 36E 1 3 81E 2 1 72E 4 1 03E 7 0 473 1 724 495 01 1 539 CH 0 0129 0 0006 46 24 96 8 73 37 97 48 53 8 00 1 05E 1 9 63E 5 3 56E 8 2 691 2 205 82 28 0 242 C lt 0 0117 0 0011 38 24 14 11 14 83 99 92 36 2 81E 1 2 08E 1 3 06E 4 1 46E 7 3 063 2 138 n a n a C 0 0026 0 0028 36 26 15 17 78 142 14 136 70 2 74E 1 5 57E 2 1 01E 4 5 02E 8 4 720 2 661 n a n a CH 0 0027 0 0008 46 9 20 11 18 79 30 77 71 2 45E 1 2 71E 2 1 11E 4 6 78E 8 2 322 1 155 n a n a C 0 0020 0 0016 37 27 38 64 32 115 51 109 82 7 87 2 01E 2 8 33E 6 1 39E 9 4 151 3 302 n a n a Ring groups CH2 0 0100 0 0025 48 27 15 7 75 26 80 3 68 6 03 8 54E 2 8 00E 6 1 80E 8 0 490 2 398 307 53 0 798 gt CH 0 0122 0 0004 38 21 78 19 88 8 67 40 99 2 05E 1 1 62E 1 1 60E 4 6 24E 8 3 243 1 942 394 29 1 251 gt C lt 0 0042 0 0061 27 21 32 60 15 79 72 87 88 9 09E 1 5 57E 1 9 00E 4 4 69E 7 1 373 0 644 n a n a CH 0 0082 0 0011 41 26 73 8 13 2 09 11 30 2 14 5 74E 2 1 64E 6 1 59E 8 1 101 2 544 259 65 0 702 C lt 0 0143 0 0008 32 31 01 37 02 46 43 54 05 8 25 1 01E 1 1 42E 4 6 78E 8 2 394 3 059 245 74 0 912 Halogen groups F 0 0111 0 0057 27 0 03 15 78 251 92 247 19 2 65E 1 9 13E 2 1 91E 4 1 03E 7 1 398 0 670 n a n a Cl 0 0105 0 0049 58 38 13 13 55 71 55 64 31 3 33E 1 9 63E 2 1 87E 4 9 96E 8 2 515 4 532 625 45 1 814 Br 0 0133 0 0057 71 66 86 43 43 29 48 38 06 2 86E 1 6 49E 2 1 36E 4 7 45E 8 3 603 6 582 738 91 2 038 I 0 0068 0 0034 97 93 84 41 69 21 06 5 74 3 21E 1 6 41E 2 1 26E 4 6 87E 8 2 724 9 520 809 55 2 224 Oxygen groups OH alcohol 0 0741 0 0112 28 92 88 44 45 208 04 189 20 2 57E 1 6 91E 2 1 77E 4 9 88E 8 2 406 16 826 2173 72 5 057 OH phenol 0 0240 0 0184 25 76 34 82 83 221 65 197 37 2 81 1 11E 1 1 16E 4 4 94E 8 4 490 12 499 3018 17 7 314 O non ring 0 0168 0 0015 18 22 42 22 23 132 22 105 00 2 55E 1 6 32E 2 1 11E 4 5 48E 8 1 188 2 410 122 09 0 386 O ring 0 0098 0 0048 13 31 22 23 05 138 16 98 22 1 22E 1 1 26E 2 6 03E 5 3 86E 8 5 879 4 682 440 24 0 953 gt C O non ring 0 0380 0 0031 62 76 75 61 20 133 22 120 50 6 45 6 70E 2 3 57E 5 2 86E 9 4 189 8 972 340 35 0 350 gt C O ring 0 0284 0 0028 55 94 97 75 97 164 50 126 27 3 04E 1 8 29E 2 2 36E 4 1 31E 7 0 6 645 n a n a O CH aldehyde 0 0379 0 0030 82 72 24 36 90 162 03 143 48 3 09E 1 3 36E 2 1 60E 4 9 88E 8 3 197 9 093 740 92 1 713 COOH acid 0 0791 0 0077 89 169 09 155 50 426 72 387 87 2 41E 1 4 27E 2 8 04E 5 6 87E 8 11 051 19 537 1317 23 2 578 COO ester 0 0481 0 0005 82 81 10 53 60 337 92 301 95 2 45E 1 4 02E 2 4 02E 5 4 52E 8 6 959 9 633 483 88 0 966 O other than above 0 0143 0 0101 36 10 50 2 08 247 61 250 83 6 82 1 96E 2 1 27E 5 1 78E 8 3 624 5 909 675 24 1 340 Nitrogen groups NH2 0 0243 0 0109 38 73 23 66 89 22 02 14 07 2 69E 1 4 12E 2 1 64E 4 9 76E 8 3 515 10 788 n a n a gt NH non ring 0 0295 0 0077 35 50 17 52 66 53 47 89 39 1 21 7 62E 2 4 86E 5 1 05E 8 5 099 6 436 n a n a gt NH ring 0 0130 0 0114 29 52 82 101 51 31 65 75 61 1 18E 1 2 30E 2 1 07E 4 6 28E 8 7 490 6 930 n a n a gt N non ring 0 0169 0 0074 9 11 74 48 84 123 34 163 16 3 11E 1 2 27E 1 3 20E 4 1 46E 7 4 703 1 896 n a n a N non ring 0 0255 0 0099 n a 74 60 n a 23 61 n a n a n a n a n a n a 3 335 n a n a N ring 0 0085 0 0076 34 57 55 68 40 55 52 79 93 8 83 3 84E 3 4 35E 5 2 60E 8 3 649 6 528 n a n a NH n a n a n a 83 08 68 91 93 70 119 66 5 69 4 12E 3 1 28E 4 8 88E 8 n a 12 169 n a n a CN 0 0496 0 0101 91 125 66 59 89 88 43 89 22 3 65E 1 7 33E 2 1 84E 4 1 03E 7 2 414 12 851 n a n a NO2 0 0437 0 0064 91 152 54 127 24 66 57 16 83 2 59E 1 3 74E 3 1 29E 4 8 88E 8 9 679 16 738 n a n a Sulfur groups SH 0 0031 0 0084 63 63 56 20 09 17 33 22 99 3 53E 1 7 58E 2 1 85E 4 1 03E 7 2 360 6 884 n a n a S non ring 0 0119 0 0049 54 68 78 34 40 41 87 33 12 1 96E 1 5 61E 3 4 02E 5 2 76E 8 4 130 6 817 n a n a S ring 0 0019 0 0051 38 52 10 79 93 39 10 27 76 1 67E 1 4 81E 3 2 77E 5 2 11E 8 1 557 5 984 n a n a Example calculation edit nbsp Acetone propanone is the simplest ketone and is separated into three groups in the Joback method two methyl groups CH3 and one ketone group C O Since the methyl group is present twice its contributions have to be added twice CH3 gt C O non ring Property No of groups Group value No of groups Group value G i displaystyle sum G i nbsp Estimated value Unit Tc 2 0 0141 1 0 0380 0 0662 500 5590 K Pc 2 1 20E 03 1 3 10E 03 7 00E 04 48 0250 bar Vc 2 65 0000 1 62 0000 192 0000 209 5000 mL mol Tb 2 23 5800 1 76 7500 123 9100 322 1100 K Tm 2 5 1000 1 61 2000 51 0000 173 5000 K Hformation 2 76 4500 1 133 2200 286 1200 217 8300 kJ mol Gformation 2 43 9600 1 120 5000 208 4200 154 5400 kJ mol Cp a 2 1 95E 01 1 6 45E 00 4 55E 01 Cp b 2 8 08E 03 1 6 70E 02 5 08E 02 Cp c 2 1 53E 04 1 3 57E 05 2 70E 04 Cp d 2 9 67E 08 1 2 86E 09 1 91E 07 Cp at T 300 K 75 3264 J mol K Hfusion 2 0 9080 1 4 1890 6 0050 5 1250 kJ mol Hvap 2 2 3730 1 8 9720 13 7180 29 0180 kJ mol ha 2 548 2900 1 340 3500 1436 9300 hb 2 1 7190 1 0 3500 3 7880 h at T 300 K 0 0002942 Pa sReferences edit Joback K G Reid R C Estimation of Pure Component Properties from Group Contributions Chem Eng Commun 57 233 243 1987 Lydersen A L Estimation of Critical Properties of Organic Compounds University of Wisconsin College Engineering Eng Exp Stn Rep 3 Madison Wisconsin 1955 Constantinou L Gani R New Group Contribution Method for Estimating Properties of Pure Compounds AIChE J 40 10 1697 1710 1994 Nannoolal Y Rarey J Ramjugernath J Estimation of pure component properties Part 2 Estimation of critical property data by group contribution Fluid Phase Equilib 252 1 2 1 27 2007 Stein S E Brown R L Estimation of Normal Boiling Points from Group Contributions J Chem Inf Comput Sci 34 581 587 1994 External links editOnline molecular drawing and property estimation tool with the Joback method Online property estimation with the Joback method Strummyk TV Retrieved from https en wikipedia org w index php title Joback method amp oldid 1211215309, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.