fbpx
Wikipedia

Haar's Tauberian theorem

In mathematical analysis, Haar's Tauberian theorem[1] named after Alfréd Haar, relates the asymptotic behaviour of a continuous function to properties of its Laplace transform. It is related to the integral formulation of the Hardy–Littlewood Tauberian theorem.

Simplified version by Feller edit

William Feller gives the following simplified form for this theorem:[2]

Suppose that   is a non-negative and continuous function for  , having finite Laplace transform

 

for  . Then   is well defined for any complex value of   with  . Suppose that   verifies the following conditions:

1. For   the function   (which is regular on the right half-plane  ) has continuous boundary values   as  , for   and  , furthermore for   it may be written as

 

where   has finite derivatives   and   is bounded in every finite interval;

2. The integral

 

converges uniformly with respect to   for fixed   and  ;

3.   as  , uniformly with respect to  ;

4.   tend to zero as  ;

5. The integrals

  and  

converge uniformly with respect to   for fixed  ,   and  .

Under these conditions

 

Complete version edit

A more detailed version is given in.[3]

Suppose that   is a continuous function for  , having Laplace transform

 

with the following properties

1. For all values   with   the function   is regular;

2. For all  , the function  , considered as a function of the variable  , has the Fourier property ("Fourierschen Charakter besitzt") defined by Haar as for any   there is a value   such that for all  

 

whenever   or  .

3. The function   has a boundary value for   of the form

 

where   and   is an   times differentiable function of   and such that the derivative

 

is bounded on any finite interval (for the variable  )

4. The derivatives

 

for   have zero limit for   and for   has the Fourier property as defined above.

5. For sufficiently large   the following hold

 

Under the above hypotheses we have the asymptotic formula

 

References edit

  1. ^ Haar, Alfred (December 1927). "Über asymptotische Entwicklungen von Funktionen". Mathematische Annalen (in German). 96 (1): 69–107. doi:10.1007/BF01209154. ISSN 0025-5831. S2CID 115615866.
  2. ^ Feller, Willy (September 1941). "On the Integral Equation of Renewal Theory". The Annals of Mathematical Statistics. 12 (3): 243–267. doi:10.1214/aoms/1177731708. ISSN 0003-4851.
  3. ^ Lipka, Stephan (1927). "Über asymptotische Entwicklungen der Mittag-Lefflerschen Funktion E_alpha(x)" (PDF). Acta Sci. Math. (Szeged). 3:4-4: 211–223.

haar, tauberian, theorem, mathematical, analysis, named, after, alfréd, haar, relates, asymptotic, behaviour, continuous, function, properties, laplace, transform, related, integral, formulation, hardy, littlewood, tauberian, theorem, simplified, version, fell. In mathematical analysis Haar s Tauberian theorem 1 named after Alfred Haar relates the asymptotic behaviour of a continuous function to properties of its Laplace transform It is related to the integral formulation of the Hardy Littlewood Tauberian theorem Simplified version by Feller editWilliam Feller gives the following simplified form for this theorem 2 Suppose that f t displaystyle f t nbsp is a non negative and continuous function for t 0 displaystyle t geq 0 nbsp having finite Laplace transform F s 0 e s t f t d t displaystyle F s int 0 infty e st f t dt nbsp for s gt 0 displaystyle s gt 0 nbsp Then F s displaystyle F s nbsp is well defined for any complex value of s x i y displaystyle s x iy nbsp with x gt 0 displaystyle x gt 0 nbsp Suppose that F displaystyle F nbsp verifies the following conditions 1 For y 0 displaystyle y neq 0 nbsp the function F x i y displaystyle F x iy nbsp which is regular on the right half plane x gt 0 displaystyle x gt 0 nbsp has continuous boundary values F i y displaystyle F iy nbsp as x 0 displaystyle x to 0 nbsp for x 0 displaystyle x geq 0 nbsp and y 0 displaystyle y neq 0 nbsp furthermore for s i y displaystyle s iy nbsp it may be written as F s C s ps s displaystyle F s frac C s psi s nbsp where ps i y displaystyle psi iy nbsp has finite derivatives ps i y ps r i y displaystyle psi iy ldots psi r iy nbsp and ps r i y displaystyle psi r iy nbsp is bounded in every finite interval 2 The integral 0 e i t y F x i y d y displaystyle int 0 infty e ity F x iy dy nbsp converges uniformly with respect to t T displaystyle t geq T nbsp for fixed x gt 0 displaystyle x gt 0 nbsp and T gt 0 displaystyle T gt 0 nbsp 3 F x i y 0 displaystyle F x iy to 0 nbsp as y displaystyle y to pm infty nbsp uniformly with respect to x 0 displaystyle x geq 0 nbsp 4 F i y F r i y displaystyle F iy ldots F r iy nbsp tend to zero as y displaystyle y to pm infty nbsp 5 The integrals y 1 e i t y F r i y d y displaystyle int infty y 1 e ity F r iy dy nbsp and y 2 e i t y F r i y d y displaystyle int y 2 infty e ity F r iy dy nbsp converge uniformly with respect to t T displaystyle t geq T nbsp for fixed y 1 lt 0 displaystyle y 1 lt 0 nbsp y 2 gt 0 displaystyle y 2 gt 0 nbsp and T gt 0 displaystyle T gt 0 nbsp Under these conditions lim t t r f t C 0 displaystyle lim t to infty t r f t C 0 nbsp Complete version editA more detailed version is given in 3 Suppose that f t displaystyle f t nbsp is a continuous function for t 0 displaystyle t geq 0 nbsp having Laplace transform F s 0 e s t f t d t displaystyle F s int 0 infty e st f t dt nbsp with the following properties1 For all values s x i y displaystyle s x iy nbsp with x gt a displaystyle x gt a nbsp the function F s F x i y displaystyle F s F x iy nbsp is regular 2 For all x gt a displaystyle x gt a nbsp the function F x i y displaystyle F x iy nbsp considered as a function of the variable y displaystyle y nbsp has the Fourier property Fourierschen Charakter besitzt defined by Haar as for any d gt 0 displaystyle delta gt 0 nbsp there is a value w displaystyle omega nbsp such that for all t T displaystyle t geq T nbsp a b e i y t F x i y d y lt d displaystyle Big int alpha beta e iyt F x iy dy Big lt delta nbsp whenever a b w displaystyle alpha beta geq omega nbsp or a b w displaystyle alpha beta leq omega nbsp 3 The function F s displaystyle F s nbsp has a boundary value for ℜ s a displaystyle Re s a nbsp of the form F s j 1 N c j s s j r j ps s displaystyle F s sum j 1 N frac c j s s j rho j psi s nbsp where s j a i y j displaystyle s j a iy j nbsp and ps a i y displaystyle psi a iy nbsp is an n displaystyle n nbsp times differentiable function of y displaystyle y nbsp and such that the derivative d n ps a i y d y n displaystyle left frac d n psi a iy dy n right nbsp is bounded on any finite interval for the variable y displaystyle y nbsp 4 The derivatives d k F a i y d y k displaystyle frac d k F a iy dy k nbsp for k 0 n 1 displaystyle k 0 ldots n 1 nbsp have zero limit for y displaystyle y to pm infty nbsp and for k n displaystyle k n nbsp has the Fourier property as defined above 5 For sufficiently large t displaystyle t nbsp the following hold lim y a i y x i y e s t F s d s 0 displaystyle lim y to pm infty int a iy x iy e st F s ds 0 nbsp Under the above hypotheses we have the asymptotic formula lim t t n e a t f t j 1 N c j G r j e s j t t r j 1 0 displaystyle lim t to infty t n e at Big f t sum j 1 N frac c j Gamma rho j e s j t t rho j 1 Big 0 nbsp References edit Haar Alfred December 1927 Uber asymptotische Entwicklungen von Funktionen Mathematische Annalen in German 96 1 69 107 doi 10 1007 BF01209154 ISSN 0025 5831 S2CID 115615866 Feller Willy September 1941 On the Integral Equation of Renewal Theory The Annals of Mathematical Statistics 12 3 243 267 doi 10 1214 aoms 1177731708 ISSN 0003 4851 Lipka Stephan 1927 Uber asymptotische Entwicklungen der Mittag Lefflerschen Funktion E alpha x PDF Acta Sci Math Szeged 3 4 4 211 223 Retrieved from https en wikipedia org w index php title Haar 27s Tauberian theorem amp oldid 1140823359, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.