fbpx
Wikipedia

George Chapline Jr.

George Frederick Chapline Jr. (born May 6, 1942) is an American theoretical physicist, based at the Lawrence Livermore National Laboratory. His most recent interests have mainly been in quantum information theory, condensed matter, and quantum gravity. In 2003 he received the Computing Anticipatory Systems award for a new interpretation of quantum mechanics based on the similarity of quantum mechanics and Helmholtz machines. He was awarded the E. O. Lawrence Award in 1982 by the United States Department of Energy[1] for leading the team that first demonstrated a working X-ray laser.

George Chapline Jr.
Chapline with Richard Feynman, 1963
Born (1942-05-06) May 6, 1942 (age 81)
NationalityAmerican
Alma materCaltech
UCLA
Known forQuantum mechanics
AwardsE. O. Lawrence Award, 1982
Scientific career
FieldsTheoretical Physics
InstitutionsLawrence Livermore National Laboratory

Work edit

In the field of condensed matter physics Chapline is best known as the originator of the concept of a gossamer metal; i.e. a metal where the density of states at the Fermi surface is depressed because of pairing correlations. Both the actinides and high Tc superconductors are examples of gossamer metals.[clarification needed][citation needed]

Chapline is known for his work with Nick S. Manton[2] on finding the classical equations which unify supergravity and Yang–Mills gauge theories. These equations play an important role in superstring theory. Chapline was also the first person to point out that the anomaly cancellation condition for superstrings in 10 dimensions could be satisfied by E8 x E8, and the first person to suggest that the 24-dimensional Leech lattice might play a central role in a theory unifying gravity and elementary particle physics.[3]

 
Chapline (right) and the world's first X-ray laser

Chapline is perhaps best known for his research on black holes, proposing that they "do not exist."[4] Drawing upon quantum mechanical insights of himself and Pawel Mazur from the early 2000s, he proposed that objects currently thought to be black holes are actually dark-energy stars.[5] Chapline and Mazur are also responsible for the only known exact result in quantum gravity; namely all rotating space-times can be constructed from an array of quantized spinning strings.[6]

This idea incorporates the 1980 proposal by Robert B. Laughlin and Chapline that the surface of a dark energy star actually represents a quantum critical transition of a superfluid vacuum. The Chapline–Laughlin theory predicts that space-times with a large vacuum energy are unstable to the formation of dark energy stars; in the context of the early universe, this provides a natural explanation for both dark matter and the metric fluctuations which led to the formation of galaxies.[7] A remarkable astrophysical prediction of the Chapline–Laughlin theory is that dark energy stars should be prolific sources of positrons because nucleons decay when they encounter the surface of a dark energy star,[8] which may explain the strong positron annihilation radiation observed coming from the central region of our galaxy.[9]

Chapline's interest in quantum gravity dates from the time when as a teenager he wrote Richard Feynman a letter about the problem of quantum propagation in a gravitational field. Because quantum mechanics is intrinsically non-local while the equivalence principle is local there is a tension between quantum mechanics and general relativity that has not yet been resolved. As a result of his letter Feynman invited the 15-year-old Chapline to have lunch at Caltech. Chapline and Feynman talked often about physics in the following years, particularly when he was a graduate student at Caltech (see photo). Feynman reportedly helped Chapline get his first job, as an assistant professor at UC Santa Cruz.[citation needed]

Chapline earned a B.A. in mathematics at UCLA in 1961. He was a member of the 1959 UCLA Putnam Competition team which scored 3rd in the nation. He earned a PhD in physics from Caltech in 1967.[10]

See also edit

References edit

  1. ^ . The Ernest Orlando Lawrence Award. 1982. Archived from the original on October 4, 2008. Retrieved July 3, 2008.
  2. ^ G. F. Chapline and N. S. Manton, "Unification of Yang-Mills theory and supergravity in ten dimensions", Phys. Lett. 1208:105 (1983) 105.
  3. ^ G. Chapline, "Unification of Gravity and Elementary Particle Interactions in 26 Dimensions", Phys. Lett. 158B (1985) 393.
  4. ^ Ball, Philip (2005). . Nature. doi:10.1038/news050328-8. Archived from the original on September 6, 2007. Retrieved July 3, 2008.
  5. ^ Chapline, G. (December 2004). "Dark Energy Stars". Proceedings of the Texas Conference on Relativistic Astrophysics: 101. arXiv:astro-ph/0503200. Bibcode:2005tsra.conf..101C.
  6. ^ Chapline, George; Mazur, Pawel O. (November 20, 2009). "Superfluidity and Stationary Space-Times". arXiv:0911.2326v2 [hep-th].
  7. ^ Zeeya, Merali (March 2006). "Three cosmic enigmas, one audacious answer". New Scientist (2542): 8.
  8. ^ Barbieri, J.; Chapline, G. (2004). "Have Nucleon decays been seen?". Physics Letters B. 590 (1–2): 12. Bibcode:2004PhLB..590....8B. doi:10.1016/j.physletb.2004.03.054.
  9. ^ "- YouTube". YouTube.
  10. ^ Chapline, George Frederick (1967). Bootstrap theory and certain properties of the hadron axial vector current (phd). California Institute of Technology. doi:10.7907/PXKT-FG78.

Sources edit

External links edit

  • Three cosmic enigmas, one audacious answer, a New Scientist item about Chapline's proposals
  • The Blackhole of Chapline, from the blog of Jacques Distler, a physicist who sometimes discusses fringe physics
  • Chapline: black holes don't exist, from the blog of Lubos Motl, another physicist who sometimes discusses fringe physics
  • , popular commentary about the fringe speculations of Laughlin and Chapline

george, chapline, george, frederick, chapline, born, 1942, american, theoretical, physicist, based, lawrence, livermore, national, laboratory, most, recent, interests, have, mainly, been, quantum, information, theory, condensed, matter, quantum, gravity, 2003,. George Frederick Chapline Jr born May 6 1942 is an American theoretical physicist based at the Lawrence Livermore National Laboratory His most recent interests have mainly been in quantum information theory condensed matter and quantum gravity In 2003 he received the Computing Anticipatory Systems award for a new interpretation of quantum mechanics based on the similarity of quantum mechanics and Helmholtz machines He was awarded the E O Lawrence Award in 1982 by the United States Department of Energy 1 for leading the team that first demonstrated a working X ray laser George Chapline Jr Chapline with Richard Feynman 1963Born 1942 05 06 May 6 1942 age 81 Teaneck New Jersey U S NationalityAmericanAlma materCaltech UCLAKnown forQuantum mechanicsAwardsE O Lawrence Award 1982Scientific careerFieldsTheoretical PhysicsInstitutionsLawrence Livermore National Laboratory Contents 1 Work 2 See also 3 References 4 Sources 5 External linksWork editIn the field of condensed matter physics Chapline is best known as the originator of the concept of a gossamer metal i e a metal where the density of states at the Fermi surface is depressed because of pairing correlations Both the actinides and high Tc superconductors are examples of gossamer metals clarification needed citation needed Chapline is known for his work with Nick S Manton 2 on finding the classical equations which unify supergravity and Yang Mills gauge theories These equations play an important role in superstring theory Chapline was also the first person to point out that the anomaly cancellation condition for superstrings in 10 dimensions could be satisfied by E8 x E8 and the first person to suggest that the 24 dimensional Leech lattice might play a central role in a theory unifying gravity and elementary particle physics 3 nbsp Chapline right and the world s first X ray laserChapline is perhaps best known for his research on black holes proposing that they do not exist 4 Drawing upon quantum mechanical insights of himself and Pawel Mazur from the early 2000s he proposed that objects currently thought to be black holes are actually dark energy stars 5 Chapline and Mazur are also responsible for the only known exact result in quantum gravity namely all rotating space times can be constructed from an array of quantized spinning strings 6 This idea incorporates the 1980 proposal by Robert B Laughlin and Chapline that the surface of a dark energy star actually represents a quantum critical transition of a superfluid vacuum The Chapline Laughlin theory predicts that space times with a large vacuum energy are unstable to the formation of dark energy stars in the context of the early universe this provides a natural explanation for both dark matter and the metric fluctuations which led to the formation of galaxies 7 A remarkable astrophysical prediction of the Chapline Laughlin theory is that dark energy stars should be prolific sources of positrons because nucleons decay when they encounter the surface of a dark energy star 8 which may explain the strong positron annihilation radiation observed coming from the central region of our galaxy 9 Chapline s interest in quantum gravity dates from the time when as a teenager he wrote Richard Feynman a letter about the problem of quantum propagation in a gravitational field Because quantum mechanics is intrinsically non local while the equivalence principle is local there is a tension between quantum mechanics and general relativity that has not yet been resolved As a result of his letter Feynman invited the 15 year old Chapline to have lunch at Caltech Chapline and Feynman talked often about physics in the following years particularly when he was a graduate student at Caltech see photo Feynman reportedly helped Chapline get his first job as an assistant professor at UC Santa Cruz citation needed Chapline earned a B A in mathematics at UCLA in 1961 He was a member of the 1959 UCLA Putnam Competition team which scored 3rd in the nation He earned a PhD in physics from Caltech in 1967 10 See also editRobert B Laughlin Dark energy Superconductor Fission fragment rocketReferences edit 1980s Laureates George F Chapline Jr 1982 The Ernest Orlando Lawrence Award 1982 Archived from the original on October 4 2008 Retrieved July 3 2008 G F Chapline and N S Manton Unification of Yang Mills theory and supergravity in ten dimensions Phys Lett 1208 105 1983 105 G Chapline Unification of Gravity and Elementary Particle Interactions in 26 Dimensions Phys Lett 158B 1985 393 Ball Philip 2005 Black holes do not exist Nature doi 10 1038 news050328 8 Archived from the original on September 6 2007 Retrieved July 3 2008 Chapline G December 2004 Dark Energy Stars Proceedings of the Texas Conference on Relativistic Astrophysics 101 arXiv astro ph 0503200 Bibcode 2005tsra conf 101C Chapline George Mazur Pawel O November 20 2009 Superfluidity and Stationary Space Times arXiv 0911 2326v2 hep th Zeeya Merali March 2006 Three cosmic enigmas one audacious answer New Scientist 2542 8 Barbieri J Chapline G 2004 Have Nucleon decays been seen Physics Letters B 590 1 2 12 Bibcode 2004PhLB 590 8B doi 10 1016 j physletb 2004 03 054 YouTube YouTube Chapline George Frederick 1967 Bootstrap theory and certain properties of the hadron axial vector current phd California Institute of Technology doi 10 7907 PXKT FG78 Sources editGeorge Frederick Chapline Jr Marquis Who s Who TM Marquis Who s Who 2009 Reproduced in Biography Resource Center Farmington Hills Michigan Gale 2009 Document Number K2016377061 fee required accessed 2009 10 22 via Fairfax County Public Library External links editThree cosmic enigmas one audacious answer a New Scientist item about Chapline s proposals The Blackhole of Chapline from the blog of Jacques Distler a physicist who sometimes discusses fringe physics Chapline black holes don t exist from the blog of Lubos Motl another physicist who sometimes discusses fringe physics What Lies Beneath popular commentary about the fringe speculations of Laughlin and Chapline Retrieved from https en wikipedia org w index php title George Chapline Jr amp oldid 1185072093, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.