fbpx
Wikipedia

Homoisoflavonoid

Homoisoflavonoids (3-benzylidenechroman-4-ones) are a type of phenolic compounds occurring naturally[1] in plants.

Chemical structure of the 3,4-dihydroxyhomoisoflavan sappanol.

Chemically, they have the general structure of a 16-carbon skeleton, which consists of two phenyl rings (A and B) and heterocyclic ring (C).

Synthesis edit

Homoisoflavones can be synthesized from 2'-hydroxydihydrochalcones.[2]

Homoisoflavanones can be synthesized[3] from 3,5-methoxy phenols via chroman-4-one in three steps[4] or from phloroglucinol.[5]

Conversion

Homoisoflavanes can be obtained from the conversion of homoisoflavonoids.[6]

Natural occurrences edit

The homoisoflavonoids portulacanones A, B, C and D can be found in Portulaca oleracea (common purslane, Caryophyllales, Portulacaceae).[7]

The 3,4-dihydroxyhomoisoflavans sappanol, episappanol, 3'-deoxysappanol, 3'-O-methylsappanol and 3'-O-methylepisappanol can be found in Caesalpinia sappan.[8]

The homoisoflavones scillavones A and B can be isolated from the bulbs of Scilla scilloides (Barnardia japonica).[9]

Homoisoflavanones edit

 
Chemical structure of sappanone A.

Homoisoflavanones (3-Benzyl-4-chromanones[10]) can be found in various plants,[11] notably in Hyacinthaceae (Scilloideae).[12]

Sappanone A can be found in Caesalpinia sappan.[13]

C-Methylated homoisoflavanones (3-(4'-methoxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one, 3-(4'-methoxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one and 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-chroman-4-one) can be found in the rhizomes of Polygonum odoratum.[14]

5,7-Dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-chroman-4-one, a homoisoflavanone extracted from Cremastra appendiculata (Orchidaceae), has anti-angiogenic activities and inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-?B nuclear localization.[15]

In Asparagaceae edit

3-(4'-Methoxybenzyl)-7,8-methylenedioxy-chroman-4-one, a homoisoflavanone with antimycobacterial activity, can be isolated from Chlorophytum inornatum (Asparagaceae, Agavoideae).[6]

5,7-Dihydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-hydroxy-3-(4-hydroxybenzyl)-chroman-4-one and 4’-demethyl-3,9-dihydro-punctatin can be isolated from Agave tequilana (Asparagaceae, Agavoideae).[16]

in Scilloideae (Hyacinthaceae)

7-O-α-Rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-O-α-rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4′-hydroxybenzyl)-chroman-4-one, 5,7-dihydroxy-3-(4′-methoxybenzyl)-chroman-4-one (3,9-dihidroeucomin), 5,7-dihydroxy-6-methoxy-3-(4′-methoxybenzyl)-chroman-4-one, 5,7-dihydroxy 3-(4′-hydroxybenzyl)-chroman-4-one (4,4′-demethyl-3,9-dihydropuctatin), 5,7-dihydroxy-3-(4′-hydroxybenzyl)-6-methoxy-chroman-4-one (3,9-dihydroeucomnalin) and 7-hydroxy-3-(4′-hydroxybenzyl)-5-methoxy-chroman-4-one can be isolated from the bulbs of Ledebouria floribunda (tribe Hyacintheae).[17] Other compounds can be found in Ledebouria revoluta, a plant widely used as an ethnomedicinal in southern Africa.[10]

The homoisoflavanone glycosides (-)-7-O-methyleucomol 5-O-beta-D-glucopyranoside, (-)-7-O-methyleucomol 5-O-beta-rutinoside and (-)-7-O-methyleucomol 5-O-beta-neohesperidoside can be isolated from the bulbs of Ornithogalum caudatum (tribe Ornithogaloideae).[18]

Scillascillin-type homoisoflavanones (3-hydroxy-type homoisoflavonoids) can be isolated from Drimiopsis maculata (tribe Hyacintheae, Massoniinae).[19]

Eucomin, eucomol,[20] (E)-7-O-methyl-eucomin, (—)-7-O-methyleucomol, (+)-3,9-dihydro-eucomin and 7-O-methyl-3,9-dihydro-eucomin[21] can be isolated from the bulbs of Eucomis bicolor (tribe Hyacintheae, Massoniinae). 4′-o-Methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin can be found in Eucomis autumnalis.[22]

Five homoisoflavanones, 3,5-dihydroxy-7,8-dimethoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7-methoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7,8-dimethoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone, 3,5,6-trihydroxy-7-methoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone and 3,5,7-trihydroxy-3-(3'-hydroxy-4'methoxybenzyl)-4-chromanone, can be isolated from the dichloromethane extract of the bulbs of Pseudoprospero firmifolium (tribe Hyacintheae, subtribe Pseudoprospero).[23]

A homoisoflavanone can also be found in Albuca fastigiata (tribe Ornithogaleae).[24]

The same molecule, 5,6-dimethoxy-7-hydroxy-3-(4′-hydroxybenzyl)-4-chromanone, can be found in the bulbs of Resnova humifusa and Eucomis montana (tribe Hyacintheae, subtribe Massoniinae).[25]

Uses edit

The homoisoflavonoids portulacanones A, B, C and D show in vitro cytotoxic activities towards four human cancer cell lines.[7]

See also edit

References edit

  1. ^ Roshanak Namdar and Shohreh Nafisi (December 2013). Study on the interaction of homoisoflavonoids with nucleic acids Comparative study by spectroscopic methods. Lap Lambert Academic Publishing GmbH KG. ISBN 978-3-659-49924-1.
  2. ^ Rao, Vallabhaneni Madhava; Damu, Guri Lakshmi Vasantha; Sudhakar, Dega; Siddaiah, Vidavaluri; Rao, Chunduri Venkata (2008). "New efficient synthesis and bioactivity of homoisoflavonoids". Arkivoc. 2008 (11): 285–294. doi:10.3998/ark.5550190.0009.b28. hdl:2027/spo.5550190.0009.b28.
  3. ^ Jain, Amolak C.; Anita Mehta (née Sharma), (Mrs) (1985). "A new synthesis of homoisoflavanones (3-benzyl-4-chromanones)". Tetrahedron. 41 (24): 5933–5937. doi:10.1016/S0040-4020(01)91433-4.
  4. ^ Shaikh, Mahidansha; Petzold, Katja; Kruger, Hendrik G.; Du Toit, Karen (2010). "Synthesis and NMR elucidation of homoisoflavanone analogues". Structural Chemistry. 22: 161–166. doi:10.1007/s11224-010-9703-x.
  5. ^ Rawal, Viresh H.; Cava, Michael P. (1983). "Synthesis of scillascillin, a naturally occurring benzocyclobutene". Tetrahedron Letters. 24 (50): 5581–5584. doi:10.1016/S0040-4039(00)94146-7.
  6. ^ a b Zhang, L; Zhang, W. G.; Kang, J; Bao, K; Dai, Y; Yao, X. S. (2008). "Synthesis of (+/-) homoisoflavanone and corresponding homoisoflavane". Journal of Asian Natural Products Research. 10 (9–10): 909–913. doi:10.1080/10286020802217499. PMID 19003606.
  7. ^ a b Yan, Jian; Sun, Li-Rong; Zhou, Zhong-Yu; Chen, Yu-Chan; Zhang, Wei-Min; Dai, Hao-Fu; Tan, Jian-Wen (2012). "Homoisoflavonoids from the medicinal plant Portulaca oleracea". Phytochemistry. 80: 37–41. doi:10.1016/j.phytochem.2012.05.014. PMID 22683318.
  8. ^ Namikoshi, Michio; Nakata, Hiroyuki; Yamada, Hiroyuki; Nagai, Minako; Saitoh, Tamotsu (1987). "Homoisoflavonoids and related compounds. II. Isolation and absolute configurations of 3,4-dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L". Chemical & Pharmaceutical Bulletin. 35 (7): 2761–2773. doi:10.1248/cpb.35.2761.
  9. ^ Nishida, Y; Eto, M; Miyashita, H; Ikeda, T; Yamaguchi, K; Yoshimitsu, H; Nohara, T; Ono, M (2008). "A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides". Chemical & Pharmaceutical Bulletin. 56 (7): 1022–5. doi:10.1248/cpb.56.1022. PMID 18591825.
  10. ^ a b Moodley, N.; Crouch, N.R.; Mulholland, D.A; Slade, D.; Ferreira, D. (2006). "3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae)". South African Journal of Botany. 72 (4): 517–520. doi:10.1016/j.sajb.2006.01.004.
  11. ^ Du Toit, Karen; Drewes, Siegfried E.; Bodenstein, Johannes (2010). "The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones". Natural Product Research. 24 (5): 457–490. doi:10.1080/14786410903335174. PMID 20306368.
  12. ^ Du Toit, K.; Elgorashi, E.E.; Malan, S.F.; Mulholland, D.A.; Drewes, S.E.; Van Staden, J. (2007). "Antibacterial activity and QSAR of homoisoflavanones isolated from six Hyacinthaceae species". South African Journal of Botany. 73 (2): 236–241. doi:10.1016/j.sajb.2007.01.002.
  13. ^ Chang, T. S.; Chao, S. Y.; Ding, H. Y. (2012). "Melanogenesis Inhibition by Homoisoflavavone Sappanone a from Caesalpinia sappan". International Journal of Molecular Sciences. 13 (8): 10359–10367. doi:10.3390/ijms130810359. PMC 3431864. PMID 22949866.
  14. ^ Wang, D; Li, D; Zhu, W; Peng, P (2009). "A new C-methylated homoisoflavanone and triterpenoid from the rhizomes of Polygonatum odoratum". Natural Product Research. 23 (6): 580–9. doi:10.1080/14786410802560633. PMID 19384735.
  15. ^ Hur, Seulgi; Lee, Yun Sang; Yoo, Hyun; Yang, Jeong-Hee; Kim, Tae-Yoon (2010). "Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-κB nuclear localization". Journal of Dermatological Science. 59 (3): 163–169. doi:10.1016/j.jdermsci.2010.07.001. PMID 20724116.
  16. ^ Morales-Serna, José Antonio; Jiménez, Armando; Estrada-Reyes, Rosa; Marquez, Carmen; Cárdenas, Jorge; Salmón, Manuel (2010). "Homoisoflavanones from Agave tequilana Weber". Molecules. 15 (5): 3295–3301. doi:10.3390/molecules15053295. PMC 6263332. PMID 20657479.
  17. ^ Calvo, María Isabel (2009). "Homoisoflavanones from Ledebouria floribunda". Fitoterapia. 80 (2): 96–101. doi:10.1016/j.fitote.2008.10.006. PMID 19027834.
  18. ^ Tang, Y; Yu, B; Hu, J; Wu, T; Hui, H (2002). "Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum". Journal of Natural Products. 65 (2): 218–20. doi:10.1021/np010466a. PMID 11858761.
  19. ^ Koorbanally, C; Crouch, N. R.; Mulholland, D. A. (2001). "Scillascillin-type homoisoflavanones from Drimiopsis maculata (Hyacinthaceae)". Biochemical Systematics and Ecology. 29 (5): 539–541. doi:10.1016/s0305-1978(00)00073-9. PMID 11274776.
  20. ^ Heller, W.; Tamm, Ch. (1981). "Homoisoflavanones and Biogenetically Related Compounds". Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Vol. 40. pp. 105–152. doi:10.1007/978-3-7091-8611-4_3. ISBN 978-3-7091-8613-8.
  21. ^ Heller, Werner; Andermatt, Paul; Schaad, Werner A.; Tamm, Christoph (1976). "Homoisoflavanone. IV. Neue Inhaltsstoffe der Eucomin-Reihe von Eucomis bicolor". Helvetica Chimica Acta. 59 (6): 2048–2058. doi:10.1002/hlca.19760590618. PMID 1017955.
  22. ^ Sidwell, W.T.L.; Tamm, Ch. (1970). "The homo-isoflavones II1). Isolation and structure of 4′-o-methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin". Tetrahedron Letters. 11 (7): 475–478. doi:10.1016/0040-4039(70)89003-7.
  23. ^ Koorbanally, C; Sewjee, S; Mulholland, D. A.; Crouch, N. R.; Dold, A (2007). "Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae)". Phytochemistry. 68 (22–24): 2753–6. doi:10.1016/j.phytochem.2007.08.005. PMID 17884116.
  24. ^ Koorbanally, Chantal; Mulholland, Dulcie A.; Crouch, Neil R. (2005). "A novel 3-hydroxy-3-benzyl-4-chromanone-type homoisoflavonoid from Albuca fastigiata (Ornithogaloideae: Hyacinthaceae)". Biochemical Systematics and Ecology. 33 (5): 545–549. doi:10.1016/j.bse.2004.08.009.
  25. ^ Koorbanally, Neil A.; Crouch, Neil R.; Harilal, Avinash; Pillay, Bavani; Mulholland, Dulcie A. (2006). "Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae)". Biochemical Systematics and Ecology. 34 (2): 114–118. doi:10.1016/j.bse.2005.08.003.

homoisoflavonoid, benzylidenechroman, ones, type, phenolic, compounds, occurring, naturally, plants, chemical, structure, dihydroxyhomoisoflavan, sappanol, chemically, they, have, general, structure, carbon, skeleton, which, consists, phenyl, rings, heterocycl. Homoisoflavonoids 3 benzylidenechroman 4 ones are a type of phenolic compounds occurring naturally 1 in plants Chemical structure of the 3 4 dihydroxyhomoisoflavan sappanol Chemically they have the general structure of a 16 carbon skeleton which consists of two phenyl rings A and B and heterocyclic ring C Contents 1 Synthesis 2 Natural occurrences 2 1 Homoisoflavanones 2 1 1 In Asparagaceae 3 Uses 4 See also 5 ReferencesSynthesis editHomoisoflavones can be synthesized from 2 hydroxydihydrochalcones 2 Homoisoflavanones can be synthesized 3 from 3 5 methoxy phenols via chroman 4 one in three steps 4 or from phloroglucinol 5 ConversionHomoisoflavanes can be obtained from the conversion of homoisoflavonoids 6 Natural occurrences editThe homoisoflavonoids portulacanones A B C and D can be found in Portulaca oleracea common purslane Caryophyllales Portulacaceae 7 The 3 4 dihydroxyhomoisoflavans sappanol episappanol 3 deoxysappanol 3 O methylsappanol and 3 O methylepisappanol can be found in Caesalpinia sappan 8 The homoisoflavones scillavones A and B can be isolated from the bulbs of Scilla scilloides Barnardia japonica 9 Homoisoflavanones edit nbsp Chemical structure of sappanone A Homoisoflavanones 3 Benzyl 4 chromanones 10 can be found in various plants 11 notably in Hyacinthaceae Scilloideae 12 Sappanone A can be found in Caesalpinia sappan 13 C Methylated homoisoflavanones 3 4 methoxy benzyl 5 7 dihydroxy 6 methyl 8 methoxy chroman 4 one 3 4 methoxy benzyl 5 7 dihydroxy 6 8 dimethyl chroman 4 one 3 4 hydroxy benzyl 5 7 dihydroxy 6 8 dimethyl chroman 4 one 3 4 hydroxy benzyl 5 7 dihydroxy 6 methyl 8 methoxy chroman 4 one and 3 4 hydroxy benzyl 5 7 dihydroxy 6 methyl chroman 4 one can be found in the rhizomes of Polygonum odoratum 14 5 7 Dihydroxy 3 3 hydroxy 4 methoxybenzyl chroman 4 one a homoisoflavanone extracted from Cremastra appendiculata Orchidaceae has anti angiogenic activities and inhibits UVB induced skin inflammation through reduced cyclooxygenase 2 expression and NF B nuclear localization 15 In Asparagaceae edit 3 4 Methoxybenzyl 7 8 methylenedioxy chroman 4 one a homoisoflavanone with antimycobacterial activity can be isolated from Chlorophytum inornatum Asparagaceae Agavoideae 6 5 7 Dihydroxy 3 4 methoxybenzyl chroman 4 one 7 hydroxy 3 4 hydroxybenzyl chroman 4 one and 4 demethyl 3 9 dihydro punctatin can be isolated from Agave tequilana Asparagaceae Agavoideae 16 in Scilloideae Hyacinthaceae 7 O a Rhamnopyranosyl 1 6 b glucopiranosyl 5 hydroxy 3 4 methoxybenzyl chroman 4 one 7 O a rhamnopyranosyl 1 6 b glucopiranosyl 5 hydroxy 3 4 hydroxybenzyl chroman 4 one 5 7 dihydroxy 3 4 methoxybenzyl chroman 4 one 3 9 dihidroeucomin 5 7 dihydroxy 6 methoxy 3 4 methoxybenzyl chroman 4 one 5 7 dihydroxy 3 4 hydroxybenzyl chroman 4 one 4 4 demethyl 3 9 dihydropuctatin 5 7 dihydroxy 3 4 hydroxybenzyl 6 methoxy chroman 4 one 3 9 dihydroeucomnalin and 7 hydroxy 3 4 hydroxybenzyl 5 methoxy chroman 4 one can be isolated from the bulbs of Ledebouria floribunda tribe Hyacintheae 17 Other compounds can be found in Ledebouria revoluta a plant widely used as an ethnomedicinal in southern Africa 10 The homoisoflavanone glycosides 7 O methyleucomol 5 O beta D glucopyranoside 7 O methyleucomol 5 O beta rutinoside and 7 O methyleucomol 5 O beta neohesperidoside can be isolated from the bulbs of Ornithogalum caudatum tribe Ornithogaloideae 18 Scillascillin type homoisoflavanones 3 hydroxy type homoisoflavonoids can be isolated from Drimiopsis maculata tribe Hyacintheae Massoniinae 19 Eucomin eucomol 20 E 7 O methyl eucomin 7 O methyleucomol 3 9 dihydro eucomin and 7 O methyl 3 9 dihydro eucomin 21 can be isolated from the bulbs of Eucomis bicolor tribe Hyacintheae Massoniinae 4 o Methyl punctatin autumnalin and 3 9 dihydro autumnalin can be found in Eucomis autumnalis 22 Five homoisoflavanones 3 5 dihydroxy 7 8 dimethoxy 3 3 4 dimethoxybenzyl 4 chromanone 3 5 dihydroxy 7 methoxy 3 3 4 dimethoxybenzyl 4 chromanone 3 5 dihydroxy 7 8 dimethoxy 3 3 hydroxy 4 methoxybenzyl 4 chromanone 3 5 6 trihydroxy 7 methoxy 3 3 hydroxy 4 methoxybenzyl 4 chromanone and 3 5 7 trihydroxy 3 3 hydroxy 4 methoxybenzyl 4 chromanone can be isolated from the dichloromethane extract of the bulbs of Pseudoprospero firmifolium tribe Hyacintheae subtribe Pseudoprospero 23 A homoisoflavanone can also be found in Albuca fastigiata tribe Ornithogaleae 24 The same molecule 5 6 dimethoxy 7 hydroxy 3 4 hydroxybenzyl 4 chromanone can be found in the bulbs of Resnova humifusa and Eucomis montana tribe Hyacintheae subtribe Massoniinae 25 Uses editThe homoisoflavonoids portulacanones A B C and D show in vitro cytotoxic activities towards four human cancer cell lines 7 See also editFlavonoids and isoflavonoids related chemicals with a 15 carbon skeletonReferences edit Roshanak Namdar and Shohreh Nafisi December 2013 Study on the interaction of homoisoflavonoids with nucleic acids Comparative study by spectroscopic methods Lap Lambert Academic Publishing GmbH KG ISBN 978 3 659 49924 1 Rao Vallabhaneni Madhava Damu Guri Lakshmi Vasantha Sudhakar Dega Siddaiah Vidavaluri Rao Chunduri Venkata 2008 New efficient synthesis and bioactivity of homoisoflavonoids Arkivoc 2008 11 285 294 doi 10 3998 ark 5550190 0009 b28 hdl 2027 spo 5550190 0009 b28 Jain Amolak C Anita Mehta nee Sharma Mrs 1985 A new synthesis of homoisoflavanones 3 benzyl 4 chromanones Tetrahedron 41 24 5933 5937 doi 10 1016 S0040 4020 01 91433 4 Shaikh Mahidansha Petzold Katja Kruger Hendrik G Du Toit Karen 2010 Synthesis and NMR elucidation of homoisoflavanone analogues Structural Chemistry 22 161 166 doi 10 1007 s11224 010 9703 x Rawal Viresh H Cava Michael P 1983 Synthesis of scillascillin a naturally occurring benzocyclobutene Tetrahedron Letters 24 50 5581 5584 doi 10 1016 S0040 4039 00 94146 7 a b Zhang L Zhang W G Kang J Bao K Dai Y Yao X S 2008 Synthesis of homoisoflavanone and corresponding homoisoflavane Journal of Asian Natural Products Research 10 9 10 909 913 doi 10 1080 10286020802217499 PMID 19003606 a b Yan Jian Sun Li Rong Zhou Zhong Yu Chen Yu Chan Zhang Wei Min Dai Hao Fu Tan Jian Wen 2012 Homoisoflavonoids from the medicinal plant Portulaca oleracea Phytochemistry 80 37 41 doi 10 1016 j phytochem 2012 05 014 PMID 22683318 Namikoshi Michio Nakata Hiroyuki Yamada Hiroyuki Nagai Minako Saitoh Tamotsu 1987 Homoisoflavonoids and related compounds II Isolation and absolute configurations of 3 4 dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L Chemical amp Pharmaceutical Bulletin 35 7 2761 2773 doi 10 1248 cpb 35 2761 Nishida Y Eto M Miyashita H Ikeda T Yamaguchi K Yoshimitsu H Nohara T Ono M 2008 A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides Chemical amp Pharmaceutical Bulletin 56 7 1022 5 doi 10 1248 cpb 56 1022 PMID 18591825 a b Moodley N Crouch N R Mulholland D A Slade D Ferreira D 2006 3 Benzyl 4 chromanones homoisoflavanones from bulbs of the ethnomedicinal geophyte Ledebouria revoluta Hyacinthaceae South African Journal of Botany 72 4 517 520 doi 10 1016 j sajb 2006 01 004 Du Toit Karen Drewes Siegfried E Bodenstein Johannes 2010 The chemical structures plant origins ethnobotany and biological activities of homoisoflavanones Natural Product Research 24 5 457 490 doi 10 1080 14786410903335174 PMID 20306368 Du Toit K Elgorashi E E Malan S F Mulholland D A Drewes S E Van Staden J 2007 Antibacterial activity and QSAR of homoisoflavanones isolated from six Hyacinthaceae species South African Journal of Botany 73 2 236 241 doi 10 1016 j sajb 2007 01 002 Chang T S Chao S Y Ding H Y 2012 Melanogenesis Inhibition by Homoisoflavavone Sappanone a from Caesalpinia sappan International Journal of Molecular Sciences 13 8 10359 10367 doi 10 3390 ijms130810359 PMC 3431864 PMID 22949866 Wang D Li D Zhu W Peng P 2009 A new C methylated homoisoflavanone and triterpenoid from the rhizomes of Polygonatum odoratum Natural Product Research 23 6 580 9 doi 10 1080 14786410802560633 PMID 19384735 Hur Seulgi Lee Yun Sang Yoo Hyun Yang Jeong Hee Kim Tae Yoon 2010 Homoisoflavanone inhibits UVB induced skin inflammation through reduced cyclooxygenase 2 expression and NF kB nuclear localization Journal of Dermatological Science 59 3 163 169 doi 10 1016 j jdermsci 2010 07 001 PMID 20724116 Morales Serna Jose Antonio Jimenez Armando Estrada Reyes Rosa Marquez Carmen Cardenas Jorge Salmon Manuel 2010 Homoisoflavanones from Agave tequilana Weber Molecules 15 5 3295 3301 doi 10 3390 molecules15053295 PMC 6263332 PMID 20657479 Calvo Maria Isabel 2009 Homoisoflavanones from Ledebouria floribunda Fitoterapia 80 2 96 101 doi 10 1016 j fitote 2008 10 006 PMID 19027834 Tang Y Yu B Hu J Wu T Hui H 2002 Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum Journal of Natural Products 65 2 218 20 doi 10 1021 np010466a PMID 11858761 Koorbanally C Crouch N R Mulholland D A 2001 Scillascillin type homoisoflavanones from Drimiopsis maculata Hyacinthaceae Biochemical Systematics and Ecology 29 5 539 541 doi 10 1016 s0305 1978 00 00073 9 PMID 11274776 Heller W Tamm Ch 1981 Homoisoflavanones and Biogenetically Related Compounds Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products Vol 40 pp 105 152 doi 10 1007 978 3 7091 8611 4 3 ISBN 978 3 7091 8613 8 Heller Werner Andermatt Paul Schaad Werner A Tamm Christoph 1976 Homoisoflavanone IV Neue Inhaltsstoffe der Eucomin Reihe von Eucomis bicolor Helvetica Chimica Acta 59 6 2048 2058 doi 10 1002 hlca 19760590618 PMID 1017955 Sidwell W T L Tamm Ch 1970 The homo isoflavones II1 Isolation and structure of 4 o methyl punctatin autumnalin and 3 9 dihydro autumnalin Tetrahedron Letters 11 7 475 478 doi 10 1016 0040 4039 70 89003 7 Koorbanally C Sewjee S Mulholland D A Crouch N R Dold A 2007 Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae Hyacinthaceae Hyacinthoideae Phytochemistry 68 22 24 2753 6 doi 10 1016 j phytochem 2007 08 005 PMID 17884116 Koorbanally Chantal Mulholland Dulcie A Crouch Neil R 2005 A novel 3 hydroxy 3 benzyl 4 chromanone type homoisoflavonoid from Albuca fastigiata Ornithogaloideae Hyacinthaceae Biochemical Systematics and Ecology 33 5 545 549 doi 10 1016 j bse 2004 08 009 Koorbanally Neil A Crouch Neil R Harilal Avinash Pillay Bavani Mulholland Dulcie A 2006 Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana Hyacinthoideae Hyacinthaceae Biochemical Systematics and Ecology 34 2 114 118 doi 10 1016 j bse 2005 08 003 Retrieved from https en wikipedia org w index php title Homoisoflavonoid amp oldid 1188157642, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.