fbpx
Wikipedia

Grüneisen parameter

In condensed matter, Grüneisen parameter γ is a dimensionless thermodynamic parameter named after German physicist Eduard Grüneisen, whose original definition was formulated in terms of the phonon nonlinearities.[1]

Because of the equivalences of many properties and derivatives within thermodynamics (e.g. see Maxwell relations), there are many formulations of the Grüneisen parameter which are equally valid, leading to numerous interpretations of its meaning. Some formulations for the Grüneisen parameter include:

where V is volume, and are the principal (i.e. per-mass) heat capacities at constant pressure and volume, E is energy, S is entropy, α is the volume thermal expansion coefficient, and are the adiabatic and isothermal bulk moduli, is the speed of sound in the medium, and ρ is density. The Grüneisen parameter is dimensionless.

Grüneisen constant for perfect crystals with pair interactions edit

The expression for the Grüneisen constant of a perfect crystal with pair interactions in  -dimensional space has the form:[2]

 
where   is the interatomic potential,   is the equilibrium distance,   is the space dimensionality. Relations between the Grüneisen constant and parameters of Lennard-Jones, Morse, and Mie[3] potentials are presented in the table below.
Lattice Dimensionality ( ) Lennard-Jones potential Mie Potential Morse potential
Chain        
Triangular lattice        
FCC, BCC        
"Hyperlattice"        
General formula      

The expression for the Grüneisen constant of a 1D chain with Mie potential exactly coincides with the results of MacDonald and Roy.[4] Using the relation between the Grüneisen parameter and interatomic potential one can derive the simple necessary and sufficient condition for Negative Thermal Expansion in perfect crystals with pair interactions   A proper description of the Grüneisen parameter represents a stringent test for any type of interatomic potential.

Microscopic definition via the phonon frequencies edit

The physical meaning of the parameter can also be extended by combining thermodynamics with a reasonable microphysics model for the vibrating atoms within a crystal. When the restoring force acting on an atom displaced from its equilibrium position is linear in the atom's displacement, the frequencies ωi of individual phonons do not depend on the volume of the crystal or on the presence of other phonons, and the thermal expansion (and thus γ) is zero. When the restoring force is non-linear in the displacement, the phonon frequencies ωi change with the volume  . The Grüneisen parameter of an individual vibrational mode   can then be defined as (the negative of) the logarithmic derivative of the corresponding frequency  :

 

Relationship between microscopic and thermodynamic models edit

Using the quasi-harmonic approximation for atomic vibrations, the macroscopic Grüneisen parameter (γ) can be related to the description of how the vibrational frequencies (phonons) within a crystal are altered with changing volume (i.e. γi's). For example, one can show that

 
if one defines   as the weighted average
 
where  's are the partial vibrational mode contributions to the heat capacity, such that  

Proof edit

To prove this relation, it is easiest to introduce the heat capacity per particle  ; so one can write

 

This way, it suffices to prove

 

Left-hand side (def):

 

Right-hand side (def):

 

Furthermore (Maxwell relations):

 

Thus

 

This derivative is straightforward to determine in the quasi-harmonic approximation, as only the ωi are V-dependent.

 
 

This yields

 

See also edit

External links edit

  • Definition from Eric Weisstein's World of Physics

References edit

  1. ^ Grüneisen, E. (1912), "Theorie des festen Zustandes einatomiger Elemente", Annalen der Physik, 344 (12): 257–306, Bibcode:1912AnP...344..257G, doi:10.1002/andp.19123441202
  2. ^ Krivtsov, A.M.; Kuzkin, V.A. (2011), "Derivation of Equations of State for Ideal Crystals of Simple Structure", Mechanics of Solids, 46 (3): 387–399, Bibcode:2011MeSol..46..387K, doi:10.3103/S002565441103006X, S2CID 51837957
  3. ^ "Mie potential page on SklogWiki - a wiki for statistical mechanics and thermodynamics". www.sklogwiki.org. Retrieved 2019-11-19.
  4. ^ MacDonald, D. K. C.; Roy, S.K. (1955), "Vibrational Anharmonicity and Lattice Thermal Properties. II", Phys. Rev., 97 (3): 673–676, Bibcode:1955PhRv...97..673M, doi:10.1103/PhysRev.97.673

grüneisen, parameter, condensed, matter, dimensionless, thermodynamic, parameter, named, after, german, physicist, eduard, grüneisen, whose, original, definition, formulated, terms, phonon, nonlinearities, because, equivalences, many, properties, derivatives, . In condensed matter Gruneisen parameter g is a dimensionless thermodynamic parameter named after German physicist Eduard Gruneisen whose original definition was formulated in terms of the phonon nonlinearities 1 Because of the equivalences of many properties and derivatives within thermodynamics e g see Maxwell relations there are many formulations of the Gruneisen parameter which are equally valid leading to numerous interpretations of its meaning Some formulations for the Gruneisen parameter include g V d P d E V a K T C V r a K S C P r a v s 2 C P ln T ln V S displaystyle gamma V left frac dP dE right V frac alpha K T C V rho frac alpha K S C P rho frac alpha v s 2 C P left frac partial ln T partial ln V right S where V is volume C P displaystyle C P and C V displaystyle C V are the principal i e per mass heat capacities at constant pressure and volume E is energy S is entropy a is the volume thermal expansion coefficient K S displaystyle K S and K T displaystyle K T are the adiabatic and isothermal bulk moduli v s displaystyle v s is the speed of sound in the medium and r is density The Gruneisen parameter is dimensionless Contents 1 Gruneisen constant for perfect crystals with pair interactions 2 Microscopic definition via the phonon frequencies 3 Relationship between microscopic and thermodynamic models 3 1 Proof 4 See also 5 External links 6 ReferencesGruneisen constant for perfect crystals with pair interactions editThe expression for the Gruneisen constant of a perfect crystal with pair interactions in d displaystyle d nbsp dimensional space has the form 2 G 0 1 2 d P a a 2 d 1 P a a P a P a a d 1 P a displaystyle Gamma 0 frac 1 2d frac Pi a a 2 d 1 left Pi a a Pi a right Pi a a d 1 Pi a nbsp where P displaystyle Pi nbsp is the interatomic potential a displaystyle a nbsp is the equilibrium distance d displaystyle d nbsp is the space dimensionality Relations between the Gruneisen constant and parameters of Lennard Jones Morse and Mie 3 potentials are presented in the table below Lattice Dimensionality d displaystyle d nbsp Lennard Jones potential Mie Potential Morse potentialChain 1 displaystyle 1 nbsp 10 1 2 displaystyle 10 frac 1 2 nbsp m n 3 2 displaystyle frac m n 3 2 nbsp 3 a a 2 displaystyle frac 3 alpha a 2 nbsp Triangular lattice 2 displaystyle 2 nbsp 5 displaystyle 5 nbsp m n 2 4 displaystyle frac m n 2 4 nbsp 3 a a 1 4 displaystyle frac 3 alpha a 1 4 nbsp FCC BCC 3 displaystyle 3 nbsp 19 6 displaystyle frac 19 6 nbsp n m 1 6 displaystyle frac n m 1 6 nbsp 3 a a 2 6 displaystyle frac 3 alpha a 2 6 nbsp Hyperlattice displaystyle infty nbsp 1 2 displaystyle frac 1 2 nbsp 1 2 displaystyle frac 1 2 nbsp 1 2 displaystyle frac 1 2 nbsp General formula displaystyle 11 d 1 2 displaystyle frac 11 d frac 1 2 nbsp m n 4 2 d 1 2 displaystyle frac m n 4 2d frac 1 2 nbsp 3 a a 1 2 d 1 2 displaystyle frac 3 alpha a 1 2d frac 1 2 nbsp The expression for the Gruneisen constant of a 1D chain with Mie potential exactly coincides with the results of MacDonald and Roy 4 Using the relation between the Gruneisen parameter and interatomic potential one can derive the simple necessary and sufficient condition for Negative Thermal Expansion in perfect crystals with pair interactions P a a gt d 1 P a displaystyle Pi a a gt d 1 Pi a nbsp A proper description of the Gruneisen parameter represents a stringent test for any type of interatomic potential Microscopic definition via the phonon frequencies editThe physical meaning of the parameter can also be extended by combining thermodynamics with a reasonable microphysics model for the vibrating atoms within a crystal When the restoring force acting on an atom displaced from its equilibrium position is linear in the atom s displacement the frequencies wi of individual phonons do not depend on the volume of the crystal or on the presence of other phonons and the thermal expansion and thus g is zero When the restoring force is non linear in the displacement the phonon frequencies wi change with the volume V displaystyle V nbsp The Gruneisen parameter of an individual vibrational mode i displaystyle i nbsp can then be defined as the negative of the logarithmic derivative of the corresponding frequency w i displaystyle omega i nbsp g i V w i w i V displaystyle gamma i frac V omega i frac partial omega i partial V nbsp Relationship between microscopic and thermodynamic models editUsing the quasi harmonic approximation for atomic vibrations the macroscopic Gruneisen parameter g can be related to the description of how the vibrational frequencies phonons within a crystal are altered with changing volume i e gi s For example one can show thatg a K T C V r displaystyle gamma frac alpha K T C V rho nbsp if one defines g displaystyle gamma nbsp as the weighted average g i g i c V i i c V i displaystyle gamma frac sum i gamma i c V i sum i c V i nbsp where c V i displaystyle c V i nbsp s are the partial vibrational mode contributions to the heat capacity such that C V 1 r V i c V i textstyle C V frac 1 rho V sum i c V i nbsp Proof edit To prove this relation it is easiest to introduce the heat capacity per particle C V i c V i textstyle tilde C V sum i c V i nbsp so one can write i g i c V i C V a K T C V r a V K T C V displaystyle frac sum i gamma i c V i tilde C V frac alpha K T C V rho frac alpha VK T tilde C V nbsp This way it suffices to prove i g i c V i a V K T displaystyle sum i gamma i c V i alpha VK T nbsp Left hand side def i g i c V i i V w i w i V k B ℏ w i k B T 2 exp ℏ w i k B T exp ℏ w i k B T 1 2 displaystyle sum i gamma i c V i sum i left frac V omega i frac partial omega i partial V right left k rm B left frac hbar omega i k rm B T right 2 frac exp left frac hbar omega i k rm B T right left exp left frac hbar omega i k rm B T right 1 right 2 right nbsp Right hand side def a V K T 1 V V T P V V P V T V V T P P V T displaystyle alpha VK T left frac 1 V left frac partial V partial T right P right V left V left frac partial P partial V right T right V left frac partial V partial T right P left frac partial P partial V right T nbsp Furthermore Maxwell relations V T P T G P T P G T P S P T displaystyle left frac partial V partial T right P frac partial partial T left frac partial G partial P right T frac partial partial P left frac partial G partial T right P left frac partial S partial P right T nbsp Thusa V K T V S P T P V T V S V T displaystyle alpha VK T V left frac partial S partial P right T left frac partial P partial V right T V left frac partial S partial V right T nbsp This derivative is straightforward to determine in the quasi harmonic approximation as only the wi are V dependent S V V i k B ln 1 exp ℏ w i V k B T i 1 T ℏ w i V exp ℏ w i V k B T 1 displaystyle frac partial S partial V frac partial partial V left sum i k rm B ln left 1 exp left frac hbar omega i V k rm B T right right sum i frac 1 T frac hbar omega i V exp left frac hbar omega i V k rm B T right 1 right nbsp V S V i V w i w i V k B ℏ w i k B T 2 exp ℏ w i k B T exp ℏ w i k B T 1 2 i g i c V i displaystyle V frac partial S partial V sum i frac V omega i frac partial omega i partial V k rm B left frac hbar omega i k rm B T right 2 frac exp left frac hbar omega i k rm B T right left exp left frac hbar omega i k rm B T right 1 right 2 sum i gamma i c V i nbsp This yieldsg i g i c V i i c V i a V K T C V displaystyle gamma dfrac sum i gamma i c V i sum i c V i dfrac alpha VK T tilde C V nbsp See also editDebye model Negative thermal expansion Mie Gruneisen equation of stateExternal links editDefinition from Eric Weisstein s World of PhysicsReferences edit Gruneisen E 1912 Theorie des festen Zustandes einatomiger Elemente Annalen der Physik 344 12 257 306 Bibcode 1912AnP 344 257G doi 10 1002 andp 19123441202 Krivtsov A M Kuzkin V A 2011 Derivation of Equations of State for Ideal Crystals of Simple Structure Mechanics of Solids 46 3 387 399 Bibcode 2011MeSol 46 387K doi 10 3103 S002565441103006X S2CID 51837957 Mie potential page on SklogWiki a wiki for statistical mechanics and thermodynamics www sklogwiki org Retrieved 2019 11 19 MacDonald D K C Roy S K 1955 Vibrational Anharmonicity and Lattice Thermal Properties II Phys Rev 97 3 673 676 Bibcode 1955PhRv 97 673M doi 10 1103 PhysRev 97 673 Retrieved from https en wikipedia org w index php title Gruneisen parameter amp oldid 1210854421, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.