fbpx
Wikipedia

Inclusion (Boolean algebra)

In Boolean algebra, the inclusion relation is defined as and is the Boolean analogue to the subset relation in set theory. Inclusion is a partial order.

The inclusion relation can be expressed in many ways:

The inclusion relation has a natural interpretation in various Boolean algebras: in the subset algebra, the subset relation; in arithmetic Boolean algebra, divisibility; in the algebra of propositions, material implication; in the two-element algebra, the set { (0,0), (0,1), (1,1) }.

Some useful properties of the inclusion relation are:

The inclusion relation may be used to define Boolean intervals such that . A Boolean algebra whose carrier set is restricted to the elements in an interval is itself a Boolean algebra.

References edit

  • Frank Markham Brown [d], Boolean Reasoning: The Logic of Boolean Equations, 2nd edition, 2003, p. 34, 52 ISBN 0486164594

inclusion, boolean, algebra, boolean, algebra, inclusion, relation, displaystyle, defined, displaystyle, boolean, analogue, subset, relation, theory, inclusion, partial, order, inclusion, relation, displaystyle, expressed, many, ways, displaystyle, displaystyl. In Boolean algebra the inclusion relation a b displaystyle a leq b is defined as a b 0 displaystyle ab 0 and is the Boolean analogue to the subset relation in set theory Inclusion is a partial order The inclusion relation a lt b displaystyle a lt b can be expressed in many ways a lt b displaystyle a lt b a b 0 displaystyle ab 0 a b 1 displaystyle a b 1 b lt a displaystyle b lt a a b b displaystyle a b b a b a displaystyle ab a The inclusion relation has a natural interpretation in various Boolean algebras in the subset algebra the subset relation in arithmetic Boolean algebra divisibility in the algebra of propositions material implication in the two element algebra the set 0 0 0 1 1 1 Some useful properties of the inclusion relation are a a b displaystyle a leq a b a b a displaystyle ab leq a The inclusion relation may be used to define Boolean intervals such that a x b displaystyle a leq x leq b A Boolean algebra whose carrier set is restricted to the elements in an interval is itself a Boolean algebra References editFrank Markham Brown d Boolean Reasoning The Logic of Boolean Equations 2nd edition 2003 p 34 52 ISBN 0486164594 Retrieved from https en wikipedia org w index php title Inclusion Boolean algebra amp oldid 1096649295, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.