fbpx
Wikipedia

Generalised logistic function

The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.

A=0, K=1, B=3, Q=ν=0.5, M=0, C=1
Effect of varying parameter A. All other parameters are 1.
Effect of varying parameter B. A = 0, all other parameters are 1.
Effect of varying parameter C. A = 0, all other parameters are 1.
Effect of varying parameter K. A = 0, all other parameters are 1.
Effect of varying parameter Q. A = 0, all other parameters are 1.
Effect of varying parameter . A = 0, all other parameters are 1.

Definition edit

Richards's curve has the following form:

 

where   = weight, height, size etc., and   = time. It has six parameters:

  •  : the left horizontal asymptote;
  •  : the right horizontal asymptote when  . If   and   then   is called the carrying capacity;
  •  : the growth rate;
  •   : affects near which asymptote maximum growth occurs.
  •  : is related to the value  
  •  : typically takes a value of 1. Otherwise, the upper asymptote is  

The equation can also be written:

 

where   can be thought of as a starting time, at which  . Including both   and   can be convenient:

 

this representation simplifies the setting of both a starting time and the value of   at that time.

The logistic function, with maximum growth rate at time  , is the case where  .

Generalised logistic differential equation edit

A particular case of the generalised logistic function is:

 

which is the solution of the Richards's differential equation (RDE):

 

with initial condition

 

where

 

provided that   and  

The classical logistic differential equation is a particular case of the above equation, with ν =1, whereas the Gompertz curve can be recovered in the limit   provided that:

 

In fact, for small ν it is

 

The RDE models many growth phenomena, arising in fields such as oncology and epidemiology.

Gradient of generalized logistic function edit

When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point   (see[1]). For the case where  ,

 


Special cases edit

The following functions are specific cases of Richards's curves:

Footnotes edit

  1. ^ Fekedulegn, Desta; Mairitin P. Mac Siurtain; Jim J. Colbert (1999). (PDF). Silva Fennica. 33 (4): 327–336. doi:10.14214/sf.653. Archived from the original (PDF) on 2011-09-29. Retrieved 2011-05-31.

References edit

  • Richards, F. J. (1959). "A Flexible Growth Function for Empirical Use". Journal of Experimental Botany. 10 (2): 290–300. doi:10.1093/jxb/10.2.290.
  • Pella, J. S.; Tomlinson, P. K. (1969). "A Generalised Stock-Production Model". Bull. Inter-Am. Trop. Tuna Comm. 13: 421–496.
  • Lei, Y. C.; Zhang, S. Y. (2004). "Features and Partial Derivatives of Bertalanffy–Richards Growth Model in Forestry". Nonlinear Analysis: Modelling and Control. 9 (1): 65–73. doi:10.15388/NA.2004.9.1.15171.

generalised, logistic, function, generalized, logistic, function, curve, extension, logistic, sigmoid, functions, originally, developed, growth, modelling, allows, more, flexible, shaped, curves, function, sometimes, named, richards, curve, after, richards, pr. The generalized logistic function or curve is an extension of the logistic or sigmoid functions Originally developed for growth modelling it allows for more flexible S shaped curves The function is sometimes named Richards s curve after F J Richards who proposed the general form for the family of models in 1959 A 0 K 1 B 3 Q n 0 5 M 0 C 1Effect of varying parameter A All other parameters are 1 Effect of varying parameter B A 0 all other parameters are 1 Effect of varying parameter C A 0 all other parameters are 1 Effect of varying parameter K A 0 all other parameters are 1 Effect of varying parameter Q A 0 all other parameters are 1 Effect of varying parameter n displaystyle nu A 0 all other parameters are 1 Contents 1 Definition 2 Generalised logistic differential equation 3 Gradient of generalized logistic function 4 Special cases 5 Footnotes 6 ReferencesDefinition editRichards s curve has the following form Y t A K A C Q e B t 1 n displaystyle Y t A K A over C Qe Bt 1 nu nbsp where Y displaystyle Y nbsp weight height size etc and t displaystyle t nbsp time It has six parameters A displaystyle A nbsp the left horizontal asymptote K displaystyle K nbsp the right horizontal asymptote when C 1 displaystyle C 1 nbsp If A 0 displaystyle A 0 nbsp and C 1 displaystyle C 1 nbsp then K displaystyle K nbsp is called the carrying capacity B displaystyle B nbsp the growth rate n gt 0 displaystyle nu gt 0 nbsp affects near which asymptote maximum growth occurs Q displaystyle Q nbsp is related to the value Y 0 displaystyle Y 0 nbsp C displaystyle C nbsp typically takes a value of 1 Otherwise the upper asymptote is A K A C 1 n displaystyle A K A over C 1 nu nbsp The equation can also be written Y t A K A C e B t M 1 n displaystyle Y t A K A over C e B t M 1 nu nbsp where M displaystyle M nbsp can be thought of as a starting time at which Y M A K A C 1 1 n displaystyle Y M A K A over C 1 1 nu nbsp Including both Q displaystyle Q nbsp and M displaystyle M nbsp can be convenient Y t A K A C Q e B t M 1 n displaystyle Y t A K A over C Qe B t M 1 nu nbsp this representation simplifies the setting of both a starting time and the value of Y displaystyle Y nbsp at that time The logistic function with maximum growth rate at time M displaystyle M nbsp is the case where Q n 1 displaystyle Q nu 1 nbsp Generalised logistic differential equation editA particular case of the generalised logistic function is Y t K 1 Q e a n t t 0 1 n displaystyle Y t K over 1 Qe alpha nu t t 0 1 nu nbsp which is the solution of the Richards s differential equation RDE Y t a 1 Y K n Y displaystyle Y prime t alpha left 1 left frac Y K right nu right Y nbsp with initial condition Y t 0 Y 0 displaystyle Y t 0 Y 0 nbsp where Q 1 K Y 0 n displaystyle Q 1 left frac K Y 0 right nu nbsp provided that v gt 0 displaystyle v gt 0 nbsp and a gt 0 displaystyle alpha gt 0 nbsp The classical logistic differential equation is a particular case of the above equation with n 1 whereas the Gompertz curve can be recovered in the limit n 0 displaystyle nu rightarrow 0 nbsp provided that a O 1 n displaystyle alpha O left frac 1 nu right nbsp In fact for small n it is Y t Y r 1 exp n ln Y K n r Y ln Y K displaystyle Y prime t Yr frac 1 exp left nu ln left frac Y K right right nu approx rY ln left frac Y K right nbsp The RDE models many growth phenomena arising in fields such as oncology and epidemiology Gradient of generalized logistic function editWhen estimating parameters from data it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point t displaystyle t nbsp see 1 For the case where C 1 displaystyle C 1 nbsp Y A 1 1 Q e B t M 1 n Y K 1 Q e B t M 1 n Y B K A t M Q e B t M n 1 Q e B t M 1 n 1 Y n K A ln 1 Q e B t M n 2 1 Q e B t M 1 n Y Q K A e B t M n 1 Q e B t M 1 n 1 Y M K A Q B e B t M n 1 Q e B t M 1 n 1 displaystyle begin aligned frac partial Y partial A amp 1 1 Qe B t M 1 nu frac partial Y partial K amp 1 Qe B t M 1 nu frac partial Y partial B amp frac K A t M Qe B t M nu 1 Qe B t M frac 1 nu 1 frac partial Y partial nu amp frac K A ln 1 Qe B t M nu 2 1 Qe B t M frac 1 nu frac partial Y partial Q amp frac K A e B t M nu 1 Qe B t M frac 1 nu 1 frac partial Y partial M amp frac K A QBe B t M nu 1 Qe B t M frac 1 nu 1 end aligned nbsp Special cases editThe following functions are specific cases of Richards s curves Logistic function Gompertz curve Von Bertalanffy function Monomolecular curveFootnotes edit Fekedulegn Desta Mairitin P Mac Siurtain Jim J Colbert 1999 Parameter Estimation of Nonlinear Growth Models in Forestry PDF Silva Fennica 33 4 327 336 doi 10 14214 sf 653 Archived from the original PDF on 2011 09 29 Retrieved 2011 05 31 References editRichards F J 1959 A Flexible Growth Function for Empirical Use Journal of Experimental Botany 10 2 290 300 doi 10 1093 jxb 10 2 290 Pella J S Tomlinson P K 1969 A Generalised Stock Production Model Bull Inter Am Trop Tuna Comm 13 421 496 Lei Y C Zhang S Y 2004 Features and Partial Derivatives of Bertalanffy Richards Growth Model in Forestry Nonlinear Analysis Modelling and Control 9 1 65 73 doi 10 15388 NA 2004 9 1 15171 Retrieved from https en wikipedia org w index php title Generalised logistic function amp oldid 1187104915, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.