fbpx
Wikipedia

Gelatinous zooplankton

Gelatinous zooplankton are fragile animals that live in the water column in the ocean. Their delicate bodies have no hard parts and are easily damaged or destroyed.[2] Gelatinous zooplankton are often transparent.[3] All jellyfish are gelatinous zooplankton, but not all gelatinous zooplankton are jellyfish. The most commonly encountered organisms include ctenophores, medusae, salps, and Chaetognatha in coastal waters. However, almost all marine phyla, including Annelida, Mollusca and Arthropoda, contain gelatinous species, but many of those odd species live in the open ocean and the deep sea and are less available to the casual ocean observer.[4] Many gelatinous plankters utilize mucous structures in order to filter feed.[5] Gelatinous zooplankton have also been called Gelata.[6]

Jellyfish are easy to capture and digest and may be more important as food sources than was previously thought.[1]

As prey edit

Jellyfish are slow swimmers, and most species form part of the plankton. Traditionally jellyfish have been viewed as trophic dead ends, minor players in the marine food web, gelatinous organisms with a body plan largely based on water that offers little nutritional value or interest for other organisms apart from a few specialised predators such as the ocean sunfish and the leatherback sea turtle.[7][1] That view has recently been challenged. Jellyfish, and more gelatinous zooplankton in general, which include salps and ctenophores, are very diverse, fragile with no hard parts, difficult to see and monitor, subject to rapid population swings and often live inconveniently far from shore or deep in the ocean. It is difficult for scientists to detect and analyse jellyfish in the guts of predators, since they turn to mush when eaten and are rapidly digested.[7] But jellyfish bloom in vast numbers, and it has been shown they form major components in the diets of tuna, spearfish and swordfish as well as various birds and invertebrates such as octopus, sea cucumbers, crabs and amphipods.[8][1] "Despite their low energy density, the contribution of jellyfish to the energy budgets of predators may be much greater than assumed because of rapid digestion, low capture costs, availability, and selective feeding on the more energy-rich components. Feeding on jellyfish may make marine predators susceptible to ingestion of plastics."[1]

As predators edit

According to a 2017 study, narcomedusae consume the greatest diversity of mesopelagic prey, followed by physonect siphonophores, ctenophores and cephalopods.[9] The importance of the so-called "jelly web" is only beginning to be understood, but it seems medusae, ctenophores and siphonophores can be key predators in deep pelagic food webs with ecological impacts similar to predator fish and squid. Traditionally gelatinous predators were thought ineffectual providers of marine trophic pathways, but they appear to have substantial and integral roles in deep pelagic food webs.[9]

Pelagic siphonophores, a diverse group of cnidarians, are found at most depths of the ocean - from the surface, like the Portuguese man of war, to the deep sea. They play important roles in ocean ecosystems, and are among the most abundant gelatinous predators.[10]

Pelagic siphonophores
 
Marrus orthocanna, a pelagic colonial siphonophore
 
Bathyphysa conifera, sometimes called the flying spaghetti monster

Jelly pump edit

 
Global summary of gelatinous biomass
Upper ocean (200 m) depth‐integrated global gelatinous zooplankton biomass on 5° grid cells displayed over the Longhurst Provinces modelled.[11]

Biological oceanic processes, primarily carbon production in the euphotic zone, sinking and remineralization, govern the global biological carbon soft‐tissue pump.[12] Sinking and laterally transported carbon‐laden particles fuel benthic ecosystems at continental margins and in the deep sea.[13][14] Marine zooplankton play a major role as ecosystem engineers in coastal and open ocean ecosystems because they serve as links between primary production, higher trophic levels, and deep‐sea communities.[15][14][16] In particular, gelatinous zooplankton (Cnidaria, Ctenophora, and Chordata, namely, Thaliacea) are universal members of plankton communities that graze on phytoplankton and prey on other zooplankton and ichthyoplankton. They also can rapidly reproduce on a time scale of days and, under favorable environmental conditions, some species form dense blooms that extend for many square kilometers.[17] These blooms have negative ecological and socioeconomic impacts by reducing commercially harvested fish species,[18] limiting carbon transfer to other trophic levels,[19] enhancing microbial remineralization, and thereby driving oxygen concentrations down close to anoxic levels.[20][11]

 
Gelatinous zooplankton biological pump
How jelly carbon fits in the biological pump. A schematic representation of the biological pump and the biogeochemical processes that remove elements from the surface ocean by sinking biogenic particles including jelly carbon.[11]

Jelly carbon edit

The global biomass of gelatinous zooplankton (sometimes referred to as jelly‐C) within the upper 200 m of the ocean amounts to 0.038 Pg C.[21] Calculations for mesozooplankton (200 μm to 2 cm) suggest about 0.20 Pg C.[22] The short life span of most gelatinous zooplankton, from weeks up to 2 to 12 months,[23][24] suggests biomass‐production rates above 0.038 Pg C year−1, depending on the assumed mortality rates, which in many cases are species‐specific. This is much smaller than global primary production (50 Pg C year−1),[25] which translates into export estimates close to 6 Pg C year−1 below 100 m,[26][27] depending on the method used. Globally, gelatinous zooplankton abundance and distribution patterns largely follow those of temperature and dissolved oxygen as well as primary production as the carbon source.[21] However, gelatinous zooplankton cope with a wide spectrum of environmental conditions, indicating the ability to adapt and occupy most available ecological niches in a water mass. In terms of Longhurst regions (biogeographical provinces that partition the pelagic environment,[28][29] the highest densities of gelatinous zooplankton occur in coastal waters of the Humboldt Current, NE U.S. Shelf, Scotian and Newfoundland shelves, Benguela Current, East China and Yellow Seas, followed by polar regions of the East Bering and Okhotsk Seas, the Southern Ocean, enclosed bodies of water such as the Black Sea and the Mediterranean, and the west Pacific waters of the Japan seas and the Kuroshio Current.[30][31][21] Large amounts of jelly carbon biomass that are reported from coastal areas of open shelves and semi-enclosed seas of North America, Europe, and East Asia come from coastal stranding data.[32][11]

Carbon export edit

Large amounts of jelly carbon are quickly transferred to and remineralized on the seabed in coastal areas, including estuaries, lagoons and subtidal/intertidal zones,[15] shelves and slopes,[33][34][35] the deepsea.[36] and even entire continental margins such as in the Mediterranean Sea.[37] Jelly carbon transfer begins when gelatinous zooplankton die at a given "death depth" (exit depth), continues as biomass sinks through the water column, and terminates once biomass is remineralized during sinking or reaches the seabed, and then decays. Jelly carbon per se represents a transfer of "already exported" particles (below the mixed later, euphotic or mesopelagic zone), originated in primary production since gelatinous zooplankton "repackage" and integrate this carbon in their bodies, and after death transfer it to the ocean's interior. While sinking through the water column, jelly carbon is partially or totally remineralized as dissolved organic/inorganic carbon and nutrients (DOC, DIC, DON, DOP, DIN and DIP)[38][39][40] and any left overs further experience microbial decomposition or are scavenged by macrofauna and megafauna once on the seabed.[41][42] Despite the high lability of jelly‐C,[43][39] a remarkably large amount of biomass arrives at the seabed below 1,000 m. During sinking, jelly‐C biochemical composition changes via shifts in C:N:P ratios as observed in experimental studies.[20][44][45] Yet realistic jelly‐C transfer estimates at the global scale remain in their infancy, preventing a quantitative assessment of the contribution to the biological carbon soft‐tissue pump.[11]

 
Doliolids, gelatinous tunicates belonging to the class of Thaliaceans, are found everywhere on continental shelves. Thaliaceans play an important role in the ecology of the sea. Their dense faecal pellets sink to the bottom of the oceans and this may be a major part of the worldwide carbon cycle.[46]

Ocean carbon export is typically estimated from the flux of sinking particles that are either caught in sediment traps [47] or quantified from videography,[48] and subsequently modeled using sinking rates.[49] Biogeochemical models [50][51][52] are normally parameterized using particulate organic matter data (e.g., 0.5–1,000 μm marine snow and fecal pellets) that were derived from laboratory experiments [53] or from sediment trap data.[50] These models do not include jelly‐C (except larvaceans,[54][55] not only because this carbon transport mechanism is considered transient/episodic and not usually observed, and mass fluxes are too big to be collected by sediment traps,[27] but also because models aim to simplify the biotic compartments to facilitate calculations. Furthermore, jelly‐C deposits tend not to build up at the seafloor over a long time, such as phytodetritus (Beaulieu, 2002), being consumed rapidly by demersal and benthic organisms [41] or decomposed by microbes.[42] The jelly‐C sinking rate is governed by organism size, diameter, biovolume, geometry,[56] density,[57] and drag coefficients.[58] In 2013, Lebrato et al. determined the average sinking speed of jelly‐C using Cnidaria, Ctenophora, and Thaliacea samples, which ranged from 800 to 1,500 m day−1 (salps: 800–1,200 m day−1; scyphozoans: 1,000–1,100 m d−1; ctenophores: 1,200–1,500 m day−1; pyrosomes: 1,300 m day−1).[59] Jelly‐C model simulations suggest that, regardless of taxa, higher latitudes are more efficient corridors to transfer jelly‐C to the seabed owing to lower remineralization rates.[60] In subtropical and temperate regions, significant decomposition takes place in the water column above 1,500 m depth, except in cases where jelly‐C starts sinking below the thermocline. In shallow‐water coastal regions, time is a limiting factor, which prevents remineralization while sinking and results in the accumulation of decomposing jelly‐C from a variety of taxa on the seabed. This suggests that gelatinous zooplankton transfer most biomass and carbon to the deep ocean, enhancing coastal carbon fluxes via DOC and DIC, fueling microbial and megafaunal/macrofaunal scavenging communities. However, the absence of satellite‐derived jelly‐C measurements (such as primary production) [61] and the limited number of global zooplankton biomass data sets make it challenging to quantify global jelly‐C production and transfer efficiency to the ocean's interior.[11]

Monitoring edit

Because of its fragile structure, image acquisition of gelatinous zooplankton requires the assistance of computer visioning. Automated recognition of zooplankton in sample deposits is possible by utilising technologies such as Tikhonov regularization, support vector machines and genetic programming.[62]

 
The Beroe ctenophore, mouth gaping, preys on other ctenophores

See also edit

References edit

  1. ^ a b c d Hays, Graeme C.; Doyle, Thomas K.; Houghton, Jonathan D.R. (2018). "A Paradigm Shift in the Trophic Importance of Jellyfish?". Trends in Ecology & Evolution. 33 (11): 874–884. doi:10.1016/j.tree.2018.09.001. PMID 30245075. S2CID 52336522.
  2. ^ Lalli, C.M. & Parsons, T.R. (2001) Biological Oceanography. Butterworth-Heinemann.
  3. ^ Johnsen, S. (2000) Transparent Animals. Scientific American 282: 62–71.
  4. ^ Nouvian, C. (2007) The Deep. University of Chicago Press.
  5. ^ Hamner, W. M.; Madin, L. P.; Alldredge, A. L.; Gilmer, R. W.; Hamner, P. P. (1975). "Underwater observations of gelatinous zooplankton: Sampling problems, feeding biology, and behavior1". Limnology and Oceanography. 20 (6): 907–917. Bibcode:1975LimOc..20..907H. doi:10.4319/lo.1975.20.6.0907. ISSN 1939-5590.
  6. ^ HADDOCK, S.D.H. (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530/531: 549–556.
  7. ^ a b Hamilton, G. (2016) "The secret lives of jellyfish: long regarded as minor players in ocean ecology, jellyfish are actually important parts of the marine food web". Nature, 531(7595): 432–435. doi:10.1038/531432a
  8. ^ Cardona, L., De Quevedo, I.Á., Borrell, A. and Aguilar, A. (2012) "Massive consumption of gelatinous plankton by Mediterranean apex predators". PLOS ONE, 7(3): e31329. doi:10.1371/journal.pone.0031329
  9. ^ a b Choy, C.A., Haddock, S.H. and Robison, B.H. (2017) "Deep pelagic food web structure as revealed by in situ feeding observations". Proceedings of the Royal Society B: Biological Sciences, 284(1868): 20172116. doi:10.1098/rspb.2017.2116.   Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  10. ^ Munro, Catriona; Siebert, Stefan; Zapata, Felipe; Howison, Mark; Damian-Serrano, Alejandro; Church, Samuel H.; Goetz, Freya E.; Pugh, Philip R.; Haddock, Steven H.D.; Dunn, Casey W. (2018). "Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution". Molecular Phylogenetics and Evolution. 127: 823–833. doi:10.1016/j.ympev.2018.06.030. PMC 6064665. PMID 29940256.   Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  11. ^ a b c d e f Lebrato, Mario; Pahlow, Markus; Frost, Jessica R.; Küter, Marie; Jesus Mendes, Pedro; Molinero, Juan‐Carlos; Oschlies, Andreas (2019). "Sinking of Gelatinous Zooplankton Biomass Increases Deep Carbon Transfer Efficiency Globally". Global Biogeochemical Cycles. 33 (12): 1764–1783. Bibcode:2019GBioC..33.1764L. doi:10.1029/2019GB006265.   Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  12. ^ Buesseler, K. O.; Lamborg, C. H.; Boyd, P. W.; Lam, P. J.; Trull, T. W.; Bidigare, R. R.; Bishop, J. K. B.; Casciotti, K. L.; Dehairs, F.; Elskens, M.; Honda, M.; Karl, D. M.; Siegel, D. A.; Silver, M. W.; Steinberg, D. K.; Valdes, J.; Van Mooy, B.; Wilson, S. (2007). "Revisiting Carbon Flux Through the Ocean's Twilight Zone". Science. 316 (5824): 567–570. Bibcode:2007Sci...316..567B. doi:10.1126/science.1137959. PMID 17463282. S2CID 8423647.
  13. ^ Koppelmann, R., & Frost, J. (2008). "The ecological role of zooplankton in the twilight and dark zones of the ocean". In: L. P. Mertens (Ed.), Biological Oceanography Research Trends, pages 67–130. New York: Nova Science Publishers.
  14. ^ a b Robinson, Carol; Steinberg, Deborah K.; Anderson, Thomas R.; Arístegui, Javier; Carlson, Craig A.; Frost, Jessica R.; Ghiglione, Jean-François; Hernández-León, Santiago; Jackson, George A.; Koppelmann, Rolf; Quéguiner, Bernard; Ragueneau, Olivier; Rassoulzadegan, Fereidoun; Robison, Bruce H.; Tamburini, Christian; Tanaka, Tsuneo; Wishner, Karen F.; Zhang, Jing (2010). "Mesopelagic zone ecology and biogeochemistry – a synthesis". Deep Sea Research Part II: Topical Studies in Oceanography. 57 (16): 1504–1518. Bibcode:2010DSRII..57.1504R. doi:10.1016/j.dsr2.2010.02.018.
  15. ^ a b Lebrato, Mario; Pitt, Kylie A.; Sweetman, Andrew K.; Jones, Daniel O. B.; Cartes, Joan E.; Oschlies, Andreas; Condon, Robert H.; Molinero, Juan Carlos; Adler, Laetitia; Gaillard, Christian; Lloris, Domingo; Billett, David S. M. (2012). "Jelly-falls historic and recent observations: A review to drive future research directions". Hydrobiologia. 690: 227–245. doi:10.1007/s10750-012-1046-8. S2CID 15428213.
  16. ^ Robison, B. H.; Reisenbichler, K. R.; Sherlock, R. E. (2005). "Giant Larvacean Houses: Rapid Carbon Transport to the Deep Sea Floor". Science. 308 (5728): 1609–1611. Bibcode:2005Sci...308.1609R. doi:10.1126/science.1109104. PMID 15947183. S2CID 730130.
  17. ^ Condon, R. H.; Duarte, C. M.; Pitt, K. A.; Robinson, K. L.; Lucas, C. H.; Sutherland, K. R.; Mianzan, H. W.; Bogeberg, M.; Purcell, J. E.; Decker, M. B.; Uye, S.-i.; Madin, L. P.; Brodeur, R. D.; Haddock, S. H. D.; Malej, A.; Parry, G. D.; Eriksen, E.; Quinones, J.; Acha, M.; Harvey, M.; Arthur, J. M.; Graham, W. M. (2013). "Recurrent jellyfish blooms are a consequence of global oscillations". Proceedings of the National Academy of Sciences. 110 (3): 1000–1005. Bibcode:2013PNAS..110.1000C. doi:10.1073/pnas.1210920110. PMC 3549082. PMID 23277544.
  18. ^ Pauly, Daniel; Graham, William; Libralato, Simone; Morissette, Lyne; Deng Palomares, M. L. (2009). "Jellyfish in ecosystems, online databases, and ecosystem models". Hydrobiologia. 616: 67–85. doi:10.1007/s10750-008-9583-x. S2CID 12415790.
  19. ^ Condon, R. H.; Steinberg, D. K.; Del Giorgio, P. A.; Bouvier, T. C.; Bronk, D. A.; Graham, W. M.; Ducklow, H. W. (2011). "Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems". Proceedings of the National Academy of Sciences. 108 (25): 10225–10230. Bibcode:2011PNAS..10810225C. doi:10.1073/pnas.1015782108. PMC 3121804. PMID 21646531.
  20. ^ a b Frost, Jessica R.; Jacoby, Charles A.; Frazer, Thomas K.; Zimmerman, Andrew R. (2012). "Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha (Scyphozoa: Pelagiidae)". Hydrobiologia. 690: 247–256. doi:10.1007/s10750-012-1042-z. S2CID 17113316.
  21. ^ a b c Lucas, Cathy H.; Jones, Daniel O. B.; Hollyhead, Catherine J.; Condon, Robert H.; Duarte, Carlos M.; Graham, William M.; Robinson, Kelly L.; Pitt, Kylie A.; Schildhauer, Mark; Regetz, Jim (2014). "Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers" (PDF). Global Ecology and Biogeography. 23 (7): 701–714. doi:10.1111/geb.12169.
  22. ^ Moriarty, R.; O'Brien, T. D. (2013). "Distribution of mesozooplankton biomass in the global ocean". Earth System Science Data. 5 (1): 45–55. Bibcode:2013ESSD....5...45M. doi:10.5194/essd-5-45-2013.
  23. ^ Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S.; Riascos, José M. (2015). "The elusive life cycle of scyphozoan jellyfish – metagenesis revisited". Scientific Reports. 5: 12037. Bibcode:2015NatSR...512037C. doi:10.1038/srep12037. PMC 4495463. PMID 26153534.
  24. ^ Raskoff, Kevin A.; Sommer, Freya A.; Hamner, William M.; Cross, Katrina M. (2003). "Collection and Culture Techniques for Gelatinous Zooplankton". Biological Bulletin. 204 (1): 68–80. doi:10.2307/1543497. JSTOR 1543497. PMID 12588746. S2CID 22389317.
  25. ^ Field, C. B.; Behrenfeld, M. J.; Randerson, J. T.; Falkowski, P. (1998). "Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components". Science. 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713.
  26. ^ Moore, J. Keith; Doney, Scott C.; Lindsay, Keith (2004). "Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model". Global Biogeochemical Cycles. 18 (4): n/a. Bibcode:2004GBioC..18.4028M. doi:10.1029/2004GB002220. S2CID 3575218.
  27. ^ a b Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W. (2014). "Global assessment of ocean carbon export by combining satellite observations and food-web models". Global Biogeochemical Cycles. 28 (3): 181–196. Bibcode:2014GBioC..28..181S. doi:10.1002/2013GB004743. hdl:1912/6668. S2CID 43799803.
  28. ^ Longhurst, Alan (1995). "Seasonal cycles of pelagic production and consumption". Progress in Oceanography. 36 (2): 77–167. Bibcode:1995PrOce..36...77L. doi:10.1016/0079-6611(95)00015-1.
  29. ^ Longhurst, A. R. (1998). Ecological geography of the sea, page 398. Academic Press.
  30. ^ Brotz, Lucas; Cheung, William W. L.; Kleisner, Kristin; Pakhomov, Evgeny; Pauly, Daniel (2012). "Increasing jellyfish populations: Trends in Large Marine Ecosystems". Hydrobiologia. 690: 3–20. doi:10.1007/s10750-012-1039-7. S2CID 12375717.
  31. ^ Condon, Robert H.; Graham, William M.; Duarte, Carlos M.; Pitt, Kylie A.; Lucas, Cathy H.; Haddock, Steven H.D.; Sutherland, Kelly R.; Robinson, Kelly L.; Dawson, Michael N.; Decker, Mary Beth; Mills, Claudia E.; Purcell, Jennifer E.; Malej, Alenka; Mianzan, Hermes; Uye, Shin-Ichi; Gelcich, Stefan; Madin, Laurence P. (2012). "Questioning the Rise of Gelatinous Zooplankton in the World's Oceans". BioScience. 62 (2): 160–169. doi:10.1525/bio.2012.62.2.9. S2CID 2721425.
  32. ^ JellyWatch Home jellywatch.org. Accessed 17 April 2022.
  33. ^ Billett, D. S. M.; Bett, B. J.; Jacobs, C. L.; Rouse, I. P.; Wigham, B. D. (2006). "Mass deposition of jellyfish in the deep Arabian Sea". Limnology and Oceanography. 51 (5): 2077–2083. Bibcode:2006LimOc..51.2077B. doi:10.4319/lo.2006.51.5.2077.
  34. ^ Lebrato, M.; Jones, D. O. B. (2009). "Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa)". Limnology and Oceanography. 54 (4): 1197–1209. Bibcode:2009LimOc..54.1197L. doi:10.4319/lo.2009.54.4.1197.
  35. ^ Sweetman, Andrew K.; Chapman, Annelise (2011). "First observations of jelly-falls at the seafloor in a deep-sea fjord". Deep Sea Research Part I: Oceanographic Research Papers. 58 (12): 1206–1211. Bibcode:2011DSRI...58.1206S. doi:10.1016/j.dsr.2011.08.006.
  36. ^ Smith, K. L. Jr.; Sherman, A. D.; Huffard, C. L.; McGill, P. R.; Henthorn, R.; von Thun, S.; Ruhl, H. A.; Kahru, M.; Ohman, M. D. (2014). "Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: Day to week resolution". Limnology and Oceanography. 59 (3): 745–757. Bibcode:2014LimOc..59..745S. doi:10.4319/lo.2014.59.3.0745.
  37. ^ Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E.; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia (2013). "Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin". PLOS ONE. 8 (12): e82070. Bibcode:2013PLoSO...882070L. doi:10.1371/journal.pone.0082070. PMC 3867349. PMID 24367499.
  38. ^ Chelsky, Ariella; Pitt, Kylie A.; Welsh, David T. (2015). "Biogeochemical implications of decomposing jellyfish blooms in a changing climate". Estuarine, Coastal and Shelf Science. 154: 77–83. Bibcode:2015ECSS..154...77C. doi:10.1016/j.ecss.2014.12.022. hdl:10072/101243.
  39. ^ a b Sweetman, Andrew K.; Chelsky, Ariella; Pitt, Kylie A.; Andrade, Hector; Van Oevelen, Dick; Renaud, Paul E. (2016). "Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-webs". Limnology and Oceanography. 61 (4): 1449–1461. Bibcode:2016LimOc..61.1449S. doi:10.1002/lno.10310.
  40. ^ West, Elizabeth Jane; Welsh, David Thomas; Pitt, Kylie Anne (2009). "Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics". Hydrobiologia. 616: 151–160. doi:10.1007/s10750-008-9586-7. S2CID 46695384.
  41. ^ a b Sweetman, Andrew K.; Smith, Craig R.; Dale, Trine; Jones, Daniel O. B. (2014). "Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs". Proceedings of the Royal Society B: Biological Sciences. 281 (1796). doi:10.1098/rspb.2014.2210. PMC 4213659. PMID 25320167.
  42. ^ a b Tinta, Tinkara; Kogovšek, Tjaša; Turk, Valentina; Shiganova, Tamara A.; Mikaelyan, Alexander S.; Malej, Alenka (2016). "Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column — A Black Sea case study". Journal of Experimental Marine Biology and Ecology. 475: 19–30. doi:10.1016/j.jembe.2015.10.018.
  43. ^ Ates, Ron M. L. (2017). "Benthic scavengers and predators of jellyfish, material for a review". Plankton and Benthos Research. 12: 71–77. doi:10.3800/pbr.12.71.
  44. ^ Sempéré, R.; Yoro, SC; Van Wambeke, F.; Charrière, B. (2000). "Microbial decomposition of large organic particles in the northwestern Mediterranean Sea:an experimental approach". Marine Ecology Progress Series. 198: 61–72. Bibcode:2000MEPS..198...61S. doi:10.3354/meps198061.
  45. ^ Titelman, J.; Riemann, L.; Sørnes, TA; Nilsen, T.; Griekspoor, P.; Båmstedt, U. (2006). "Turnover of dead jellyfish: Stimulation and retardation of microbial activity". Marine Ecology Progress Series. 325: 43–58. Bibcode:2006MEPS..325...43T. doi:10.3354/meps325043.
  46. ^ Thaliaceans and the carbon cycle
  47. ^ Asper, Vernon L. (1987). "Measuring the flux and sinking speed of marine snow aggregates". Deep Sea Research Part A. Oceanographic Research Papers. 34 (1): 1–17. Bibcode:1987DSRA...34....1A. doi:10.1016/0198-0149(87)90117-8.
  48. ^ Jackson et al., 1997
  49. ^ Martin, John H.; Knauer, George A.; Karl, David M.; Broenkow, William W. (1987). "VERTEX: Carbon cycling in the northeast Pacific". Deep Sea Research Part A. Oceanographic Research Papers. 34 (2): 267–285. Bibcode:1987DSRA...34..267M. doi:10.1016/0198-0149(87)90086-0.
  50. ^ a b Gehlen, M.; Bopp, L.; Emprin, N.; Aumont, O.; Heinze, C.; Ragueneau, O. (2006). "Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model". Biogeosciences. 3 (4): 521–537. Bibcode:2006BGeo....3..521G. doi:10.5194/bg-3-521-2006.
  51. ^ Ilyina, Tatiana; Six, Katharina D.; Segschneider, Joachim; Maier-Reimer, Ernst; Li, Hongmei; Núñez-Riboni, Ismael (2013). "Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations". Journal of Advances in Modeling Earth Systems. 5 (2): 287–315. Bibcode:2013JAMES...5..287I. doi:10.1029/2012MS000178.
  52. ^ Laufkötter, C.; Vogt, M.; Gruber, N.; Aita-Noguchi, M.; Aumont, O.; Bopp, L.; Buitenhuis, E.; Doney, S. C.; Dunne, J.; Hashioka, T.; Hauck, J.; Hirata, T.; John, J.; Le Quéré, C.; Lima, I. D.; Nakano, H.; Seferian, R.; Totterdell, I.; Vichi, M.; Völker, C. (2015). "Drivers and uncertainties of future global marine primary production in marine ecosystem models". Biogeosciences. 12 (23): 6955–6984. Bibcode:2015BGeo...12.6955L. doi:10.5194/bg-12-6955-2015.
  53. ^ Ploug, Helle; Iversen, Morten Hvitfeldt; Fischer, Gerhard (2008). "Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria". Limnology and Oceanography. 53 (5): 1878–1886. Bibcode:2008LimOc..53.1878P. doi:10.4319/lo.2008.53.5.1878.
  54. ^ Lombard, Fabien; Kiørboe, Thomas (2010). "Marine snow originating from appendicularian houses: Age-dependent settling characteristics". Deep Sea Research Part I: Oceanographic Research Papers. 57 (10): 1304–1313. Bibcode:2010DSRI...57.1304L. doi:10.1016/j.dsr.2010.06.008.
  55. ^ Lombard, F.; Legendre, L.; Picheral, M.; Sciandra, A.; Gorsky, G. (2010). "Prediction of ecological niches and carbon export by appendicularians using a new multispecies ecophysiological model". Marine Ecology Progress Series. 398: 109–125. Bibcode:2010MEPS..398..109L. doi:10.3354/meps08273.
  56. ^ Walsby, A.E.; Xypolyta, Anastasia (1977). "The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt". British Phycological Journal. 12 (3): 215–223. doi:10.1080/00071617700650231.
  57. ^ Yamamoto, Jun; Hirose, Miyuki; Ohtani, Tetsuya; Sugimoto, Katashi; Hirase, Kazue; Shimamoto, Nobuo; Shimura, Tsuyoshi; Honda, Natsumi; Fujimori, Yasuzumi; Mukai, Tohru (2008). "Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan". Marine Biology. 153 (3): 311–317. doi:10.1007/s00227-007-0807-9. S2CID 89540757.
  58. ^ McDonnell, Andrew M. P.; Buesseler, Ken O. (2010). "Variability in the average sinking velocity of marine particles". Limnology and Oceanography. 55 (5): 2085–2096. Bibcode:2010LimOc..55.2085M. doi:10.4319/lo.2010.55.5.2085.
  59. ^ Lebrato, Mario; Mendes, Pedro de Jesus; Steinberg, Deborah K.; Cartes, Joan E.; Jones, Bethan M.; Birsa, Laura M.; Benavides, Roberto; Oschlies, Andreas (2013). "Jelly biomass sinking speed reveals a fast carbon export mechanism" (PDF). Limnology and Oceanography. 58 (3): 1113–1122. Bibcode:2013LimOc..58.1113L. doi:10.4319/lo.2013.58.3.1113. S2CID 3661129.
  60. ^ Lebrato, Mario; Pahlow, Markus; Oschlies, Andreas; Pitt, Kylie A.; Jones, Daniel O. B.; Molinero, Juan Carlos; Condon, Robert H. (2011). "Depth attenuation of organic matter export associated with jelly falls". Limnology and Oceanography. 56 (5): 1917–1928. Bibcode:2011LimOc..56.1917L. doi:10.4319/lo.2011.56.5.1917. hdl:10072/43275. S2CID 3693276.
  61. ^ Behrenfeld, Michael J.; Falkowski, Paul G. (1997). "Photosynthetic rates derived from satellite-based chlorophyll concentration". Limnology and Oceanography. 42 (1): 1–20. Bibcode:1997LimOc..42....1B. doi:10.4319/lo.1997.42.1.0001. S2CID 15857675.
  62. ^ Lorenzo Corgnati; Simone Marini; Luca Mazzei; Ennio Ottaviani; Stefano Aliani; Alessandra Conversi; Annalisa Griffa (2016). "Looking inside the Ocean: Toward an Autonomous Imaging System for Monitoring Gelatinous Zooplankton". Sensors. 12 (16): 2124. Bibcode:2016Senso..16.2124C. doi:10.3390/s16122124. ISSN 1424-8220. OCLC 8148647236. PMC 5191104. PMID 27983638.
  63. ^ Raskoff, K., and R. Hopcroft (2010). Crossota norvegica. Arctic Ocean Diversity. Accessed 25 August 2020.

External links edit

  • Short documentary films & photos
  • Ocean Explorer: Gelatinous zooplankton from the Arctic Ocean
  • Jellyfish and other gelatinous zooplankton 2010-08-13 at the Wayback Machine
  • PLANKTON NET: information on all types of plankton including gelatinous zooplankton
  • Deep-sea gelatinous zooplankton from The Deep (Nouvian, 2007)

gelatinous, zooplankton, fragile, animals, that, live, water, column, ocean, their, delicate, bodies, have, hard, parts, easily, damaged, destroyed, often, transparent, jellyfish, gelatinous, zooplankton, gelatinous, zooplankton, jellyfish, most, commonly, enc. Gelatinous zooplankton are fragile animals that live in the water column in the ocean Their delicate bodies have no hard parts and are easily damaged or destroyed 2 Gelatinous zooplankton are often transparent 3 All jellyfish are gelatinous zooplankton but not all gelatinous zooplankton are jellyfish The most commonly encountered organisms include ctenophores medusae salps and Chaetognatha in coastal waters However almost all marine phyla including Annelida Mollusca and Arthropoda contain gelatinous species but many of those odd species live in the open ocean and the deep sea and are less available to the casual ocean observer 4 Many gelatinous plankters utilize mucous structures in order to filter feed 5 Gelatinous zooplankton have also been called Gelata 6 Jellyfish are easy to capture and digest and may be more important as food sources than was previously thought 1 Contents 1 As prey 2 As predators 3 Jelly pump 3 1 Jelly carbon 3 2 Carbon export 4 Monitoring 5 See also 6 References 7 External linksAs prey editJellyfish are slow swimmers and most species form part of the plankton Traditionally jellyfish have been viewed as trophic dead ends minor players in the marine food web gelatinous organisms with a body plan largely based on water that offers little nutritional value or interest for other organisms apart from a few specialised predators such as the ocean sunfish and the leatherback sea turtle 7 1 That view has recently been challenged Jellyfish and more gelatinous zooplankton in general which include salps and ctenophores are very diverse fragile with no hard parts difficult to see and monitor subject to rapid population swings and often live inconveniently far from shore or deep in the ocean It is difficult for scientists to detect and analyse jellyfish in the guts of predators since they turn to mush when eaten and are rapidly digested 7 But jellyfish bloom in vast numbers and it has been shown they form major components in the diets of tuna spearfish and swordfish as well as various birds and invertebrates such as octopus sea cucumbers crabs and amphipods 8 1 Despite their low energy density the contribution of jellyfish to the energy budgets of predators may be much greater than assumed because of rapid digestion low capture costs availability and selective feeding on the more energy rich components Feeding on jellyfish may make marine predators susceptible to ingestion of plastics 1 As predators editAccording to a 2017 study narcomedusae consume the greatest diversity of mesopelagic prey followed by physonect siphonophores ctenophores and cephalopods 9 The importance of the so called jelly web is only beginning to be understood but it seems medusae ctenophores and siphonophores can be key predators in deep pelagic food webs with ecological impacts similar to predator fish and squid Traditionally gelatinous predators were thought ineffectual providers of marine trophic pathways but they appear to have substantial and integral roles in deep pelagic food webs 9 Pelagic siphonophores a diverse group of cnidarians are found at most depths of the ocean from the surface like the Portuguese man of war to the deep sea They play important roles in ocean ecosystems and are among the most abundant gelatinous predators 10 Pelagic siphonophores nbsp Marrus orthocanna a pelagic colonial siphonophore nbsp Bathyphysa conifera sometimes called the flying spaghetti monster nbsp Gelatinous zooplankton like this narcomedusan can be key predators in deep pelagic food webs nbsp Solmissus ingesting a salp chain nbsp Helmet jellyfish feeding on an armhook squid nbsp Trachymedusa with a large red mysid in its gutJelly pump edit nbsp Global summary of gelatinous biomass Upper ocean 200 m depth integrated global gelatinous zooplankton biomass on 5 grid cells displayed over the Longhurst Provinces modelled 11 See also Biological pump and Jelly falls Biological oceanic processes primarily carbon production in the euphotic zone sinking and remineralization govern the global biological carbon soft tissue pump 12 Sinking and laterally transported carbon laden particles fuel benthic ecosystems at continental margins and in the deep sea 13 14 Marine zooplankton play a major role as ecosystem engineers in coastal and open ocean ecosystems because they serve as links between primary production higher trophic levels and deep sea communities 15 14 16 In particular gelatinous zooplankton Cnidaria Ctenophora and Chordata namely Thaliacea are universal members of plankton communities that graze on phytoplankton and prey on other zooplankton and ichthyoplankton They also can rapidly reproduce on a time scale of days and under favorable environmental conditions some species form dense blooms that extend for many square kilometers 17 These blooms have negative ecological and socioeconomic impacts by reducing commercially harvested fish species 18 limiting carbon transfer to other trophic levels 19 enhancing microbial remineralization and thereby driving oxygen concentrations down close to anoxic levels 20 11 nbsp Gelatinous zooplankton biological pump How jelly carbon fits in the biological pump A schematic representation of the biological pump and the biogeochemical processes that remove elements from the surface ocean by sinking biogenic particles including jelly carbon 11 Jelly carbon edit The global biomass of gelatinous zooplankton sometimes referred to as jelly C within the upper 200 m of the ocean amounts to 0 038 Pg C 21 Calculations for mesozooplankton 200 mm to 2 cm suggest about 0 20 Pg C 22 The short life span of most gelatinous zooplankton from weeks up to 2 to 12 months 23 24 suggests biomass production rates above 0 038 Pg C year 1 depending on the assumed mortality rates which in many cases are species specific This is much smaller than global primary production 50 Pg C year 1 25 which translates into export estimates close to 6 Pg C year 1 below 100 m 26 27 depending on the method used Globally gelatinous zooplankton abundance and distribution patterns largely follow those of temperature and dissolved oxygen as well as primary production as the carbon source 21 However gelatinous zooplankton cope with a wide spectrum of environmental conditions indicating the ability to adapt and occupy most available ecological niches in a water mass In terms of Longhurst regions biogeographical provinces that partition the pelagic environment 28 29 the highest densities of gelatinous zooplankton occur in coastal waters of the Humboldt Current NE U S Shelf Scotian and Newfoundland shelves Benguela Current East China and Yellow Seas followed by polar regions of the East Bering and Okhotsk Seas the Southern Ocean enclosed bodies of water such as the Black Sea and the Mediterranean and the west Pacific waters of the Japan seas and the Kuroshio Current 30 31 21 Large amounts of jelly carbon biomass that are reported from coastal areas of open shelves and semi enclosed seas of North America Europe and East Asia come from coastal stranding data 32 11 Carbon export edit Large amounts of jelly carbon are quickly transferred to and remineralized on the seabed in coastal areas including estuaries lagoons and subtidal intertidal zones 15 shelves and slopes 33 34 35 the deepsea 36 and even entire continental margins such as in the Mediterranean Sea 37 Jelly carbon transfer begins when gelatinous zooplankton die at a given death depth exit depth continues as biomass sinks through the water column and terminates once biomass is remineralized during sinking or reaches the seabed and then decays Jelly carbon per se represents a transfer of already exported particles below the mixed later euphotic or mesopelagic zone originated in primary production since gelatinous zooplankton repackage and integrate this carbon in their bodies and after death transfer it to the ocean s interior While sinking through the water column jelly carbon is partially or totally remineralized as dissolved organic inorganic carbon and nutrients DOC DIC DON DOP DIN and DIP 38 39 40 and any left overs further experience microbial decomposition or are scavenged by macrofauna and megafauna once on the seabed 41 42 Despite the high lability of jelly C 43 39 a remarkably large amount of biomass arrives at the seabed below 1 000 m During sinking jelly C biochemical composition changes via shifts in C N P ratios as observed in experimental studies 20 44 45 Yet realistic jelly C transfer estimates at the global scale remain in their infancy preventing a quantitative assessment of the contribution to the biological carbon soft tissue pump 11 nbsp Doliolids gelatinous tunicates belonging to the class of Thaliaceans are found everywhere on continental shelves Thaliaceans play an important role in the ecology of the sea Their dense faecal pellets sink to the bottom of the oceans and this may be a major part of the worldwide carbon cycle 46 Ocean carbon export is typically estimated from the flux of sinking particles that are either caught in sediment traps 47 or quantified from videography 48 and subsequently modeled using sinking rates 49 Biogeochemical models 50 51 52 are normally parameterized using particulate organic matter data e g 0 5 1 000 mm marine snow and fecal pellets that were derived from laboratory experiments 53 or from sediment trap data 50 These models do not include jelly C except larvaceans 54 55 not only because this carbon transport mechanism is considered transient episodic and not usually observed and mass fluxes are too big to be collected by sediment traps 27 but also because models aim to simplify the biotic compartments to facilitate calculations Furthermore jelly C deposits tend not to build up at the seafloor over a long time such as phytodetritus Beaulieu 2002 being consumed rapidly by demersal and benthic organisms 41 or decomposed by microbes 42 The jelly C sinking rate is governed by organism size diameter biovolume geometry 56 density 57 and drag coefficients 58 In 2013 Lebrato et al determined the average sinking speed of jelly C using Cnidaria Ctenophora and Thaliacea samples which ranged from 800 to 1 500 m day 1 salps 800 1 200 m day 1 scyphozoans 1 000 1 100 m d 1 ctenophores 1 200 1 500 m day 1 pyrosomes 1 300 m day 1 59 Jelly C model simulations suggest that regardless of taxa higher latitudes are more efficient corridors to transfer jelly C to the seabed owing to lower remineralization rates 60 In subtropical and temperate regions significant decomposition takes place in the water column above 1 500 m depth except in cases where jelly C starts sinking below the thermocline In shallow water coastal regions time is a limiting factor which prevents remineralization while sinking and results in the accumulation of decomposing jelly C from a variety of taxa on the seabed This suggests that gelatinous zooplankton transfer most biomass and carbon to the deep ocean enhancing coastal carbon fluxes via DOC and DIC fueling microbial and megafaunal macrofaunal scavenging communities However the absence of satellite derived jelly C measurements such as primary production 61 and the limited number of global zooplankton biomass data sets make it challenging to quantify global jelly C production and transfer efficiency to the ocean s interior 11 Monitoring editBecause of its fragile structure image acquisition of gelatinous zooplankton requires the assistance of computer visioning Automated recognition of zooplankton in sample deposits is possible by utilising technologies such as Tikhonov regularization support vector machines and genetic programming 62 nbsp The Beroe ctenophore mouth gaping preys on other ctenophores nbsp Deep red jellyfish a hydrozoan found in the Arctic Ocean at depths below 1 000 m 3 300 ft 63 nbsp The salp another example of a gelatinous tunicate is often found in the form of a colonial chainSee also editSea snotReferences edit a b c d Hays Graeme C Doyle Thomas K Houghton Jonathan D R 2018 A Paradigm Shift in the Trophic Importance of Jellyfish Trends in Ecology amp Evolution 33 11 874 884 doi 10 1016 j tree 2018 09 001 PMID 30245075 S2CID 52336522 Lalli C M amp Parsons T R 2001 Biological Oceanography Butterworth Heinemann Johnsen S 2000 Transparent Animals Scientific American 282 62 71 Nouvian C 2007 The Deep University of Chicago Press Hamner W M Madin L P Alldredge A L Gilmer R W Hamner P P 1975 Underwater observations of gelatinous zooplankton Sampling problems feeding biology and behavior1 Limnology and Oceanography 20 6 907 917 Bibcode 1975LimOc 20 907H doi 10 4319 lo 1975 20 6 0907 ISSN 1939 5590 HADDOCK S D H 2004 A golden age of gelata past and future research on planktonic ctenophores and cnidarians Hydrobiologia 530 531 549 556 a b Hamilton G 2016 The secret lives of jellyfish long regarded as minor players in ocean ecology jellyfish are actually important parts of the marine food web Nature 531 7595 432 435 doi 10 1038 531432a Cardona L De Quevedo I A Borrell A and Aguilar A 2012 Massive consumption of gelatinous plankton by Mediterranean apex predators PLOS ONE 7 3 e31329 doi 10 1371 journal pone 0031329 a b Choy C A Haddock S H and Robison B H 2017 Deep pelagic food web structure as revealed by in situ feeding observations Proceedings of the Royal Society B Biological Sciences 284 1868 20172116 doi 10 1098 rspb 2017 2116 nbsp Material was copied from this source which is available under a Creative Commons Attribution 4 0 International License Munro Catriona Siebert Stefan Zapata Felipe Howison Mark Damian Serrano Alejandro Church Samuel H Goetz Freya E Pugh Philip R Haddock Steven H D Dunn Casey W 2018 Improved phylogenetic resolution within Siphonophora Cnidaria with implications for trait evolution Molecular Phylogenetics and Evolution 127 823 833 doi 10 1016 j ympev 2018 06 030 PMC 6064665 PMID 29940256 nbsp Material was copied from this source which is available under a Creative Commons Attribution 4 0 International License a b c d e f Lebrato Mario Pahlow Markus Frost Jessica R Kuter Marie Jesus Mendes Pedro Molinero Juan Carlos Oschlies Andreas 2019 Sinking of Gelatinous Zooplankton Biomass Increases Deep Carbon Transfer Efficiency Globally Global Biogeochemical Cycles 33 12 1764 1783 Bibcode 2019GBioC 33 1764L doi 10 1029 2019GB006265 nbsp Material was copied from this source which is available under a Creative Commons Attribution 4 0 International License Buesseler K O Lamborg C H Boyd P W Lam P J Trull T W Bidigare R R Bishop J K B Casciotti K L Dehairs F Elskens M Honda M Karl D M Siegel D A Silver M W Steinberg D K Valdes J Van Mooy B Wilson S 2007 Revisiting Carbon Flux Through the Ocean s Twilight Zone Science 316 5824 567 570 Bibcode 2007Sci 316 567B doi 10 1126 science 1137959 PMID 17463282 S2CID 8423647 Koppelmann R amp Frost J 2008 The ecological role of zooplankton in the twilight and dark zones of the ocean In L P Mertens Ed Biological Oceanography Research Trends pages 67 130 New York Nova Science Publishers a b Robinson Carol Steinberg Deborah K Anderson Thomas R Aristegui Javier Carlson Craig A Frost Jessica R Ghiglione Jean Francois Hernandez Leon Santiago Jackson George A Koppelmann Rolf Queguiner Bernard Ragueneau Olivier Rassoulzadegan Fereidoun Robison Bruce H Tamburini Christian Tanaka Tsuneo Wishner Karen F Zhang Jing 2010 Mesopelagic zone ecology and biogeochemistry a synthesis Deep Sea Research Part II Topical Studies in Oceanography 57 16 1504 1518 Bibcode 2010DSRII 57 1504R doi 10 1016 j dsr2 2010 02 018 a b Lebrato Mario Pitt Kylie A Sweetman Andrew K Jones Daniel O B Cartes Joan E Oschlies Andreas Condon Robert H Molinero Juan Carlos Adler Laetitia Gaillard Christian Lloris Domingo Billett David S M 2012 Jelly falls historic and recent observations A review to drive future research directions Hydrobiologia 690 227 245 doi 10 1007 s10750 012 1046 8 S2CID 15428213 Robison B H Reisenbichler K R Sherlock R E 2005 Giant Larvacean Houses Rapid Carbon Transport to the Deep Sea Floor Science 308 5728 1609 1611 Bibcode 2005Sci 308 1609R doi 10 1126 science 1109104 PMID 15947183 S2CID 730130 Condon R H Duarte C M Pitt K A Robinson K L Lucas C H Sutherland K R Mianzan H W Bogeberg M Purcell J E Decker M B Uye S i Madin L P Brodeur R D Haddock S H D Malej A Parry G D Eriksen E Quinones J Acha M Harvey M Arthur J M Graham W M 2013 Recurrent jellyfish blooms are a consequence of global oscillations Proceedings of the National Academy of Sciences 110 3 1000 1005 Bibcode 2013PNAS 110 1000C doi 10 1073 pnas 1210920110 PMC 3549082 PMID 23277544 Pauly Daniel Graham William Libralato Simone Morissette Lyne Deng Palomares M L 2009 Jellyfish in ecosystems online databases and ecosystem models Hydrobiologia 616 67 85 doi 10 1007 s10750 008 9583 x S2CID 12415790 Condon R H Steinberg D K Del Giorgio P A Bouvier T C Bronk D A Graham W M Ducklow H W 2011 Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems Proceedings of the National Academy of Sciences 108 25 10225 10230 Bibcode 2011PNAS 10810225C doi 10 1073 pnas 1015782108 PMC 3121804 PMID 21646531 a b Frost Jessica R Jacoby Charles A Frazer Thomas K Zimmerman Andrew R 2012 Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha Scyphozoa Pelagiidae Hydrobiologia 690 247 256 doi 10 1007 s10750 012 1042 z S2CID 17113316 a b c Lucas Cathy H Jones Daniel O B Hollyhead Catherine J Condon Robert H Duarte Carlos M Graham William M Robinson Kelly L Pitt Kylie A Schildhauer Mark Regetz Jim 2014 Gelatinous zooplankton biomass in the global oceans Geographic variation and environmental drivers PDF Global Ecology and Biogeography 23 7 701 714 doi 10 1111 geb 12169 Moriarty R O Brien T D 2013 Distribution of mesozooplankton biomass in the global ocean Earth System Science Data 5 1 45 55 Bibcode 2013ESSD 5 45M doi 10 5194 essd 5 45 2013 Ceh Janja Gonzalez Jorge Pacheco Aldo S Riascos Jose M 2015 The elusive life cycle of scyphozoan jellyfish metagenesis revisited Scientific Reports 5 12037 Bibcode 2015NatSR 512037C doi 10 1038 srep12037 PMC 4495463 PMID 26153534 Raskoff Kevin A Sommer Freya A Hamner William M Cross Katrina M 2003 Collection and Culture Techniques for Gelatinous Zooplankton Biological Bulletin 204 1 68 80 doi 10 2307 1543497 JSTOR 1543497 PMID 12588746 S2CID 22389317 Field C B Behrenfeld M J Randerson J T Falkowski P 1998 Primary Production of the Biosphere Integrating Terrestrial and Oceanic Components Science 281 5374 237 240 Bibcode 1998Sci 281 237F doi 10 1126 science 281 5374 237 PMID 9657713 Moore J Keith Doney Scott C Lindsay Keith 2004 Upper ocean ecosystem dynamics and iron cycling in a global three dimensional model Global Biogeochemical Cycles 18 4 n a Bibcode 2004GBioC 18 4028M doi 10 1029 2004GB002220 S2CID 3575218 a b Siegel D A Buesseler K O Doney S C Sailley S F Behrenfeld M J Boyd P W 2014 Global assessment of ocean carbon export by combining satellite observations and food web models Global Biogeochemical Cycles 28 3 181 196 Bibcode 2014GBioC 28 181S doi 10 1002 2013GB004743 hdl 1912 6668 S2CID 43799803 Longhurst Alan 1995 Seasonal cycles of pelagic production and consumption Progress in Oceanography 36 2 77 167 Bibcode 1995PrOce 36 77L doi 10 1016 0079 6611 95 00015 1 Longhurst A R 1998 Ecological geography of the sea page 398 Academic Press Brotz Lucas Cheung William W L Kleisner Kristin Pakhomov Evgeny Pauly Daniel 2012 Increasing jellyfish populations Trends in Large Marine Ecosystems Hydrobiologia 690 3 20 doi 10 1007 s10750 012 1039 7 S2CID 12375717 Condon Robert H Graham William M Duarte Carlos M Pitt Kylie A Lucas Cathy H Haddock Steven H D Sutherland Kelly R Robinson Kelly L Dawson Michael N Decker Mary Beth Mills Claudia E Purcell Jennifer E Malej Alenka Mianzan Hermes Uye Shin Ichi Gelcich Stefan Madin Laurence P 2012 Questioning the Rise of Gelatinous Zooplankton in the World s Oceans BioScience 62 2 160 169 doi 10 1525 bio 2012 62 2 9 S2CID 2721425 JellyWatch Home jellywatch org Accessed 17 April 2022 Billett D S M Bett B J Jacobs C L Rouse I P Wigham B D 2006 Mass deposition of jellyfish in the deep Arabian Sea Limnology and Oceanography 51 5 2077 2083 Bibcode 2006LimOc 51 2077B doi 10 4319 lo 2006 51 5 2077 Lebrato M Jones D O B 2009 Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast West Africa Limnology and Oceanography 54 4 1197 1209 Bibcode 2009LimOc 54 1197L doi 10 4319 lo 2009 54 4 1197 Sweetman Andrew K Chapman Annelise 2011 First observations of jelly falls at the seafloor in a deep sea fjord Deep Sea Research Part I Oceanographic Research Papers 58 12 1206 1211 Bibcode 2011DSRI 58 1206S doi 10 1016 j dsr 2011 08 006 Smith K L Jr Sherman A D Huffard C L McGill P R Henthorn R von Thun S Ruhl H A Kahru M Ohman M D 2014 Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific Day to week resolution Limnology and Oceanography 59 3 745 757 Bibcode 2014LimOc 59 745S doi 10 4319 lo 2014 59 3 0745 Lebrato Mario Molinero Juan Carlos Cartes Joan E Lloris Domingo Melin Frederic Beni Casadella Laia 2013 Sinking Jelly Carbon Unveils Potential Environmental Variability along a Continental Margin PLOS ONE 8 12 e82070 Bibcode 2013PLoSO 882070L doi 10 1371 journal pone 0082070 PMC 3867349 PMID 24367499 Chelsky Ariella Pitt Kylie A Welsh David T 2015 Biogeochemical implications of decomposing jellyfish blooms in a changing climate Estuarine Coastal and Shelf Science 154 77 83 Bibcode 2015ECSS 154 77C doi 10 1016 j ecss 2014 12 022 hdl 10072 101243 a b Sweetman Andrew K Chelsky Ariella Pitt Kylie A Andrade Hector Van Oevelen Dick Renaud Paul E 2016 Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food webs Limnology and Oceanography 61 4 1449 1461 Bibcode 2016LimOc 61 1449S doi 10 1002 lno 10310 West Elizabeth Jane Welsh David Thomas Pitt Kylie Anne 2009 Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics Hydrobiologia 616 151 160 doi 10 1007 s10750 008 9586 7 S2CID 46695384 a b Sweetman Andrew K Smith Craig R Dale Trine Jones Daniel O B 2014 Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep sea food webs Proceedings of the Royal Society B Biological Sciences 281 1796 doi 10 1098 rspb 2014 2210 PMC 4213659 PMID 25320167 a b Tinta Tinkara Kogovsek Tjasa Turk Valentina Shiganova Tamara A Mikaelyan Alexander S Malej Alenka 2016 Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column A Black Sea case study Journal of Experimental Marine Biology and Ecology 475 19 30 doi 10 1016 j jembe 2015 10 018 Ates Ron M L 2017 Benthic scavengers and predators of jellyfish material for a review Plankton and Benthos Research 12 71 77 doi 10 3800 pbr 12 71 Sempere R Yoro SC Van Wambeke F Charriere B 2000 Microbial decomposition of large organic particles in the northwestern Mediterranean Sea an experimental approach Marine Ecology Progress Series 198 61 72 Bibcode 2000MEPS 198 61S doi 10 3354 meps198061 Titelman J Riemann L Sornes TA Nilsen T Griekspoor P Bamstedt U 2006 Turnover of dead jellyfish Stimulation and retardation of microbial activity Marine Ecology Progress Series 325 43 58 Bibcode 2006MEPS 325 43T doi 10 3354 meps325043 Thaliaceans and the carbon cycle Asper Vernon L 1987 Measuring the flux and sinking speed of marine snow aggregates Deep Sea Research Part A Oceanographic Research Papers 34 1 1 17 Bibcode 1987DSRA 34 1A doi 10 1016 0198 0149 87 90117 8 Jackson et al 1997 Martin John H Knauer George A Karl David M Broenkow William W 1987 VERTEX Carbon cycling in the northeast Pacific Deep Sea Research Part A Oceanographic Research Papers 34 2 267 285 Bibcode 1987DSRA 34 267M doi 10 1016 0198 0149 87 90086 0 a b Gehlen M Bopp L Emprin N Aumont O Heinze C Ragueneau O 2006 Reconciling surface ocean productivity export fluxes and sediment composition in a global biogeochemical ocean model Biogeosciences 3 4 521 537 Bibcode 2006BGeo 3 521G doi 10 5194 bg 3 521 2006 Ilyina Tatiana Six Katharina D Segschneider Joachim Maier Reimer Ernst Li Hongmei Nunez Riboni Ismael 2013 Global ocean biogeochemistry model HAMOCC Model architecture and performance as component of the MPI Earth system model in different CMIP5 experimental realizations Journal of Advances in Modeling Earth Systems 5 2 287 315 Bibcode 2013JAMES 5 287I doi 10 1029 2012MS000178 Laufkotter C Vogt M Gruber N Aita Noguchi M Aumont O Bopp L Buitenhuis E Doney S C Dunne J Hashioka T Hauck J Hirata T John J Le Quere C Lima I D Nakano H Seferian R Totterdell I Vichi M Volker C 2015 Drivers and uncertainties of future global marine primary production in marine ecosystem models Biogeosciences 12 23 6955 6984 Bibcode 2015BGeo 12 6955L doi 10 5194 bg 12 6955 2015 Ploug Helle Iversen Morten Hvitfeldt Fischer Gerhard 2008 Ballast sinking velocity and apparent diffusivity within marine snow and zooplankton fecal pellets Implications for substrate turnover by attached bacteria Limnology and Oceanography 53 5 1878 1886 Bibcode 2008LimOc 53 1878P doi 10 4319 lo 2008 53 5 1878 Lombard Fabien Kiorboe Thomas 2010 Marine snow originating from appendicularian houses Age dependent settling characteristics Deep Sea Research Part I Oceanographic Research Papers 57 10 1304 1313 Bibcode 2010DSRI 57 1304L doi 10 1016 j dsr 2010 06 008 Lombard F Legendre L Picheral M Sciandra A Gorsky G 2010 Prediction of ecological niches and carbon export by appendicularians using a new multispecies ecophysiological model Marine Ecology Progress Series 398 109 125 Bibcode 2010MEPS 398 109L doi 10 3354 meps08273 Walsby A E Xypolyta Anastasia 1977 The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt British Phycological Journal 12 3 215 223 doi 10 1080 00071617700650231 Yamamoto Jun Hirose Miyuki Ohtani Tetsuya Sugimoto Katashi Hirase Kazue Shimamoto Nobuo Shimura Tsuyoshi Honda Natsumi Fujimori Yasuzumi Mukai Tohru 2008 Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan Marine Biology 153 3 311 317 doi 10 1007 s00227 007 0807 9 S2CID 89540757 McDonnell Andrew M P Buesseler Ken O 2010 Variability in the average sinking velocity of marine particles Limnology and Oceanography 55 5 2085 2096 Bibcode 2010LimOc 55 2085M doi 10 4319 lo 2010 55 5 2085 Lebrato Mario Mendes Pedro de Jesus Steinberg Deborah K Cartes Joan E Jones Bethan M Birsa Laura M Benavides Roberto Oschlies Andreas 2013 Jelly biomass sinking speed reveals a fast carbon export mechanism PDF Limnology and Oceanography 58 3 1113 1122 Bibcode 2013LimOc 58 1113L doi 10 4319 lo 2013 58 3 1113 S2CID 3661129 Lebrato Mario Pahlow Markus Oschlies Andreas Pitt Kylie A Jones Daniel O B Molinero Juan Carlos Condon Robert H 2011 Depth attenuation of organic matter export associated with jelly falls Limnology and Oceanography 56 5 1917 1928 Bibcode 2011LimOc 56 1917L doi 10 4319 lo 2011 56 5 1917 hdl 10072 43275 S2CID 3693276 Behrenfeld Michael J Falkowski Paul G 1997 Photosynthetic rates derived from satellite based chlorophyll concentration Limnology and Oceanography 42 1 1 20 Bibcode 1997LimOc 42 1B doi 10 4319 lo 1997 42 1 0001 S2CID 15857675 Lorenzo Corgnati Simone Marini Luca Mazzei Ennio Ottaviani Stefano Aliani Alessandra Conversi Annalisa Griffa 2016 Looking inside the Ocean Toward an Autonomous Imaging System for Monitoring Gelatinous Zooplankton Sensors 12 16 2124 Bibcode 2016Senso 16 2124C doi 10 3390 s16122124 ISSN 1424 8220 OCLC 8148647236 PMC 5191104 PMID 27983638 Raskoff K and R Hopcroft 2010 Crossota norvegica Arctic Ocean Diversity Accessed 25 August 2020 External links editPlankton Chronicles Short documentary films amp photos Ocean Explorer Gelatinous zooplankton from the Arctic Ocean Jellyfish and other gelatinous zooplankton Archived 2010 08 13 at the Wayback Machine PLANKTON NET information on all types of plankton including gelatinous zooplankton Deep sea gelatinous zooplankton from The Deep Nouvian 2007 Retrieved from https en wikipedia org w index php title Gelatinous zooplankton amp oldid 1178583733 Jelly carbon, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.