fbpx
Wikipedia

Hyperuniformity

Hyperuniform materials are characterized by an anomalous suppression of density fluctuations at large scales. More precisely, the vanishing of density fluctuations in the long-wave length limit (like for crystals) distinguishes hyperuniform systems from typical gases, liquids, or amorphous solids.[1][2] Examples of hyperuniformity include all perfect crystals,[1] perfect quasicrystals,[3][4] and exotic amorphous states of matter.[2]

Hyperuniformity is defined by the scaling of the variance of the number of points that are within a disk of radius R. For the ideal gas (left), this variance scales like the area of the disk. For a hyperuniform system (center), it scales slower than the area of the disk.[1] For example, for a crystal (right), it scales like the boundary length of the disk; adapted after Figure 1 of Ref.[2]

Quantitatively, a many-particle system is said to be hyperuniform if the variance of the number of points within a spherical observation window grows more slowly than the volume of the observation window. This definition is equivalent to a vanishing of the structure factor in the long-wavelength limit,[1] and it has been extended to include heterogeneous materials as well as scalar, vector, and tensor fields.[5] Disordered hyperuniform systems, were shown to be poised at an "inverted" critical point.[1] They can be obtained via equilibrium or nonequilibrium routes, and are found in both classical physical and quantum-mechanical systems.[1][2] Hence, the concept of hyperuniformity now connects a broad range of topics in physics,[2][6][7][8][9] mathematics,[10][11][12][13][14][15] biology,[16][17][18] and materials science.[19][20][21]

The concept of hyperuniformity generalizes the traditional notion of long-range order and thus defines an exotic state of matter. A disordered hyperuniform many-particle system can be statistically isotropic like a liquid, with no Bragg peaks and no conventional type of long-range order. Nevertheless, at large scales, hyperuniform systems resemble crystals, in their suppression of large-scale density fluctuations. This unique combination is known to endow disordered hyperuniform materials with novel physical properties that are, e.g., both nearly optimal and direction independent (in contrast to those of crystals that are anisotropic).[2]

History edit

The term hyperuniformity (also independently called super-homogeneity in the context of cosmology[22]) was coined and studied by Salvatore Torquato and Frank Stillinger in a 2003 paper,[1] in which they showed that, among other things, hyperuniformity provides a unified framework to classify and structurally characterize crystals, quasicrystals, and exotic disordered varieties. In that sense, hyperuniformity is a long-range property that can be viewed as generalizing the traditional notion of long-range order (e.g., translational / orientational order of crystals or orientational order of quasicrystals) to also encompass exotic disordered systems.[2]

Hyperuniformity was first introduced for point processes[1] and later generalized to two-phase materials (or porous media)[3] and random scalar or vectors fields.[5] It has been observed in theoretical models, simulations, and experiments, see list of examples below.[2]

Definition edit

A many-particle system in  -dimensional Euclidean space   is said to be hyperuniform if the number of points in a spherical observation window with radius   has a variance   that scales slower than the volume of the observation window:[1]

 
This definition is (essentially) equivalent to the vanishing of the structure factor at the origin:[1]
 
for wave vectors  .

Similarly, a two-phase medium consisting of a solid and a void phase is said to be hyperuniform if the volume of the solid phase inside the spherical observation window has a variance that scales slower than the volume of the observation window. This definition is, in turn, equivalent to a vanishing of the spectral density at the origin.[3]

An essential feature of hyperuniform systems is their scaling of the number variance   for large radii or, equivalently, of the structure factor   for small wave numbers. If we consider hyperuniform systems that are characterized by a power-law behavior of the structure factor close to the origin:[2]

 
with a constant  , then there are three distinct scaling behaviors that define three classes of hyperuniformity:
 
Examples are known for all three classes of hyperuniformity.[2]

Examples edit

Examples of disordered hyperuniform systems in physics are disordered ground states,[7] jammed disordered sphere packings,[6][23][24][25][26][27][28][29][30] amorphous ices,[31] amorphous speckle patterns,[32] certain fermionic systems,[33] random self-organization,[8][34] [35][36][37][38][9] perturbed lattices,[39][40][41][42] and avian photoreceptor cells.[16]

In mathematics, disordered hyperuniformity has been studied in the context of probability theory,[10][43][11] geometry,[13][14] and number theory,[44][12][45] where the prime numbers have been found to be effectively limit periodic and hyperuniform in a certain scaling limit.[12] Further examples include certain random walks[46] and stable matchings of point processes.[15][24][25][26][27][47]

Ordered hyperuniformity edit

Examples of ordered, hyperuniform systems include all crystals,[1] all quasicrystals,[3][4][48] and limit-periodic sets.[49] While weakly correlated noise typically preserves hyperuniformity, correlated excitations at finite temperature tend to destroy hyperuniformity.[50]

Hyperuniformity was also reported for fermionic quantum matter in correlated electron systems as a result of cramming.[51]

Disordered hyperuniformity edit

Torquato (2014)[52] gives an illustrative example of the hidden order found in a "shaken box of marbles",[52] which fall into an arrangement, called maximally random jammed packing.[6][53] Such hidden order may eventually be used for self-organizing colloids or optics with the ability to transmit light with an efficiency like a crystal but with a highly flexible design.[52]

It has been found that disordered hyperuniform systems possess unique optical properties. For example, disordered hyperuniform photonic networks have been found to exhibit complete photonic band gaps that are comparable in size to those of photonic crystals but with the added advantage of isotropy, which enables free-form waveguides not possible with crystal structures.[19][20][54][55] Moreover, in stealthy hyperuniform systems,[7] light of any wavelength longer than a value specific to the material is able to propagate forward without loss (due to the correlated disorder) even for high particle density.[56]

By contrast, in conditions where light is propagated through an uncorrelated, disordered material of the same density, the material would appear opaque due to multiple scattering. “Stealthy” hyperuniform materials can be theoretically designed for light of any wavelength, and the applications of the concept cover a wide variety of fields of wave physics and materials engineering.[56][57]

Disordered hyperuniformity was found in the photoreceptor cell patterns in the eyes of chickens.[16] This is thought to be the case because the light-sensitive cells in chicken or other bird eyes cannot easily attain an optimal crystalline arrangement but instead form a disordered configuration that is as uniform as possible.[16][58][59] Indeed, it is the remarkable property of "mulithyperuniformity" of the avian cone patterns, that enables birds to achieve acute color sensing.[16]

Disordered hyperuniformity was recently discovered in amorphous 2‑D materials, which was shown to enhance electronic transport in the material.[60] It may also emerge in the mysterious biological patterns known as fairy circles - circle and patterns of circles that emerge in arid places.[61][62]

Making disordered, but highly uniform, materials edit

The challenge of creating disordered hyperuniform materials is partly attributed to the inevitable presence of imperfections, such as defects and thermal fluctuations. For example, the fluctuation-compressibility relation dictates that any compressible one-component fluid in thermal equilibrium cannot be strictly hyperuniform at finite temperature.[2]

Recently Chremos & Douglas (2018) proposed a design rule for the practical creation of hyperuniform materials at the molecular level.[63][64] Specifically, effective hyperuniformity as measured by the hyperuniformity index is achieved by specific parts of the molecules (e.g., the core of the star polymers or the backbone chains in the case of bottlebrush polymers).[65][2]

The combination of these features leads to molecular packings that are highly uniform at both small and large length scales.[63][64]

Non-equilibrium hyperuniform fluids and length scales edit

Disordered hyperuniformity implies a long-ranged direct correlation function (the Ornstein–Zernike equation).[1] In an equilibrium many-particle system, this requires delicately designed effectively long-ranged interactions, which are not necessary for the dynamic self-assembly of non-equilibrium hyperuniform states. In 2019, Ni and co-workers theoretically predicted a non-equilibrium strongly hyperuniform fluid phase that exists in systems of circularly swimming active hard spheres,[34] which was confirmed experimentally in 2022.[66]

This new hyperuniform fluid features a special length scale, i.e., the diameter of the circular trajectory of active particles, below which large density fluctuations are observed. Moreover, based on a generalized random organising model, Lei and Ni (2019)[35] formulated a hydrodynamic theory for non-equilibrium hyperuniform fluids, and the length scale above which the system is hyperuniform is controlled by the inertia of the particles. The theory generalizes the mechanism of fluidic hyperuniformity as the damping of the stochastic harmonic oscillator, which indicates that the suppressed long-wavelength density fluctuation can exhibit as either acoustic (resonance) mode or diffusive (overdamped) mode.[35] In the Lei-Ni reactive hard-sphere model,[35] it was found that the discontinuous absorbing transition of metastable hyperuniform fluid into an immobile absorbing state does not have the kinetic pathway of nucleation and growth, and the transition rate decreases with increasing the system size. This challenges the common understanding of metastability in discontinuous phase transitions and suggests that non-equilibrium hyperuniform fluid is fundamentally different from conventional equilibrium fluids.[67]

See also edit

References edit

  1. ^ a b c d e f g h i j k l Torquato, Salvatore; Stillinger, Frank H. (29 October 2003). "Local density fluctuations, hyperuniformity, and order metrics". Physical Review E. 68 (4): 041113. arXiv:cond-mat/0311532. Bibcode:2003PhRvE..68d1113T. doi:10.1103/PhysRevE.68.041113. PMID 14682929. S2CID 9162488.
  2. ^ a b c d e f g h i j k l Torquato, Salvatore (2018). "Hyperuniform states of matter". Physics Reports. 745: 1–95. arXiv:1801.06924. Bibcode:2018PhR...745....1T. doi:10.1016/j.physrep.2018.03.001. S2CID 119378373.
  3. ^ a b c d Zachary, Chase E.; Torquato, Salvatore (21 December 2009). "Hyperuniformity in point patterns and two-phase random heterogeneous media". Journal of Statistical Mechanics: Theory and Experiment. 2009 (12): P12015. arXiv:0910.2172. Bibcode:2009JSMTE..12..015Z. doi:10.1088/1742-5468/2009/12/P12015. ISSN 1742-5468. S2CID 18838058.
  4. ^ a b Oğuz, Erdal C.; Socolar, Joshua E.S.; Steinhardt, Paul J.; Torquato, Salvatore (23 February 2017). "Hyperuniformity of quasicrystals". Physical Review B. 95 (5): 054119. arXiv:1612.01975. Bibcode:2017PhRvB..95e4119O. doi:10.1103/PhysRevB.95.054119. ISSN 2469-9950. S2CID 85522310.
  5. ^ a b Torquato, Salvatore (15 August 2016). "Hyperuniformity and its generalizations". Physical Review E. 94 (2): 022122. arXiv:1607.08814. Bibcode:2016PhRvE..94b2122T. doi:10.1103/PhysRevE.94.022122. ISSN 2470-0045. PMID 27627261. S2CID 30459937.
  6. ^ a b c Donev, Aleksandar; Stillinger, Frank H.; Torquato, Salvatore (26 August 2005). "Unexpected density fluctuations in jammed disordered sphere packings". Physical Review Letters. 95 (9): 090604. arXiv:cond-mat/0506406. Bibcode:2005PhRvL..95i0604D. doi:10.1103/PhysRevLett.95.090604. ISSN 0031-9007. PMID 16197201. S2CID 7887194.
  7. ^ a b c Torquato, S.; Zhang, G.; Stillinger, F.H. (29 May 2015). "Ensemble theory for stealthy hyperuniform disordered ground states". Physical Review X. 5 (2): 021020. arXiv:1503.06436. Bibcode:2015PhRvX...5b1020T. doi:10.1103/PhysRevX.5.021020. ISSN 2160-3308. S2CID 17275490.
  8. ^ a b Hexner, Daniel; Levine, Dov (20 March 2015). "Hyperuniformity of Critical Absorbing States". Physical Review Letters. 114 (11): 110602. arXiv:1407.0146. Bibcode:2015PhRvL.114k0602H. doi:10.1103/PhysRevLett.114.110602. ISSN 0031-9007. PMID 25839254. S2CID 23951607.
  9. ^ a b Wilken, Sam; Guerra, Rodrigo E.; Pine, David J.; Chaikin, Paul M. (11 February 2020). "Hyperuniform Structures Formed by Shearing Colloidal Suspensions". Physical Review Letters. 125 (14): 148001. arXiv:2002.04499. Bibcode:2020PhRvL.125n8001W. doi:10.1103/PhysRevLett.125.148001. PMID 33064537. S2CID 211075881.
  10. ^ a b Ghosh, Subhroshekhar; Lebowitz, Joel L. (2017). "Fluctuations, large deviations and rigidity in hyperuniform systems: A brief survey". Indian Journal of Pure and Applied Mathematics. 48 (4): 609–631. arXiv:1608.07496. doi:10.1007/s13226-017-0248-1. ISSN 0019-5588. S2CID 8709357.
  11. ^ a b Ghosh, Subhroshekhar; Lebowitz, Joel L. (2018). "Generalized stealthy hyperuniform processes: Maximal rigidity and the bounded holes conjecture". Communications in Mathematical Physics. 363 (1): 97–110. arXiv:1707.04328. Bibcode:2018CMaPh.363...97G. doi:10.1007/s00220-018-3226-5. ISSN 0010-3616. S2CID 6243545.
  12. ^ a b c Torquato, Salvatore; Zhang, Ge; De Courcy-Ireland, Matthew (29 March 2019). "Hidden multiscale order in the primes". Journal of Physics A: Mathematical and Theoretical. 52 (13): 135002. arXiv:1804.06279. Bibcode:2019JPhA...52m5002T. doi:10.1088/1751-8121/ab0588. ISSN 1751-8113. S2CID 85508362.
  13. ^ a b Brauchart, Johann S.; Grabner, Peter J.; Kusner, Wöden; Ziefle, Jonas (2020). "Hyperuniform point sets on the sphere: probabilistic aspects". Monatshefte für Mathematik. 192 (4): 763–781. arXiv:1809.02645. doi:10.1007/s00605-020-01439-y. ISSN 0026-9255. S2CID 119179807.
  14. ^ a b Baake, Michael; Grimm, Uwe (1 September 2020). "Inflation versus projection sets in aperiodic systems: The role of the window in averaging and diffraction". Acta Crystallographica Section A. 76 (5): 559–570. arXiv:2004.03256. doi:10.1107/S2053273320007421. ISSN 2053-2733. PMC 7459767. PMID 32869753. S2CID 220404667.
  15. ^ a b Klatt, Michael Andreas; Last, Günter; Yogeshwaran, D. (2020). "Hyperuniform and rigid stable matchings". Random Structures & Algorithms. 57 (2): 439–473. arXiv:1810.00265. doi:10.1002/rsa.20923. ISSN 1098-2418. S2CID 119678948.
  16. ^ a b c d e Jiao; et al. (2014). "Avian Photoreceptor Patterns Represent a Disordered Hyperuniform Solution to a Multiscale Packing Problem". Physical Review E. 89 (2): 022721. arXiv:1402.6058. Bibcode:2014PhRvE..89b2721J. doi:10.1103/PhysRevE.89.022721. PMC 5836809. PMID 25353522.
  17. ^ Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry; Walczak, Aleksandra M. (12 May 2015). "How a well-adapted immune system is organized". Proceedings of the National Academy of Sciences. 112 (19): 5950–5955. arXiv:1407.6888. Bibcode:2015PNAS..112.5950M. doi:10.1073/pnas.1421827112. ISSN 0027-8424. PMC 4434741. PMID 25918407.
  18. ^ Huang, Mingji; Hu, Wensi; Yang, Siyuan; Liu, Quan-Xing; Zhang, H. P. (4 May 2021). "Circular swimming motility and disordered hyperuniform state in an algae system". Proceedings of the National Academy of Sciences. 118 (18): e2100493118. Bibcode:2021PNAS..11800493H. doi:10.1073/pnas.2100493118. ISSN 0027-8424. PMC 8106356. PMID 33931505.
  19. ^ a b Florescu, M.; Torquato, S.; Steinhardt, P.J. (8 December 2009). "Designer disordered materials with large, complete photonic band gaps". Proceedings of the National Academy of Sciences. 106 (49): 20658–20663. arXiv:1007.3554. Bibcode:2009PNAS..10620658F. doi:10.1073/pnas.0907744106. ISSN 0027-8424. PMC 2777962. PMID 19918087.
  20. ^ a b Muller, Nicolas; Haberko, Jakub; Marichy, Catherine; Scheffold, Frank (2014). "Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared" (PDF). Advanced Optical Materials. 2 (2): 115–119. doi:10.1002/adom.201300415.
  21. ^ Yu, Sunkyu (13 February 2023). "Evolving scattering networks for engineering disorder". Nature Computational Science. 3 (2): 128–138. doi:10.1038/s43588-022-00395-x. ISSN 2662-8457. PMC 10766560. S2CID 256862885.
  22. ^ Gabrielli, Andrea; Joyce, Michael; Sylos Labini, Francesco (11 April 2002). "Glass-like universe: Real-space correlation properties of standard cosmological models". Physical Review D. 65 (4): 083523. arXiv:astro-ph/0110451. Bibcode:2002PhRvD..65h3523G. doi:10.1103/PhysRevD.65.083523. PMID 14682929. S2CID 9162488.
  23. ^ Zachary, Chase E.; Jiao, Yang; Torquato, Salvatore (29 April 2011). "Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings". Physical Review Letters. 106 (17): 178001. arXiv:1008.2548. Bibcode:2011PhRvL.106q8001Z. doi:10.1103/PhysRevLett.106.178001. ISSN 0031-9007. PMID 21635063. S2CID 15587068.
  24. ^ a b Weijs, Joost H.; Jeanneret, Raphaël; Dreyfus, Rémi; Bartolo, Denis (3 September 2015). "Emergent Hyperuniformity in Periodically Driven Emulsions". Physical Review Letters. 115 (10): 108301. arXiv:1504.04638. Bibcode:2015PhRvL.115j8301W. doi:10.1103/PhysRevLett.115.108301. ISSN 0031-9007. PMID 26382706. S2CID 10340709.
  25. ^ a b Jack, Robert L.; Thompson, Ian R.; Sollich, Peter (9 February 2015). "Hyperuniformity and Phase Separation in Biased Ensembles of Trajectories for Diffusive Systems". Physical Review Letters. 114 (6): 060601. arXiv:1409.3986. Bibcode:2015PhRvL.114f0601J. doi:10.1103/PhysRevLett.114.060601. ISSN 0031-9007. PMID 25723197. S2CID 3132460.
  26. ^ a b Weijs, Joost H.; Bartolo, Denis (27 July 2017). "Mixing by Unstirring: Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection". Physical Review Letters. 119 (4): 048002. arXiv:1702.02395. Bibcode:2017PhRvL.119d8002W. doi:10.1103/PhysRevLett.119.048002. ISSN 0031-9007. PMID 29341775. S2CID 12229553.
  27. ^ a b Ricouvier, Joshua; Pierrat, Romain; Carminati, Rémi; Tabeling, Patrick; Yazhgur, Pavel (15 November 2017). "Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions". Physical Review Letters. 119 (20): 208001. arXiv:1711.00719. Bibcode:2017PhRvL.119t8001R. doi:10.1103/PhysRevLett.119.208001. ISSN 0031-9007. PMID 29219379. S2CID 28177098.
  28. ^ Chieco, A. T.; Zu, M.; Liu, A. J.; Xu, N.; Durian, D. J. (17 October 2018). "Spectrum of structure for jammed and unjammed soft disks". Physical Review E. 98 (4): 042606. arXiv:1806.10118. Bibcode:2018PhRvE..98d2606C. doi:10.1103/PhysRevE.98.042606. ISSN 2470-0045. S2CID 119448635.
  29. ^ Wilken, Sam; Guerra, Rodrigo E.; Levine, Dov; Chaikin, Paul M. (12 July 2021). "Random Close Packing as a Dynamical Phase Transition". Physical Review Letters. 127 (3): 038002. Bibcode:2021PhRvL.127c8002W. doi:10.1103/PhysRevLett.127.038002. ISSN 0031-9007. OSTI 1850634. PMID 34328779. S2CID 236531841.
  30. ^ Rissone, Paolo; Corwin, Eric I.; Parisi, Giorgio (12 July 2021). "Long-Range Anomalous Decay of the Correlation in Jammed Packings". Physical Review Letters. 127 (3): 038001. arXiv:2012.10181. Bibcode:2021PhRvL.127c8001R. doi:10.1103/PhysRevLett.127.038001. ISSN 0031-9007. PMID 34328763. S2CID 229331981.
  31. ^ Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto (29 September 2017). "Large-Scale Structure and Hyperuniformity of Amorphous Ices". Physical Review Letters. 119 (13): 136002. arXiv:1705.09961. Bibcode:2017PhRvL.119m6002M. doi:10.1103/PhysRevLett.119.136002. PMID 29341697. S2CID 44864111.
  32. ^ Di Battista, Diego; Ancora, Daniele; Zacharakis, Giannis; Ruocco, Giancarlo; Leonetti, Marco (11 June 2018). "Hyperuniformity in amorphous speckle patterns". Optics Express. 26 (12): 15594–15608. arXiv:1803.09550. Bibcode:2018OExpr..2615594D. doi:10.1364/OE.26.015594. hdl:11311/1142259. ISSN 1094-4087. PMID 30114818. S2CID 52031100.
  33. ^ Torquato, Salvatore; Scardicchio, A; Zachary, Chase E (27 November 2008). "Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory". Journal of Statistical Mechanics: Theory and Experiment. 2008 (11): P11019. arXiv:0809.0449. Bibcode:2008JSMTE..11..019T. doi:10.1088/1742-5468/2008/11/P11019. ISSN 1742-5468. S2CID 6252369.
  34. ^ a b Lei, Qunli; Pica Ciamarra, Massimo; Ni, Ran (25 January 2019). "Non-Equilibrium Strongly Hyperuniform Fluids of Circle Active Particles with Large Local Density Fluctuations". Science Advances. 5 (1): eaau7423. arXiv:1802.03682. Bibcode:2019SciA....5.7423L. doi:10.1126/sciadv.aau7423. PMC 6357732. PMID 30746459.
  35. ^ a b c d Lei, Qunli; Ni, Ran (12 November 2019). "Hydrodynamics of random-organizing hyperuniform fluids". Proceedings of the National Academy of Sciences of the United States of America. 116 (46): 22983–22989. arXiv:1904.07514. Bibcode:2019PNAS..11622983L. doi:10.1073/pnas.1911596116. PMC 6859356. PMID 31666326.
  36. ^ Hexner, Daniel; Chaikin, Paul M.; Levine, Dov (25 April 2017). "Enhanced hyperuniformity from random reorganization". Proceedings of the National Academy of Sciences. 114 (17): 4294–4299. Bibcode:2017PNAS..114.4294H. doi:10.1073/pnas.1619260114. ISSN 0027-8424. PMC 5410804. PMID 28396393.
  37. ^ Garcia-Millan, R.; Pruessner, G.; Pickering, L.; Christensen, K. (17 July 2018). "Correlations and hyperuniformity in the avalanche size of the Oslo model". EPL (Europhysics Letters). 122 (5): 50003. arXiv:1710.00179. Bibcode:2018EL....12250003G. doi:10.1209/0295-5075/122/50003. ISSN 1286-4854. S2CID 52440880.
  38. ^ Ness, Christopher; Cates, Michael E. (27 February 2020). "Absorbing-State Transitions in Granular Materials Close to Jamming". Physical Review Letters. 124 (8): 088004. arXiv:2001.10228. Bibcode:2020PhRvL.124h8004N. doi:10.1103/PhysRevLett.124.088004. ISSN 0031-9007. PMID 32167320. S2CID 210932396.
  39. ^ Gabrielli, Andrea; Joyce, Michael; Sylos Labini, Francesco (11 April 2002). "Glass-like universe: Real-space correlation properties of standard cosmological models". Physical Review D. 65 (8): 083523. arXiv:astro-ph/0110451. Bibcode:2002PhRvD..65h3523G. doi:10.1103/PhysRevD.65.083523. ISSN 0556-2821. S2CID 119442907.
  40. ^ Gabrielli, Andrea (2004). "Point processes and stochastic displacement fields". Physical Review E. 70 (6): 066131. arXiv:cond-mat/0409594. Bibcode:2004PhRvE..70f6131G. doi:10.1103/PhysRevE.70.066131. ISSN 1539-3755. PMID 15697458. S2CID 33621420.
  41. ^ Le Thien, Q.; McDermott, D.; Reichhardt, C.J.O.; Reichhardt, C. (15 September 2017). "Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder". Physical Review B. 96 (9): 094516. arXiv:1611.01532. Bibcode:2017PhRvB..96i4516L. doi:10.1103/PhysRevB.96.094516. ISSN 2469-9950. S2CID 18031713.
  42. ^ Klatt, Michael A.; Kim, Jaeuk; Torquato, Salvatore (13 March 2020). "Cloaking the underlying long-range order of randomly perturbed lattices". Physical Review E. 101 (3): 032118. arXiv:2001.08161. Bibcode:2020PhRvE.101c2118K. doi:10.1103/PhysRevE.101.032118. ISSN 2470-0045. PMID 32289999. S2CID 210859161.
  43. ^ Ghosh, Subhro; Lebowitz, Joel (2017). "Number Rigidity in Superhomogeneous Random Point Fields". Journal of Statistical Physics. 166 (3–4): 1016–1027. arXiv:1601.04216. Bibcode:2017JSP...166.1016G. doi:10.1007/s10955-016-1633-6. ISSN 0022-4715. S2CID 19675015.
  44. ^ Zhang, G; Martelli, F; Torquato, S (16 March 2018). "The structure factor of primes". Journal of Physics A: Mathematical and Theoretical. 51 (11): 115001. arXiv:1801.01541. Bibcode:2018JPhA...51k5001Z. doi:10.1088/1751-8121/aaa52a. ISSN 1751-8113. S2CID 67819480.
  45. ^ Baake, Michael; Coons, Michael (2021). "Scaling of the Diffraction Measure of $k$ -Free Integers Near the Origin". Michigan Mathematical Journal. 70: 213–221. arXiv:1904.00279. doi:10.1307/mmj/1592877613. ISSN 0026-2285. S2CID 90260746.
  46. ^ Casini, Emanuele; Le Caër, Gérard; Martinelli, Andrea (2015). "Short Hyperuniform Random Walks" (PDF). Journal of Statistical Physics. 160 (1): 254–273. Bibcode:2015JSP...160..254C. doi:10.1007/s10955-015-1244-7. ISSN 0022-4715. S2CID 45170541.
  47. ^ Chieco, A.T.; Zu, M.; Liu, A.J.; Xu, N.; Durian, D.J. (17 October 2018). "Spectrum of structure for jammed and unjammed soft disks". Physical Review E. 98 (4): 042606. arXiv:1806.10118. Bibcode:2018PhRvE..98d2606C. doi:10.1103/PhysRevE.98.042606. ISSN 2470-0045. S2CID 119448635.
  48. ^ Lin, C.; Steinhardt, P.J.; Torquato, S. (13 April 2017). "Hyperuniformity variation with quasicrystal local isomorphism class". Journal of Physics: Condensed Matter. 29 (20): 204003. Bibcode:2017JPCM...29t4003L. doi:10.1088/1361-648x/aa6944. ISSN 0953-8984. PMID 28345537. S2CID 46764513.
  49. ^ Baake, Michael; Grimm, Uwe (23 May 2019). "Scaling of diffraction intensities near the origin: Some rigorous results". Journal of Statistical Mechanics: Theory and Experiment. 2019 (5): 054003. arXiv:1905.04177. Bibcode:2019JSMTE..05.4003B. doi:10.1088/1742-5468/ab02f2. ISSN 1742-5468.
  50. ^ Kim, Jaeuk; Torquato, Salvatore (12 February 2018). "Effect of imperfections on the hyperuniformity of many-body systems". Physical Review B. 97 (5): 054105. Bibcode:2018PhRvB..97e4105K. doi:10.1103/PhysRevB.97.054105. ISSN 2469-9950.
  51. ^ Gerasimenko; et al. (2019). "Quantum jamming transition to a correlated electron glass in 1T-TaS2". Nature Materials. 317 (10): 1078–1083. arXiv:1803.00255. Bibcode:2019NatMa..18.1078G. doi:10.1038/s41563-019-0423-3. PMID 31308513. S2CID 196810837.
  52. ^ a b c Kelly, Morgan (24 February 2014). "In the eye of a chicken, a new state of matter comes into view" (Press release). Princeton, NJ: Princeton University. Retrieved 8 March 2021.
  53. ^ Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore (30 December 2014). "Existence of isostatic, maximally random jammed monodisperse hard-disk packings". Proceedings of the National Academy of Sciences. 111 (52): 18436–18441. Bibcode:2014PNAS..11118436A. doi:10.1073/pnas.1408371112. ISSN 0027-8424. PMC 4284597. PMID 25512529.
  54. ^ Froufe-Pérez, Luis S.; Engel, Michael; Sáenz, Juan José; Scheffold, Frank (5 September 2017). "Band gap formation and Anderson localization in disordered photonic materials with structural correlations". Proceedings of the National Academy of Sciences. 114 (36): 9570–9574. arXiv:1702.03883. Bibcode:2017PNAS..114.9570F. doi:10.1073/pnas.1705130114. ISSN 0027-8424. PMC 5594660. PMID 28831009.
  55. ^ Milošević, Milan M.; Man, Weining; Nahal, Geev; Steinhardt, Paul J.; Torquato, Salvatore; Chaikin, Paul M.; Amoah, Timothy; Yu, Bowen; Mullen, Ruth Ann; Florescu, Marian (2019). "Hyperuniform disordered waveguides and devices for near infrared silicon photonics". Scientific Reports. 9 (1): 20338. Bibcode:2019NatSR...920338M. doi:10.1038/s41598-019-56692-5. ISSN 2045-2322. PMC 6937303. PMID 31889165.
  56. ^ a b Leseur, O.; Pierrat, R.; Carminati, R. (2016). "High-density hyperuniform materials can be transparent". Optica. 3 (7): 763. arXiv:1510.05807. Bibcode:2016Optic...3..763L. doi:10.1364/OPTICA.3.000763. S2CID 118443561.
  57. ^ Gorsky, S.; Britton, W. A.; Chen, Y.; Montaner, J.; Lenef, A.; Raukas, M.; Dal Negro, L. (1 November 2019). "Engineered hyperuniformity for directional light extraction". APL Photonics. 4 (11): 110801. Bibcode:2019APLP....4k0801G. doi:10.1063/1.5124302. ISSN 2378-0967.
  58. ^ Melissa (21 March 2014). "Disordered hyperuniformity: A weird new state of matter in chicken eyes". TodayIFoundOut.com. Gawker Media – via Gizmodo.
  59. ^ David Freeman (26 February 2014). "Scientists Look In Chicken's Eye And Discover Weird New State Of Matter". The Huffington Post. Retrieved 20 December 2015.
  60. ^ Yu; et al. (2020). "Disordered hyperuniformity in two-dimensional amorphous silica". Science Advances. 6 (16): eaba0826. Bibcode:2020SciA....6..826Z. doi:10.1126/sciadv.aba0826. PMC 7164937. PMID 32494625. S2CID 218844271.
  61. ^ "Dragons, aliens, bugs? Scientists may have solved the mystery of the desert's 'fairy circles'". The Washington Post. 18 January 2017. The thing that immediately caught my eye about what they had was it seemed to fall into an exotic type of patterning I call hyperuniformity. — Salvatore Torquato
  62. ^ Getzin, Stephan; et al. (2016). "Discovery of fairy circles in Australia supports self-organization theory1". Proceedings of the National Academy of Sciences. 113 (13): 3551–3556. Bibcode:2016PNAS..113.3551G. doi:10.1073/pnas.1522130113. PMC 4822591. PMID 26976567.
  63. ^ a b Chremos, Alexandros; Douglas, Douglas F. (21 December 2018). "Hidden hyperuniformity in soft polymeric materials". Physical Review Letters. 121 (25): 258002. Bibcode:2018PhRvL.121y8002C. doi:10.1103/PhysRevLett.121.258002. PMID 30608782.
  64. ^ a b Chremos, Alexandros (7 August 2020). "Design of nearly perfect hyperuniform polymeric materials". The Journal of Chemical Physics. 153 (5): 054902. doi:10.1063/5.0017861. ISSN 0021-9606. PMC 7530914. PMID 32770903.
  65. ^ Atkinson, Steven; Zhang, Ge; Hopkins, Adam B.; Torquato, Salvatore (8 July 2016). "Critical slowing down and hyperuniformity on approach to jamming". Physical Review E. 94 (1): 012902. arXiv:1606.05227. Bibcode:2016PhRvE..94a2902A. doi:10.1103/PhysRevE.94.012902. ISSN 2470-0045. PMID 27575201. S2CID 12103288.
  66. ^ Zhang, Bo; Snezhko, Alexey (27 May 2022). "Hyperuniform Active Chiral Fluids with Tunable Internal Structure". Physical Review Letters. 128 (21): 218002. arXiv:2205.12384. Bibcode:2022PhRvL.128u8002Z. doi:10.1103/PhysRevLett.128.218002. PMID 35687470. S2CID 249063085.
  67. ^ Lei, Yusheng; Ni, Ran (21 November 2023). "How does a hyperuniform fluid freeze?". Proceedings of the National Academy of Sciences of the United States of America. 120 (48): e2312866120. arXiv:2306.02753. doi:10.1073/pnas.2312866120.

External links edit

  • Wolchover, Natalie. "A bird's-eye view of nature's hidden order". Quanta Magazine.
  • Wolchover, Natalie. "A chemist shines light on a surprising prime number pattern". Quanta Magazine.

hyperuniformity, hyperuniform, materials, characterized, anomalous, suppression, density, fluctuations, large, scales, more, precisely, vanishing, density, fluctuations, long, wave, length, limit, like, crystals, distinguishes, hyperuniform, systems, from, typ. Hyperuniform materials are characterized by an anomalous suppression of density fluctuations at large scales More precisely the vanishing of density fluctuations in the long wave length limit like for crystals distinguishes hyperuniform systems from typical gases liquids or amorphous solids 1 2 Examples of hyperuniformity include all perfect crystals 1 perfect quasicrystals 3 4 and exotic amorphous states of matter 2 Hyperuniformity is defined by the scaling of the variance of the number of points that are within a disk of radius R For the ideal gas left this variance scales like the area of the disk For a hyperuniform system center it scales slower than the area of the disk 1 For example for a crystal right it scales like the boundary length of the disk adapted after Figure 1 of Ref 2 Quantitatively a many particle system is said to be hyperuniform if the variance of the number of points within a spherical observation window grows more slowly than the volume of the observation window This definition is equivalent to a vanishing of the structure factor in the long wavelength limit 1 and it has been extended to include heterogeneous materials as well as scalar vector and tensor fields 5 Disordered hyperuniform systems were shown to be poised at an inverted critical point 1 They can be obtained via equilibrium or nonequilibrium routes and are found in both classical physical and quantum mechanical systems 1 2 Hence the concept of hyperuniformity now connects a broad range of topics in physics 2 6 7 8 9 mathematics 10 11 12 13 14 15 biology 16 17 18 and materials science 19 20 21 The concept of hyperuniformity generalizes the traditional notion of long range order and thus defines an exotic state of matter A disordered hyperuniform many particle system can be statistically isotropic like a liquid with no Bragg peaks and no conventional type of long range order Nevertheless at large scales hyperuniform systems resemble crystals in their suppression of large scale density fluctuations This unique combination is known to endow disordered hyperuniform materials with novel physical properties that are e g both nearly optimal and direction independent in contrast to those of crystals that are anisotropic 2 Contents 1 History 2 Definition 3 Examples 3 1 Ordered hyperuniformity 3 2 Disordered hyperuniformity 4 Making disordered but highly uniform materials 5 Non equilibrium hyperuniform fluids and length scales 6 See also 7 References 8 External linksHistory editThe term hyperuniformity also independently called super homogeneity in the context of cosmology 22 was coined and studied by Salvatore Torquato and Frank Stillinger in a 2003 paper 1 in which they showed that among other things hyperuniformity provides a unified framework to classify and structurally characterize crystals quasicrystals and exotic disordered varieties In that sense hyperuniformity is a long range property that can be viewed as generalizing the traditional notion of long range order e g translational orientational order of crystals or orientational order of quasicrystals to also encompass exotic disordered systems 2 Hyperuniformity was first introduced for point processes 1 and later generalized to two phase materials or porous media 3 and random scalar or vectors fields 5 It has been observed in theoretical models simulations and experiments see list of examples below 2 Definition editA many particle system in d displaystyle d nbsp dimensional Euclidean space R d displaystyle R d nbsp is said to be hyperuniform if the number of points in a spherical observation window with radius R displaystyle R nbsp has a variance s N 2 R displaystyle sigma N 2 R nbsp that scales slower than the volume of the observation window 1 lim R s N 2 R R d 0 displaystyle lim R to infty frac sigma N 2 R R d 0 nbsp This definition is essentially equivalent to the vanishing of the structure factor at the origin 1 lim k 0 S k 0 displaystyle lim mathbf k to 0 S mathbf k 0 nbsp for wave vectors k R d displaystyle mathbf k in mathbb R d nbsp Similarly a two phase medium consisting of a solid and a void phase is said to be hyperuniform if the volume of the solid phase inside the spherical observation window has a variance that scales slower than the volume of the observation window This definition is in turn equivalent to a vanishing of the spectral density at the origin 3 An essential feature of hyperuniform systems is their scaling of the number variance s N 2 R displaystyle sigma N 2 R nbsp for large radii or equivalently of the structure factor S k displaystyle S k nbsp for small wave numbers If we consider hyperuniform systems that are characterized by a power law behavior of the structure factor close to the origin 2 S k k a for k 0 displaystyle S mathbf k sim mathbf k alpha text for mathbf k to 0 nbsp with a constant 0 lt a lt displaystyle 0 lt alpha lt infty nbsp then there are three distinct scaling behaviors that define three classes of hyperuniformity s N 2 R R d 1 a gt 1 CLASS I R d 1 ln R a 1 CLASS II R d a 0 lt a lt 1 CLASS III displaystyle sigma N 2 R sim begin cases R d 1 amp alpha gt 1 amp text CLASS I R d 1 ln R amp alpha 1 amp text CLASS II R d alpha amp 0 lt alpha lt 1 amp text CLASS III end cases nbsp Examples are known for all three classes of hyperuniformity 2 Examples editExamples of disordered hyperuniform systems in physics are disordered ground states 7 jammed disordered sphere packings 6 23 24 25 26 27 28 29 30 amorphous ices 31 amorphous speckle patterns 32 certain fermionic systems 33 random self organization 8 34 35 36 37 38 9 perturbed lattices 39 40 41 42 and avian photoreceptor cells 16 In mathematics disordered hyperuniformity has been studied in the context of probability theory 10 43 11 geometry 13 14 and number theory 44 12 45 where the prime numbers have been found to be effectively limit periodic and hyperuniform in a certain scaling limit 12 Further examples include certain random walks 46 and stable matchings of point processes 15 24 25 26 27 47 Ordered hyperuniformity edit Examples of ordered hyperuniform systems include all crystals 1 all quasicrystals 3 4 48 and limit periodic sets 49 While weakly correlated noise typically preserves hyperuniformity correlated excitations at finite temperature tend to destroy hyperuniformity 50 Hyperuniformity was also reported for fermionic quantum matter in correlated electron systems as a result of cramming 51 Disordered hyperuniformity edit Torquato 2014 52 gives an illustrative example of the hidden order found in a shaken box of marbles 52 which fall into an arrangement called maximally random jammed packing 6 53 Such hidden order may eventually be used for self organizing colloids or optics with the ability to transmit light with an efficiency like a crystal but with a highly flexible design 52 It has been found that disordered hyperuniform systems possess unique optical properties For example disordered hyperuniform photonic networks have been found to exhibit complete photonic band gaps that are comparable in size to those of photonic crystals but with the added advantage of isotropy which enables free form waveguides not possible with crystal structures 19 20 54 55 Moreover in stealthy hyperuniform systems 7 light of any wavelength longer than a value specific to the material is able to propagate forward without loss due to the correlated disorder even for high particle density 56 By contrast in conditions where light is propagated through an uncorrelated disordered material of the same density the material would appear opaque due to multiple scattering Stealthy hyperuniform materials can be theoretically designed for light of any wavelength and the applications of the concept cover a wide variety of fields of wave physics and materials engineering 56 57 Disordered hyperuniformity was found in the photoreceptor cell patterns in the eyes of chickens 16 This is thought to be the case because the light sensitive cells in chicken or other bird eyes cannot easily attain an optimal crystalline arrangement but instead form a disordered configuration that is as uniform as possible 16 58 59 Indeed it is the remarkable property of mulithyperuniformity of the avian cone patterns that enables birds to achieve acute color sensing 16 Disordered hyperuniformity was recently discovered in amorphous 2 D materials which was shown to enhance electronic transport in the material 60 It may also emerge in the mysterious biological patterns known as fairy circles circle and patterns of circles that emerge in arid places 61 62 Making disordered but highly uniform materials editThe challenge of creating disordered hyperuniform materials is partly attributed to the inevitable presence of imperfections such as defects and thermal fluctuations For example the fluctuation compressibility relation dictates that any compressible one component fluid in thermal equilibrium cannot be strictly hyperuniform at finite temperature 2 Recently Chremos amp Douglas 2018 proposed a design rule for the practical creation of hyperuniform materials at the molecular level 63 64 Specifically effective hyperuniformity as measured by the hyperuniformity index is achieved by specific parts of the molecules e g the core of the star polymers or the backbone chains in the case of bottlebrush polymers 65 2 The combination of these features leads to molecular packings that are highly uniform at both small and large length scales 63 64 Non equilibrium hyperuniform fluids and length scales editDisordered hyperuniformity implies a long ranged direct correlation function the Ornstein Zernike equation 1 In an equilibrium many particle system this requires delicately designed effectively long ranged interactions which are not necessary for the dynamic self assembly of non equilibrium hyperuniform states In 2019 Ni and co workers theoretically predicted a non equilibrium strongly hyperuniform fluid phase that exists in systems of circularly swimming active hard spheres 34 which was confirmed experimentally in 2022 66 This new hyperuniform fluid features a special length scale i e the diameter of the circular trajectory of active particles below which large density fluctuations are observed Moreover based on a generalized random organising model Lei and Ni 2019 35 formulated a hydrodynamic theory for non equilibrium hyperuniform fluids and the length scale above which the system is hyperuniform is controlled by the inertia of the particles The theory generalizes the mechanism of fluidic hyperuniformity as the damping of the stochastic harmonic oscillator which indicates that the suppressed long wavelength density fluctuation can exhibit as either acoustic resonance mode or diffusive overdamped mode 35 In the Lei Ni reactive hard sphere model 35 it was found that the discontinuous absorbing transition of metastable hyperuniform fluid into an immobile absorbing state does not have the kinetic pathway of nucleation and growth and the transition rate decreases with increasing the system size This challenges the common understanding of metastability in discontinuous phase transitions and suggests that non equilibrium hyperuniform fluid is fundamentally different from conventional equilibrium fluids 67 See also editCrystal Quasicrystal Amorphous solid State of matterReferences edit a b c d e f g h i j k l Torquato Salvatore Stillinger Frank H 29 October 2003 Local density fluctuations hyperuniformity and order metrics Physical Review E 68 4 041113 arXiv cond mat 0311532 Bibcode 2003PhRvE 68d1113T doi 10 1103 PhysRevE 68 041113 PMID 14682929 S2CID 9162488 a b c d e f g h i j k l Torquato Salvatore 2018 Hyperuniform states of matter Physics Reports 745 1 95 arXiv 1801 06924 Bibcode 2018PhR 745 1T doi 10 1016 j physrep 2018 03 001 S2CID 119378373 a b c d Zachary Chase E Torquato Salvatore 21 December 2009 Hyperuniformity in point patterns and two phase random heterogeneous media Journal of Statistical Mechanics Theory and Experiment 2009 12 P12015 arXiv 0910 2172 Bibcode 2009JSMTE 12 015Z doi 10 1088 1742 5468 2009 12 P12015 ISSN 1742 5468 S2CID 18838058 a b Oguz Erdal C Socolar Joshua E S Steinhardt Paul J Torquato Salvatore 23 February 2017 Hyperuniformity of quasicrystals Physical Review B 95 5 054119 arXiv 1612 01975 Bibcode 2017PhRvB 95e4119O doi 10 1103 PhysRevB 95 054119 ISSN 2469 9950 S2CID 85522310 a b Torquato Salvatore 15 August 2016 Hyperuniformity and its generalizations Physical Review E 94 2 022122 arXiv 1607 08814 Bibcode 2016PhRvE 94b2122T doi 10 1103 PhysRevE 94 022122 ISSN 2470 0045 PMID 27627261 S2CID 30459937 a b c Donev Aleksandar Stillinger Frank H Torquato Salvatore 26 August 2005 Unexpected density fluctuations in jammed disordered sphere packings Physical Review Letters 95 9 090604 arXiv cond mat 0506406 Bibcode 2005PhRvL 95i0604D doi 10 1103 PhysRevLett 95 090604 ISSN 0031 9007 PMID 16197201 S2CID 7887194 a b c Torquato S Zhang G Stillinger F H 29 May 2015 Ensemble theory for stealthy hyperuniform disordered ground states Physical Review X 5 2 021020 arXiv 1503 06436 Bibcode 2015PhRvX 5b1020T doi 10 1103 PhysRevX 5 021020 ISSN 2160 3308 S2CID 17275490 a b Hexner Daniel Levine Dov 20 March 2015 Hyperuniformity of Critical Absorbing States Physical Review Letters 114 11 110602 arXiv 1407 0146 Bibcode 2015PhRvL 114k0602H doi 10 1103 PhysRevLett 114 110602 ISSN 0031 9007 PMID 25839254 S2CID 23951607 a b Wilken Sam Guerra Rodrigo E Pine David J Chaikin Paul M 11 February 2020 Hyperuniform Structures Formed by Shearing Colloidal Suspensions Physical Review Letters 125 14 148001 arXiv 2002 04499 Bibcode 2020PhRvL 125n8001W doi 10 1103 PhysRevLett 125 148001 PMID 33064537 S2CID 211075881 a b Ghosh Subhroshekhar Lebowitz Joel L 2017 Fluctuations large deviations and rigidity in hyperuniform systems A brief survey Indian Journal of Pure and Applied Mathematics 48 4 609 631 arXiv 1608 07496 doi 10 1007 s13226 017 0248 1 ISSN 0019 5588 S2CID 8709357 a b Ghosh Subhroshekhar Lebowitz Joel L 2018 Generalized stealthy hyperuniform processes Maximal rigidity and the bounded holes conjecture Communications in Mathematical Physics 363 1 97 110 arXiv 1707 04328 Bibcode 2018CMaPh 363 97G doi 10 1007 s00220 018 3226 5 ISSN 0010 3616 S2CID 6243545 a b c Torquato Salvatore Zhang Ge De Courcy Ireland Matthew 29 March 2019 Hidden multiscale order in the primes Journal of Physics A Mathematical and Theoretical 52 13 135002 arXiv 1804 06279 Bibcode 2019JPhA 52m5002T doi 10 1088 1751 8121 ab0588 ISSN 1751 8113 S2CID 85508362 a b Brauchart Johann S Grabner Peter J Kusner Woden Ziefle Jonas 2020 Hyperuniform point sets on the sphere probabilistic aspects Monatshefte fur Mathematik 192 4 763 781 arXiv 1809 02645 doi 10 1007 s00605 020 01439 y ISSN 0026 9255 S2CID 119179807 a b Baake Michael Grimm Uwe 1 September 2020 Inflation versus projection sets in aperiodic systems The role of the window in averaging and diffraction Acta Crystallographica Section A 76 5 559 570 arXiv 2004 03256 doi 10 1107 S2053273320007421 ISSN 2053 2733 PMC 7459767 PMID 32869753 S2CID 220404667 a b Klatt Michael Andreas Last Gunter Yogeshwaran D 2020 Hyperuniform and rigid stable matchings Random Structures amp Algorithms 57 2 439 473 arXiv 1810 00265 doi 10 1002 rsa 20923 ISSN 1098 2418 S2CID 119678948 a b c d e Jiao et al 2014 Avian Photoreceptor Patterns Represent a Disordered Hyperuniform Solution to a Multiscale Packing Problem Physical Review E 89 2 022721 arXiv 1402 6058 Bibcode 2014PhRvE 89b2721J doi 10 1103 PhysRevE 89 022721 PMC 5836809 PMID 25353522 Mayer Andreas Balasubramanian Vijay Mora Thierry Walczak Aleksandra M 12 May 2015 How a well adapted immune system is organized Proceedings of the National Academy of Sciences 112 19 5950 5955 arXiv 1407 6888 Bibcode 2015PNAS 112 5950M doi 10 1073 pnas 1421827112 ISSN 0027 8424 PMC 4434741 PMID 25918407 Huang Mingji Hu Wensi Yang Siyuan Liu Quan Xing Zhang H P 4 May 2021 Circular swimming motility and disordered hyperuniform state in an algae system Proceedings of the National Academy of Sciences 118 18 e2100493118 Bibcode 2021PNAS 11800493H doi 10 1073 pnas 2100493118 ISSN 0027 8424 PMC 8106356 PMID 33931505 a b Florescu M Torquato S Steinhardt P J 8 December 2009 Designer disordered materials with large complete photonic band gaps Proceedings of the National Academy of Sciences 106 49 20658 20663 arXiv 1007 3554 Bibcode 2009PNAS 10620658F doi 10 1073 pnas 0907744106 ISSN 0027 8424 PMC 2777962 PMID 19918087 a b Muller Nicolas Haberko Jakub Marichy Catherine Scheffold Frank 2014 Silicon hyperuniform disordered photonic materials with a pronounced gap in the shortwave infrared PDF Advanced Optical Materials 2 2 115 119 doi 10 1002 adom 201300415 Yu Sunkyu 13 February 2023 Evolving scattering networks for engineering disorder Nature Computational Science 3 2 128 138 doi 10 1038 s43588 022 00395 x ISSN 2662 8457 PMC 10766560 S2CID 256862885 Gabrielli Andrea Joyce Michael Sylos Labini Francesco 11 April 2002 Glass like universe Real space correlation properties of standard cosmological models Physical Review D 65 4 083523 arXiv astro ph 0110451 Bibcode 2002PhRvD 65h3523G doi 10 1103 PhysRevD 65 083523 PMID 14682929 S2CID 9162488 Zachary Chase E Jiao Yang Torquato Salvatore 29 April 2011 Hyperuniform long range correlations are a signature of disordered jammed hard particle packings Physical Review Letters 106 17 178001 arXiv 1008 2548 Bibcode 2011PhRvL 106q8001Z doi 10 1103 PhysRevLett 106 178001 ISSN 0031 9007 PMID 21635063 S2CID 15587068 a b Weijs Joost H Jeanneret Raphael Dreyfus Remi Bartolo Denis 3 September 2015 Emergent Hyperuniformity in Periodically Driven Emulsions Physical Review Letters 115 10 108301 arXiv 1504 04638 Bibcode 2015PhRvL 115j8301W doi 10 1103 PhysRevLett 115 108301 ISSN 0031 9007 PMID 26382706 S2CID 10340709 a b Jack Robert L Thompson Ian R Sollich Peter 9 February 2015 Hyperuniformity and Phase Separation in Biased Ensembles of Trajectories for Diffusive Systems Physical Review Letters 114 6 060601 arXiv 1409 3986 Bibcode 2015PhRvL 114f0601J doi 10 1103 PhysRevLett 114 060601 ISSN 0031 9007 PMID 25723197 S2CID 3132460 a b Weijs Joost H Bartolo Denis 27 July 2017 Mixing by Unstirring Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection Physical Review Letters 119 4 048002 arXiv 1702 02395 Bibcode 2017PhRvL 119d8002W doi 10 1103 PhysRevLett 119 048002 ISSN 0031 9007 PMID 29341775 S2CID 12229553 a b Ricouvier Joshua Pierrat Romain Carminati Remi Tabeling Patrick Yazhgur Pavel 15 November 2017 Optimizing Hyperuniformity in Self Assembled Bidisperse Emulsions Physical Review Letters 119 20 208001 arXiv 1711 00719 Bibcode 2017PhRvL 119t8001R doi 10 1103 PhysRevLett 119 208001 ISSN 0031 9007 PMID 29219379 S2CID 28177098 Chieco A T Zu M Liu A J Xu N Durian D J 17 October 2018 Spectrum of structure for jammed and unjammed soft disks Physical Review E 98 4 042606 arXiv 1806 10118 Bibcode 2018PhRvE 98d2606C doi 10 1103 PhysRevE 98 042606 ISSN 2470 0045 S2CID 119448635 Wilken Sam Guerra Rodrigo E Levine Dov Chaikin Paul M 12 July 2021 Random Close Packing as a Dynamical Phase Transition Physical Review Letters 127 3 038002 Bibcode 2021PhRvL 127c8002W doi 10 1103 PhysRevLett 127 038002 ISSN 0031 9007 OSTI 1850634 PMID 34328779 S2CID 236531841 Rissone Paolo Corwin Eric I Parisi Giorgio 12 July 2021 Long Range Anomalous Decay of the Correlation in Jammed Packings Physical Review Letters 127 3 038001 arXiv 2012 10181 Bibcode 2021PhRvL 127c8001R doi 10 1103 PhysRevLett 127 038001 ISSN 0031 9007 PMID 34328763 S2CID 229331981 Martelli Fausto Torquato Salvatore Giovambattista Nicolas Car Roberto 29 September 2017 Large Scale Structure and Hyperuniformity of Amorphous Ices Physical Review Letters 119 13 136002 arXiv 1705 09961 Bibcode 2017PhRvL 119m6002M doi 10 1103 PhysRevLett 119 136002 PMID 29341697 S2CID 44864111 Di Battista Diego Ancora Daniele Zacharakis Giannis Ruocco Giancarlo Leonetti Marco 11 June 2018 Hyperuniformity in amorphous speckle patterns Optics Express 26 12 15594 15608 arXiv 1803 09550 Bibcode 2018OExpr 2615594D doi 10 1364 OE 26 015594 hdl 11311 1142259 ISSN 1094 4087 PMID 30114818 S2CID 52031100 Torquato Salvatore Scardicchio A Zachary Chase E 27 November 2008 Point processes in arbitrary dimension from fermionic gases random matrix theory and number theory Journal of Statistical Mechanics Theory and Experiment 2008 11 P11019 arXiv 0809 0449 Bibcode 2008JSMTE 11 019T doi 10 1088 1742 5468 2008 11 P11019 ISSN 1742 5468 S2CID 6252369 a b Lei Qunli Pica Ciamarra Massimo Ni Ran 25 January 2019 Non Equilibrium Strongly Hyperuniform Fluids of Circle Active Particles with Large Local Density Fluctuations Science Advances 5 1 eaau7423 arXiv 1802 03682 Bibcode 2019SciA 5 7423L doi 10 1126 sciadv aau7423 PMC 6357732 PMID 30746459 a b c d Lei Qunli Ni Ran 12 November 2019 Hydrodynamics of random organizing hyperuniform fluids Proceedings of the National Academy of Sciences of the United States of America 116 46 22983 22989 arXiv 1904 07514 Bibcode 2019PNAS 11622983L doi 10 1073 pnas 1911596116 PMC 6859356 PMID 31666326 Hexner Daniel Chaikin Paul M Levine Dov 25 April 2017 Enhanced hyperuniformity from random reorganization Proceedings of the National Academy of Sciences 114 17 4294 4299 Bibcode 2017PNAS 114 4294H doi 10 1073 pnas 1619260114 ISSN 0027 8424 PMC 5410804 PMID 28396393 Garcia Millan R Pruessner G Pickering L Christensen K 17 July 2018 Correlations and hyperuniformity in the avalanche size of the Oslo model EPL Europhysics Letters 122 5 50003 arXiv 1710 00179 Bibcode 2018EL 12250003G doi 10 1209 0295 5075 122 50003 ISSN 1286 4854 S2CID 52440880 Ness Christopher Cates Michael E 27 February 2020 Absorbing State Transitions in Granular Materials Close to Jamming Physical Review Letters 124 8 088004 arXiv 2001 10228 Bibcode 2020PhRvL 124h8004N doi 10 1103 PhysRevLett 124 088004 ISSN 0031 9007 PMID 32167320 S2CID 210932396 Gabrielli Andrea Joyce Michael Sylos Labini Francesco 11 April 2002 Glass like universe Real space correlation properties of standard cosmological models Physical Review D 65 8 083523 arXiv astro ph 0110451 Bibcode 2002PhRvD 65h3523G doi 10 1103 PhysRevD 65 083523 ISSN 0556 2821 S2CID 119442907 Gabrielli Andrea 2004 Point processes and stochastic displacement fields Physical Review E 70 6 066131 arXiv cond mat 0409594 Bibcode 2004PhRvE 70f6131G doi 10 1103 PhysRevE 70 066131 ISSN 1539 3755 PMID 15697458 S2CID 33621420 Le Thien Q McDermott D Reichhardt C J O Reichhardt C 15 September 2017 Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder Physical Review B 96 9 094516 arXiv 1611 01532 Bibcode 2017PhRvB 96i4516L doi 10 1103 PhysRevB 96 094516 ISSN 2469 9950 S2CID 18031713 Klatt Michael A Kim Jaeuk Torquato Salvatore 13 March 2020 Cloaking the underlying long range order of randomly perturbed lattices Physical Review E 101 3 032118 arXiv 2001 08161 Bibcode 2020PhRvE 101c2118K doi 10 1103 PhysRevE 101 032118 ISSN 2470 0045 PMID 32289999 S2CID 210859161 Ghosh Subhro Lebowitz Joel 2017 Number Rigidity in Superhomogeneous Random Point Fields Journal of Statistical Physics 166 3 4 1016 1027 arXiv 1601 04216 Bibcode 2017JSP 166 1016G doi 10 1007 s10955 016 1633 6 ISSN 0022 4715 S2CID 19675015 Zhang G Martelli F Torquato S 16 March 2018 The structure factor of primes Journal of Physics A Mathematical and Theoretical 51 11 115001 arXiv 1801 01541 Bibcode 2018JPhA 51k5001Z doi 10 1088 1751 8121 aaa52a ISSN 1751 8113 S2CID 67819480 Baake Michael Coons Michael 2021 Scaling of the Diffraction Measure of k Free Integers Near the Origin Michigan Mathematical Journal 70 213 221 arXiv 1904 00279 doi 10 1307 mmj 1592877613 ISSN 0026 2285 S2CID 90260746 Casini Emanuele Le Caer Gerard Martinelli Andrea 2015 Short Hyperuniform Random Walks PDF Journal of Statistical Physics 160 1 254 273 Bibcode 2015JSP 160 254C doi 10 1007 s10955 015 1244 7 ISSN 0022 4715 S2CID 45170541 Chieco A T Zu M Liu A J Xu N Durian D J 17 October 2018 Spectrum of structure for jammed and unjammed soft disks Physical Review E 98 4 042606 arXiv 1806 10118 Bibcode 2018PhRvE 98d2606C doi 10 1103 PhysRevE 98 042606 ISSN 2470 0045 S2CID 119448635 Lin C Steinhardt P J Torquato S 13 April 2017 Hyperuniformity variation with quasicrystal local isomorphism class Journal of Physics Condensed Matter 29 20 204003 Bibcode 2017JPCM 29t4003L doi 10 1088 1361 648x aa6944 ISSN 0953 8984 PMID 28345537 S2CID 46764513 Baake Michael Grimm Uwe 23 May 2019 Scaling of diffraction intensities near the origin Some rigorous results Journal of Statistical Mechanics Theory and Experiment 2019 5 054003 arXiv 1905 04177 Bibcode 2019JSMTE 05 4003B doi 10 1088 1742 5468 ab02f2 ISSN 1742 5468 Kim Jaeuk Torquato Salvatore 12 February 2018 Effect of imperfections on the hyperuniformity of many body systems Physical Review B 97 5 054105 Bibcode 2018PhRvB 97e4105K doi 10 1103 PhysRevB 97 054105 ISSN 2469 9950 Gerasimenko et al 2019 Quantum jamming transition to a correlated electron glass in 1T TaS2 Nature Materials 317 10 1078 1083 arXiv 1803 00255 Bibcode 2019NatMa 18 1078G doi 10 1038 s41563 019 0423 3 PMID 31308513 S2CID 196810837 a b c Kelly Morgan 24 February 2014 In the eye of a chicken a new state of matter comes into view Press release Princeton NJ Princeton University Retrieved 8 March 2021 Atkinson Steven Stillinger Frank H Torquato Salvatore 30 December 2014 Existence of isostatic maximally random jammed monodisperse hard disk packings Proceedings of the National Academy of Sciences 111 52 18436 18441 Bibcode 2014PNAS 11118436A doi 10 1073 pnas 1408371112 ISSN 0027 8424 PMC 4284597 PMID 25512529 Froufe Perez Luis S Engel Michael Saenz Juan Jose Scheffold Frank 5 September 2017 Band gap formation and Anderson localization in disordered photonic materials with structural correlations Proceedings of the National Academy of Sciences 114 36 9570 9574 arXiv 1702 03883 Bibcode 2017PNAS 114 9570F doi 10 1073 pnas 1705130114 ISSN 0027 8424 PMC 5594660 PMID 28831009 Milosevic Milan M Man Weining Nahal Geev Steinhardt Paul J Torquato Salvatore Chaikin Paul M Amoah Timothy Yu Bowen Mullen Ruth Ann Florescu Marian 2019 Hyperuniform disordered waveguides and devices for near infrared silicon photonics Scientific Reports 9 1 20338 Bibcode 2019NatSR 920338M doi 10 1038 s41598 019 56692 5 ISSN 2045 2322 PMC 6937303 PMID 31889165 a b Leseur O Pierrat R Carminati R 2016 High density hyperuniform materials can be transparent Optica 3 7 763 arXiv 1510 05807 Bibcode 2016Optic 3 763L doi 10 1364 OPTICA 3 000763 S2CID 118443561 Gorsky S Britton W A Chen Y Montaner J Lenef A Raukas M Dal Negro L 1 November 2019 Engineered hyperuniformity for directional light extraction APL Photonics 4 11 110801 Bibcode 2019APLP 4k0801G doi 10 1063 1 5124302 ISSN 2378 0967 Melissa 21 March 2014 Disordered hyperuniformity A weird new state of matter in chicken eyes TodayIFoundOut com Gawker Media via Gizmodo David Freeman 26 February 2014 Scientists Look In Chicken s Eye And Discover Weird New State Of Matter The Huffington Post Retrieved 20 December 2015 Yu et al 2020 Disordered hyperuniformity in two dimensional amorphous silica Science Advances 6 16 eaba0826 Bibcode 2020SciA 6 826Z doi 10 1126 sciadv aba0826 PMC 7164937 PMID 32494625 S2CID 218844271 Dragons aliens bugs Scientists may have solved the mystery of the desert s fairy circles The Washington Post 18 January 2017 The thing that immediately caught my eye about what they had was it seemed to fall into an exotic type of patterning I call hyperuniformity Salvatore Torquato Getzin Stephan et al 2016 Discovery of fairy circles in Australia supports self organization theory1 Proceedings of the National Academy of Sciences 113 13 3551 3556 Bibcode 2016PNAS 113 3551G doi 10 1073 pnas 1522130113 PMC 4822591 PMID 26976567 a b Chremos Alexandros Douglas Douglas F 21 December 2018 Hidden hyperuniformity in soft polymeric materials Physical Review Letters 121 25 258002 Bibcode 2018PhRvL 121y8002C doi 10 1103 PhysRevLett 121 258002 PMID 30608782 a b Chremos Alexandros 7 August 2020 Design of nearly perfect hyperuniform polymeric materials The Journal of Chemical Physics 153 5 054902 doi 10 1063 5 0017861 ISSN 0021 9606 PMC 7530914 PMID 32770903 Atkinson Steven Zhang Ge Hopkins Adam B Torquato Salvatore 8 July 2016 Critical slowing down and hyperuniformity on approach to jamming Physical Review E 94 1 012902 arXiv 1606 05227 Bibcode 2016PhRvE 94a2902A doi 10 1103 PhysRevE 94 012902 ISSN 2470 0045 PMID 27575201 S2CID 12103288 Zhang Bo Snezhko Alexey 27 May 2022 Hyperuniform Active Chiral Fluids with Tunable Internal Structure Physical Review Letters 128 21 218002 arXiv 2205 12384 Bibcode 2022PhRvL 128u8002Z doi 10 1103 PhysRevLett 128 218002 PMID 35687470 S2CID 249063085 Lei Yusheng Ni Ran 21 November 2023 How does a hyperuniform fluid freeze Proceedings of the National Academy of Sciences of the United States of America 120 48 e2312866120 arXiv 2306 02753 doi 10 1073 pnas 2312866120 External links editWolchover Natalie A bird s eye view of nature s hidden order Quanta Magazine Wolchover Natalie A chemist shines light on a surprising prime number pattern Quanta Magazine Retrieved from https en wikipedia org w index php title Hyperuniformity amp oldid 1208860705, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.