fbpx
Wikipedia

Gullstrand–Painlevé coordinates

Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial slices are flat. There is no coordinate singularity at the Schwarzschild radius (event horizon). The outgoing ones are simply the time reverse of ingoing coordinates (the time is the proper time along outgoing particles that reach infinity with zero velocity).

The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand[2] in 1922. It was not explicitly shown until 1933 in Lemaître's paper [3] that these solutions were simply coordinate transformations of the usual Schwarzschild solution, although Einstein immediately believed that to be true.

Derivation edit

The derivation of GP coordinates requires defining the following coordinate systems and understanding how data measured for events in one coordinate system is interpreted in another coordinate system.

Convention: The units for the variables are all geometrized. Time and mass have units in meters. The speed of light in flat spacetime has a value of 1. The gravitational constant has a value of 1. The metric is expressed in the +−−− sign convention.

Schwarzschild coordinates edit

 
Free falling worldlines in classic Schwarzschild-Droste coordinates

A Schwarzschild observer is a far observer or a bookkeeper. He does not directly make measurements of events that occur in different places. Instead, he is far away from the black hole and the events. Observers local to the events are enlisted to make measurements and send the results to him. The bookkeeper gathers and combines the reports from various places. The numbers in the reports are translated into data in Schwarzschild coordinates, which provide a systematic means of evaluating and describing the events globally. Thus, the physicist can compare and interpret the data intelligently. He can find meaningful information from these data. The Schwarzschild form of the Schwarzschild metric using Schwarzschild coordinates is given by

 

where

G=1=c
t, r, θ, φ are the Schwarzschild coordinates,
M is the mass of the black hole.

GP coordinates edit

 
Free falling worldlines in Gullstrand–Painlevé raindrop coordinates

Define a new time coordinate by

 

for some arbitrary function  . Substituting in the Schwarzschild metric one gets

 

where  . If we now choose   such that the term multiplying   is unity, we get

 

and the metric becomes

 

The spatial metric (i.e. the restriction of the metric   on the surface where   is constant) is simply the flat metric expressed in spherical polar coordinates. This metric is regular along the horizon where r=2M, since, although the temporal term goes to zero, the off-diagonal term in the metric is still non-zero and ensures that the metric is still invertible (the determinant of the metric is  ).

The function   is given by

 

where  . The function   is clearly singular at r=2M as it must be to remove that singularity in the Schwarzschild metric.

Other choices for   lead to other coordinate charts for the Schwarzschild vacuum; a general treatment is given in Francis & Kosowsky.[4]

Motion of raindrop edit

Define a raindrop as an object which plunges radially toward a black hole from rest at infinity.[5]

In Schwarzschild coordinates, the velocity of a raindrop is given by

 
  • The speed tends to 0 as r approaches the event horizon. The raindrop appears to have slowed as it gets nearer the event horizon and halted at the event horizon as measured by the bookkeeper. Indeed, an observer outside the event horizon would see the raindrop plunge slower and slower. Its image infinitely redshifts and never makes it through the event horizon. However, the bookkeeper does not physically measure the speed directly. He translates data relayed by the shell observer into Schwarzschild values and computes the speed. The result is only an accounting entry.

In GP coordinates, the velocity is given by

 
 
  • The speed of the raindrop is inversely proportional to the square root of the radius and equals the negative newtonian escape velocity. At points very far away from the black hole, the speed is extremely small. As the raindrop plunges toward the black hole, the speed increases. At the event horizon, the speed has the value 1. There is no discontinuity or singularity at the event horizon.
  • Inside the event horizon,   the speed increases as the raindrop gets closer to the singularity. Eventually, the speed becomes infinite at the singularity. As shown below the speed is always less than the speed of light. The results may not be correctly predicted by the equation at and very near the singularity since the true solution may be quite different when quantum mechanics is incorporated.
  • Despite the problem with the singularity, it's still possible to compute the travel time for the raindrop from the horizon to the center of black hole mathematically.

Integrate the equation of motion:

  The result is  

Using this result for the speed of the raindrop we can find the proper time along the trajectory of the raindrop in terms of the time  . We have

 

I.e. along the rain drops trajectory, the elapse of time   is exactly the proper time along the trajectory. One could have defined the GP coordinates by this requirement, rather than by demanding that the spatial surfaces be flat.

A closely related set of coordinates is the Lemaître coordinates, in which the "radial" coordinate is chosen to be constant along the paths of the raindrops. Since r changes as the raindrops fall, this metric is time dependent while the GP metric is time independent.

The metric obtained if, in the above, we take the function f(r) to be the negative of what we choose above is also called the GP coordinate system. The only change in the metric is that cross term changes sign. This metric is regular for outgoing raindrops—i.e. particles which leave the black hole travelling outward with just escape velocity so that their speed at infinity is zero. In the usual GP coordinates, such particles cannot be described for r<2M. They have a zero value for   at r=2M. This is an indication that the Schwarzschild black hole has two horizons, a past horizon, and a future horizon. The Original form of the GP coordinates is regular across the future horizon (where particles fall into when they fall into a black hole) while the alternative negative version is regular across the past horizon (from which particles come out of the black hole if they do so).

The Kruskal–Szekeres coordinates are regular across both horizons at the expense of making the metric strongly dependent on the time coordinate.

Speeds of light edit

Assume radial motion. For light,   Therefore,

 
 
  • At places very far away from the black hole,   The speed of light is 1, the same as in special relativity.
  • At the event horizon,   the speed of light shining outward away from the center of black hole is   It can not escape from the event horizon. Instead, it gets stuck at the event horizon. Since light moves faster than all others, matter can only move inward at the event horizon. Everything inside the event horizon is hidden from the outside world.
  • Inside the event horizon,   the rain observer measures that the light moves toward the center with speed greater than 2. This is plausible. Even in special relativity, the proper speed of a moving object is
     
There are two important points to consider:
  1. No object should have speed greater than the speed of light as measured in the same reference frame. Thus, the principle of causality is preserved. Indeed, the speed of raindrop is less than that of light: 
  2. The time of travel for light shining inward from event horizon to the center of black hole can be obtained by integrating the equation for the velocity of light,
 

The result is  

  1. The light travel time for a stellar black hole with a typical size of 3 solar masses is about 11 microseconds.
  2. Ignoring effects of rotation, for Sagittarius A*, the supermassive black hole residing at the center of the Milky Way, with mass of 3.7 million solar masses, the light travel time is about 14 seconds.
  3. The supermassive black hole at the center of Messier 87, a giant elliptical galaxy in the Virgo Cluster, is the biggest known black hole. It has a mass of approximately 3 billion solar masses. It would take about 3 hours for light to travel to the central singularity of such a supermassive black hole, and for raindrop, 5 hours.

A rain observer's view of the universe edit

How does the universe look like as seen by a rain observer plunging into the black hole? [6] The view can be described by the following equations:

 
 
 

where

  are the rain observer's and shell observer's viewing angles with respect to the radially outward direction.
  is the angle between the distant star and the radially outward direction.
    is the impact parameter. Each incoming light ray can be backtraced to a corresponding ray at infinity. The Impact parameter for the incoming light ray is the distance between the corresponding ray at infinity and a ray parallel to it that plunges directly into the black hole.

Because of spherical symmetry, the trajectory of light always lies in a plane passing through the center of sphere. It's possible to simplify the metric by assuming   .

 

The impact parameter   can be computed knowing the rain observer's r-coordinate   and viewing angle   . Then, the actual angle   of the distant star, is determined by numerically integrating   from   to infinity. A chart of the sample results is shown at right.

  • At r/M = 500, the black hole is still very far away. It subtends a diametrical angle of ~ 1 degree in the sky. The stars are not distorted much by the presence of the black hole, except for the stars directly behind it. Due to gravitational lensing, these obstructed stars are now deflected 5 degrees away from the back. In between these stars and the black hole is a circular band of secondary images of the stars. The duplicate images are instrumental in the identification of the black hole.
  • At r/M = 30, the black hole has become much bigger, spanning a diametrical angle of ~15 degrees in the sky. The band of secondary images has also grown to 10 degrees. It’s now possible to find faint tertiary images in the band, which are produced by the light rays that have looped around the black hole once already. The primary images are distributed more tightly in the rest of the sky. The pattern of distribution is similar to that previously exhibited.
  • At r/M = 2, the event horizon, the black hole now occupies a substantial portion of the sky. The rain observer would see an area up to 42 degrees from the radially inward direction that is pitch dark. The band of secondary and tertiary images, rather than increasing, has decreased in size to 5 degrees. The aberration effect is now quite dominant. The speed of plunging has reached the light speed. The distribution pattern of primary images is changing drastically. The primary images are shifting toward the boundary of the band. The edge near the band is now crowded with stars. Due to Doppler effect, the primary image of the stars which were originally located behind the rain observer have their images appreciably red-shifted, while those that were in front are blue-shifted and appear very bright.
  • At r/M=0.001, the curve of distant star angle versus view angle appears to form a right angle at the 90 degrees view angle. Almost all of the star images are congregated in a narrow ring 90 degrees from the radially inward direction. Between the ring and the radially inward direction is the enormous black hole. On the opposite side, only a few stars shine faintly.
  • As the rain observer approaches the singularity,  , and   . Most of the stars and their images caused by multiple orbits of the light around the black hole are squeezed to a narrow band at the 90° viewing angle. The observer sees a magnificent bright ring of stars bisecting the dark sky.

History edit

Although the publication of Gullstrand's paper came after Painlevé's, Gullstrand's paper was dated 25 May 1921, whereas Painlevé's publication was a writeup of his presentation before the Academie des Sciences in Paris on 24 October 1921. In this way, Gullstrand's work appears to have priority.[7]

Both Painlevé and Gullstrand used this solution to argue that Einstein's theory was incomplete in that it gave multiple solutions for the gravitational field of a spherical body, and moreover gave different physics (they argued that the lengths of rods could sometimes be longer and sometimes shorter in the radial than the tangential directions). The "trick" of the Painlevé proposal was that he no longer stuck to a full quadratic (static) form but instead, allowed a cross time-space product making the metric form no longer static but stationary and no longer direction symmetric but preferentially oriented.

In a second, longer paper (November 14, 1921),[8] Painlevé explains how he derived his solution by directly solving Einstein's equations for a generic spherically symmetric form of the metric. The result, equation (4) of his paper, depended on two arbitrary functions of the r coordinate yielding a double infinity of solutions. We now know that these simply represent a variety of choices of both the time and radial coordinates.

Painlevé wrote to Einstein to introduce his solution and invited Einstein to Paris for a debate. In Einstein's reply letter (December 7),[9] he apologized for not being in a position to visit soon and explained why he was not pleased with Painlevé's arguments, emphasising that the coordinates themselves have no meaning. Finally, Einstein came to Paris in early April. On the 5th of April 1922, in a debate at the "Collège de France" [10][11] with Painlevé, Becquerel, Brillouin, Cartan, De Donder, Hadamard, Langevin and Nordmann on "the infinite potentials", Einstein, baffled by the non quadratic cross term in the line element, rejected the Painlevé solution.

See also edit

References edit

  1. ^ Paul Painlevé, "La mécanique classique et la théorie de la relativité", C. R. Acad. Sci. (Paris) 173, 677–680(1921).
  2. ^ Gullstrand, Allvar (1922). "Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie". Arkiv för Matematik, Astronomi och Fysik. 16 (8): 1–15.
  3. ^ G. Lemaitre (1933). "L'Univers en expansion". Annales de la Société Scientifique de Bruxelles. A53: 51–85. Bibcode:1933ASSB...53...51L.
  4. ^ Matthew R. Francis and Arthur Kosowsky (2004). "Geodesics in the Generalized Schwarzschild Solution", arXiv:gr-qc/0311038
  5. ^ Bertschinger, Edmund; Taylor, Edwin F. (2020). "Chapter 6: Diving; Exploring Black Holes, Second Edition (EBH2e)" (PDF). eftaylor.com. There is no published hard copy textbook of EBH2e. Instead, you may freely download the online version
  6. ^ Tony Rothman; Richard Matzner; Bill Unruh (1985). "Grand Illusions: Further conversations on the edge of Spacetime". In Tony Rothman (ed.). Frontiers of Modern Physics. Dover Publications (New York). pp. 49–81.
  7. ^ Hamilton, Andrew J.S.; Lisle, Jason P. (June 2008). "The river model of black holes". American Journal of Physics. 76 (6): 519–532. arXiv:gr-qc/0411060. Bibcode:2008AmJPh..76..519H. doi:10.1119/1.2830526. S2CID 119467298.
  8. ^ "La gravitation dans la mécanique de Newton et dans la mécanique d'Einstein" C.R Acad. Sci. (Paris) 173, 873-886(1921).
  9. ^ Diana Buchwald; et al., eds. (2009). The Collected papers of Albert Einstein. Princeton University Press. pp. 368–370.
  10. ^ Jean Eisenstaedt (1987). "The Early Interpretation of the Schwarzschild solution". In Don Howqard; John Stachel (eds.). Einstein and the History of General Relativity. Birkhauser (Berlin). pp. 222–223.
  11. ^ Jean Eisenstaedt (1982). "Histoire et Singularités de la Solution de Schwarzschild (1915–1923)". Archive for History of Exact Sciences. 27 (2): 157–198. Bibcode:1982AHES...27..157E. doi:10.1007/BF00348347. S2CID 116541975.
  • Misner, Thorne, Wheeler (1973). Gravitation. W H Freeman and Company. ISBN 0-7167-0344-0.{{cite book}}: CS1 maint: multiple names: authors list (link)

External links edit

  • The River Model of Black Holes
  • Dr. Andrew J S Hamilton's video "Inside Black Holes"
  • Black hole orbit simulation in GP coordinates.

gullstrand, painlevé, coordinates, particular, coordinates, schwarzschild, metric, solution, einstein, field, equations, which, describes, black, hole, ingoing, coordinates, such, that, time, coordinate, follows, proper, time, free, falling, observer, starts, . Gullstrand Painleve coordinates are a particular set of coordinates for the Schwarzschild metric a solution to the Einstein field equations which describes a black hole The ingoing coordinates are such that the time coordinate follows the proper time of a free falling observer who starts from far away at zero velocity and the spatial slices are flat There is no coordinate singularity at the Schwarzschild radius event horizon The outgoing ones are simply the time reverse of ingoing coordinates the time is the proper time along outgoing particles that reach infinity with zero velocity The solution was proposed independently by Paul Painleve in 1921 1 and Allvar Gullstrand 2 in 1922 It was not explicitly shown until 1933 in Lemaitre s paper 3 that these solutions were simply coordinate transformations of the usual Schwarzschild solution although Einstein immediately believed that to be true Contents 1 Derivation 1 1 Schwarzschild coordinates 1 2 GP coordinates 2 Motion of raindrop 3 Speeds of light 4 A rain observer s view of the universe 5 History 6 See also 7 References 8 External linksDerivation editThe derivation of GP coordinates requires defining the following coordinate systems and understanding how data measured for events in one coordinate system is interpreted in another coordinate system Convention The units for the variables are all geometrized Time and mass have units in meters The speed of light in flat spacetime has a value of 1 The gravitational constant has a value of 1 The metric is expressed in the sign convention Schwarzschild coordinates edit nbsp Free falling worldlines in classic Schwarzschild Droste coordinatesA Schwarzschild observer is a far observer or a bookkeeper He does not directly make measurements of events that occur in different places Instead he is far away from the black hole and the events Observers local to the events are enlisted to make measurements and send the results to him The bookkeeper gathers and combines the reports from various places The numbers in the reports are translated into data in Schwarzschild coordinates which provide a systematic means of evaluating and describing the events globally Thus the physicist can compare and interpret the data intelligently He can find meaningful information from these data The Schwarzschild form of the Schwarzschild metric using Schwarzschild coordinates is given byg 1 2Mr dt2 dr2 1 2Mr r2d82 r2sin2 8dϕ2 displaystyle g left 1 frac 2M r right dt 2 frac dr 2 left 1 frac 2M r right r 2 d theta 2 r 2 sin 2 theta d phi 2 nbsp where G 1 c t r 8 f are the Schwarzschild coordinates M is the mass of the black hole GP coordinates edit nbsp Free falling worldlines in Gullstrand Painleve raindrop coordinatesDefine a new time coordinate bytr t a r displaystyle t r t a r nbsp for some arbitrary function a r displaystyle a r nbsp Substituting in the Schwarzschild metric one gets g 1 2Mr dtr2 2 1 2Mr a dtrdr 11 2Mr 1 2Mr a 2 dr2 r2d82 r2sin2 8dϕ2 displaystyle g left 1 frac 2M r right dt r 2 2 left 1 frac 2M r right a dt r dr left frac 1 1 frac 2M r left 1 frac 2M r right a 2 right dr 2 r 2 d theta 2 r 2 sin 2 theta d phi 2 nbsp where a r dadr displaystyle a r frac da dr nbsp If we now choose a r displaystyle a r nbsp such that the term multiplying dr2 displaystyle dr 2 nbsp is unity we get a 11 2Mr2Mr displaystyle a frac 1 1 frac 2M r sqrt frac 2M r nbsp and the metric becomes g 1 2Mr dtr2 22Mrdtrdr dr2 r2d82 r2sin2 8dϕ2 displaystyle g left 1 frac 2M r right dt r 2 2 sqrt frac 2M r dt r dr dr 2 r 2 d theta 2 r 2 sin 2 theta d phi 2 nbsp The spatial metric i e the restriction of the metric g t tr displaystyle g t t r nbsp on the surface where tr displaystyle t r nbsp is constant is simply the flat metric expressed in spherical polar coordinates This metric is regular along the horizon where r 2M since although the temporal term goes to zero the off diagonal term in the metric is still non zero and ensures that the metric is still invertible the determinant of the metric is r4sin 8 2 displaystyle r 4 sin theta 2 nbsp The function a r displaystyle a r nbsp is given by a r 2Mr1 2Mrdr 2M 2y ln y 1y 1 displaystyle a r int frac sqrt frac 2M r 1 frac 2M r dr 2M left 2y ln left frac y 1 y 1 right right nbsp where y r2M displaystyle y sqrt frac r 2M nbsp The function a r displaystyle a r nbsp is clearly singular at r 2M as it must be to remove that singularity in the Schwarzschild metric Other choices for a r displaystyle a r nbsp lead to other coordinate charts for the Schwarzschild vacuum a general treatment is given in Francis amp Kosowsky 4 Motion of raindrop editDefine a raindrop as an object which plunges radially toward a black hole from rest at infinity 5 In Schwarzschild coordinates the velocity of a raindrop is given by drdt 1 2Mr 2Mr displaystyle frac dr dt left 1 frac 2M r right sqrt frac 2M r nbsp The speed tends to 0 as r approaches the event horizon The raindrop appears to have slowed as it gets nearer the event horizon and halted at the event horizon as measured by the bookkeeper Indeed an observer outside the event horizon would see the raindrop plunge slower and slower Its image infinitely redshifts and never makes it through the event horizon However the bookkeeper does not physically measure the speed directly He translates data relayed by the shell observer into Schwarzschild values and computes the speed The result is only an accounting entry In GP coordinates the velocity is given by drdtr b 2Mr displaystyle frac dr dt r beta sqrt frac 2M r nbsp nbsp The speed of the raindrop is inversely proportional to the square root of the radius and equals the negative newtonian escape velocity At points very far away from the black hole the speed is extremely small As the raindrop plunges toward the black hole the speed increases At the event horizon the speed has the value 1 There is no discontinuity or singularity at the event horizon Inside the event horizon r lt 2M displaystyle r lt 2M nbsp the speed increases as the raindrop gets closer to the singularity Eventually the speed becomes infinite at the singularity As shown below the speed is always less than the speed of light The results may not be correctly predicted by the equation at and very near the singularity since the true solution may be quite different when quantum mechanics is incorporated Despite the problem with the singularity it s still possible to compute the travel time for the raindrop from the horizon to the center of black hole mathematically Integrate the equation of motion 0Trdt 2M0 2Mr 1dr displaystyle int 0 T r dt int 2M 0 left sqrt frac 2M r right 1 dr nbsp The result is Tr 43M displaystyle T r frac 4 3 M nbsp dd Using this result for the speed of the raindrop we can find the proper time along the trajectory of the raindrop in terms of the time tr displaystyle t r nbsp We have dt2 g trajectory dtr2 1 2Mr 22Mr2Mr 2Mr2 dtr2 displaystyle d tau 2 g text trajectory dt r 2 left 1 frac 2M r 2 sqrt frac 2M r sqrt frac 2M r sqrt frac 2M r 2 right dt r 2 nbsp I e along the rain drops trajectory the elapse of time tr displaystyle t r nbsp is exactly the proper time along the trajectory One could have defined the GP coordinates by this requirement rather than by demanding that the spatial surfaces be flat A closely related set of coordinates is the Lemaitre coordinates in which the radial coordinate is chosen to be constant along the paths of the raindrops Since r changes as the raindrops fall this metric is time dependent while the GP metric is time independent The metric obtained if in the above we take the function f r to be the negative of what we choose above is also called the GP coordinate system The only change in the metric is that cross term changes sign This metric is regular for outgoing raindrops i e particles which leave the black hole travelling outward with just escape velocity so that their speed at infinity is zero In the usual GP coordinates such particles cannot be described for r lt 2M They have a zero value for drdtr displaystyle frac dr dt r nbsp at r 2M This is an indication that the Schwarzschild black hole has two horizons a past horizon and a future horizon The Original form of the GP coordinates is regular across the future horizon where particles fall into when they fall into a black hole while the alternative negative version is regular across the past horizon from which particles come out of the black hole if they do so The Kruskal Szekeres coordinates are regular across both horizons at the expense of making the metric strongly dependent on the time coordinate Speeds of light editAssume radial motion For light dt 0 displaystyle d tau 0 nbsp Therefore 0 dr 1 2Mr dtr dr 1 2Mr dtr displaystyle 0 left dr left 1 sqrt frac 2M r right dt r right left dr left 1 sqrt frac 2M r right dt r right nbsp drdtr 1 2Mr displaystyle frac dr dt r pm 1 sqrt frac 2M r nbsp At places very far away from the black hole r drdtr 1 displaystyle r to infty tfrac dr dt r pm 1 nbsp The speed of light is 1 the same as in special relativity At the event horizon r 2M displaystyle r 2M nbsp the speed of light shining outward away from the center of black hole is drdtr 0 displaystyle tfrac dr dt r 0 nbsp It can not escape from the event horizon Instead it gets stuck at the event horizon Since light moves faster than all others matter can only move inward at the event horizon Everything inside the event horizon is hidden from the outside world Inside the event horizon r lt 2M displaystyle r lt 2M nbsp the rain observer measures that the light moves toward the center with speed greater than 2 This is plausible Even in special relativity the proper speed of a moving object is drffdt v1 v2 1 displaystyle frac dr ff d tau frac v sqrt 1 v 2 geq 1 nbsp There are two important points to consider No object should have speed greater than the speed of light as measured in the same reference frame Thus the principle of causality is preserved Indeed the speed of raindrop is less than that of light drdtr raindrop drdtr light 2Mr1 2Mr lt 1 displaystyle frac left dfrac dr dt r right text raindrop left dfrac dr dt r right text light frac sqrt dfrac 2M r 1 sqrt dfrac 2M r lt 1 nbsp The time of travel for light shining inward from event horizon to the center of black hole can be obtained by integrating the equation for the velocity of light 0Trdt 2M0 2Mr 1 1dr displaystyle int 0 T r dt int 2M 0 left sqrt frac 2M r 1 right 1 dr nbsp The result is Tr 4Mln 2 2M 0 77M displaystyle T r 4M ln 2 2M approx 0 77M nbsp The light travel time for a stellar black hole with a typical size of 3 solar masses is about 11 microseconds Ignoring effects of rotation for Sagittarius A the supermassive black hole residing at the center of the Milky Way with mass of 3 7 million solar masses the light travel time is about 14 seconds The supermassive black hole at the center of Messier 87 a giant elliptical galaxy in the Virgo Cluster is the biggest known black hole It has a mass of approximately 3 billion solar masses It would take about 3 hours for light to travel to the central singularity of such a supermassive black hole and for raindrop 5 hours A rain observer s view of the universe editHow does the universe look like as seen by a rain observer plunging into the black hole 6 The view can be described by the following equations cos Fr drrdtr 2Mr cos Fs1 2Mr cos Fs displaystyle cos boldsymbol Phi r frac dr r dt r frac sqrt dfrac 2M r cos boldsymbol Phi s 1 sqrt dfrac 2M r cos boldsymbol Phi s nbsp cos Fs drsdts 1 1 2Mr I2r2 displaystyle cos boldsymbol Phi s frac dr s dt s pm sqrt 1 left 1 frac 2M r right frac mathit I 2 r 2 nbsp ϕ I r0 drr2 cos Fs displaystyle phi mathit I int r 0 infty frac dr r 2 cos boldsymbol Phi s nbsp where Fr Fs displaystyle boldsymbol Phi r boldsymbol Phi s nbsp are the rain observer s and shell observer s viewing angles with respect to the radially outward direction ϕ displaystyle phi nbsp is the angle between the distant star and the radially outward direction I displaystyle mathit I nbsp is the impact parameter Each incoming light ray can be backtraced to a corresponding ray at infinity The Impact parameter for the incoming light ray is the distance between the corresponding ray at infinity and a ray parallel to it that plunges directly into the black hole Because of spherical symmetry the trajectory of light always lies in a plane passing through the center of sphere It s possible to simplify the metric by assuming 8 p2 displaystyle theta frac pi 2 nbsp nbsp The impact parameter I displaystyle mathit I nbsp can be computed knowing the rain observer s r coordinate r0 displaystyle r 0 nbsp and viewing angle Fr0 displaystyle boldsymbol Phi r0 nbsp Then the actual angle ϕ displaystyle phi nbsp of the distant star is determined by numerically integrating dr displaystyle dr nbsp from r0 displaystyle r 0 nbsp to infinity A chart of the sample results is shown at right At r M 500 the black hole is still very far away It subtends a diametrical angle of 1 degree in the sky The stars are not distorted much by the presence of the black hole except for the stars directly behind it Due to gravitational lensing these obstructed stars are now deflected 5 degrees away from the back In between these stars and the black hole is a circular band of secondary images of the stars The duplicate images are instrumental in the identification of the black hole At r M 30 the black hole has become much bigger spanning a diametrical angle of 15 degrees in the sky The band of secondary images has also grown to 10 degrees It s now possible to find faint tertiary images in the band which are produced by the light rays that have looped around the black hole once already The primary images are distributed more tightly in the rest of the sky The pattern of distribution is similar to that previously exhibited At r M 2 the event horizon the black hole now occupies a substantial portion of the sky The rain observer would see an area up to 42 degrees from the radially inward direction that is pitch dark The band of secondary and tertiary images rather than increasing has decreased in size to 5 degrees The aberration effect is now quite dominant The speed of plunging has reached the light speed The distribution pattern of primary images is changing drastically The primary images are shifting toward the boundary of the band The edge near the band is now crowded with stars Due to Doppler effect the primary image of the stars which were originally located behind the rain observer have their images appreciably red shifted while those that were in front are blue shifted and appear very bright At r M 0 001 the curve of distant star angle versus view angle appears to form a right angle at the 90 degrees view angle Almost all of the star images are congregated in a narrow ring 90 degrees from the radially inward direction Between the ring and the radially inward direction is the enormous black hole On the opposite side only a few stars shine faintly As the rain observer approaches the singularity r 0 displaystyle r rightarrow 0 nbsp and cos Fr r2M displaystyle cos boldsymbol Phi r rightarrow sqrt frac r 2M nbsp Most of the stars and their images caused by multiple orbits of the light around the black hole are squeezed to a narrow band at the 90 viewing angle The observer sees a magnificent bright ring of stars bisecting the dark sky History editAlthough the publication of Gullstrand s paper came after Painleve s Gullstrand s paper was dated 25 May 1921 whereas Painleve s publication was a writeup of his presentation before the Academie des Sciences in Paris on 24 October 1921 In this way Gullstrand s work appears to have priority 7 Both Painleve and Gullstrand used this solution to argue that Einstein s theory was incomplete in that it gave multiple solutions for the gravitational field of a spherical body and moreover gave different physics they argued that the lengths of rods could sometimes be longer and sometimes shorter in the radial than the tangential directions The trick of the Painleve proposal was that he no longer stuck to a full quadratic static form but instead allowed a cross time space product making the metric form no longer static but stationary and no longer direction symmetric but preferentially oriented In a second longer paper November 14 1921 8 Painleve explains how he derived his solution by directly solving Einstein s equations for a generic spherically symmetric form of the metric The result equation 4 of his paper depended on two arbitrary functions of the r coordinate yielding a double infinity of solutions We now know that these simply represent a variety of choices of both the time and radial coordinates Painleve wrote to Einstein to introduce his solution and invited Einstein to Paris for a debate In Einstein s reply letter December 7 9 he apologized for not being in a position to visit soon and explained why he was not pleased with Painleve s arguments emphasising that the coordinates themselves have no meaning Finally Einstein came to Paris in early April On the 5th of April 1922 in a debate at the College de France 10 11 with Painleve Becquerel Brillouin Cartan De Donder Hadamard Langevin and Nordmann on the infinite potentials Einstein baffled by the non quadratic cross term in the line element rejected the Painleve solution See also editIsotropic coordinates Eddington Finkelstein coordinates Kruskal Szekeres coordinates Lemaitre coordinatesReferences edit Paul Painleve La mecanique classique et la theorie de la relativite C R Acad Sci Paris 173 677 680 1921 Gullstrand Allvar 1922 Allgemeine Losung des statischen Einkorperproblems in der Einsteinschen Gravitationstheorie Arkiv for Matematik Astronomi och Fysik 16 8 1 15 G Lemaitre 1933 L Univers en expansion Annales de la Societe Scientifique de Bruxelles A53 51 85 Bibcode 1933ASSB 53 51L Matthew R Francis and Arthur Kosowsky 2004 Geodesics in the Generalized Schwarzschild Solution arXiv gr qc 0311038 Bertschinger Edmund Taylor Edwin F 2020 Chapter 6 Diving Exploring Black Holes Second Edition EBH2e PDF eftaylor com There is no published hard copy textbook of EBH2e Instead you may freely download the online version Tony Rothman Richard Matzner Bill Unruh 1985 Grand Illusions Further conversations on the edge of Spacetime In Tony Rothman ed Frontiers of Modern Physics Dover Publications New York pp 49 81 Hamilton Andrew J S Lisle Jason P June 2008 The river model of black holes American Journal of Physics 76 6 519 532 arXiv gr qc 0411060 Bibcode 2008AmJPh 76 519H doi 10 1119 1 2830526 S2CID 119467298 La gravitation dans la mecanique de Newton et dans la mecanique d Einstein C R Acad Sci Paris 173 873 886 1921 Diana Buchwald et al eds 2009 The Collected papers of Albert Einstein Princeton University Press pp 368 370 Jean Eisenstaedt 1987 The Early Interpretation of the Schwarzschild solution In Don Howqard John Stachel eds Einstein and the History of General Relativity Birkhauser Berlin pp 222 223 Jean Eisenstaedt 1982 Histoire et Singularites de la Solution de Schwarzschild 1915 1923 Archive for History of Exact Sciences 27 2 157 198 Bibcode 1982AHES 27 157E doi 10 1007 BF00348347 S2CID 116541975 Misner Thorne Wheeler 1973 Gravitation W H Freeman and Company ISBN 0 7167 0344 0 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link External links edit nbsp Wikibooks has a book on the topic of General relativity The River Model of Black Holes Dr Andrew J S Hamilton s video Inside Black Holes Black hole orbit simulation in GP coordinates Retrieved from https en wikipedia org w index php title Gullstrand Painleve coordinates amp oldid 1210495519, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.