fbpx
Wikipedia

Fulde–Ferrell–Larkin–Ovchinnikov phase

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase (also occasionally called the Larkin–Ovchinnikov–Fulde–Ferrell phase, or LOFF)[1] can arise in a superconductor in large magnetic field. Among its characteristics are Cooper pairs with nonzero total momentum and a spatially non-uniform order parameter, leading to normal conducting areas in the superconductor.

History edit

Two independent publications in 1964, one by Peter Fulde and Richard A. Ferrell[2] and the other by Anatoly Larkin and Yuri Ovchinnikov,[3][4] theoretically predicted a new state appearing in a certain regime of superconductors at low temperatures and in high magnetic fields. This particular superconducting state is nowadays known as the Fulde–Ferrell–Larkin–Ovchinnikov state, abbreviated FFLO state (also LOFF state). Since then, experimental observations of the FFLO state have been searched for in different classes of superconducting materials, first in thin films and later in exotic superconductors such as heavy-fermion[5] and organic[6] superconductors. Good evidence for the existence of the FFLO state was found in organic superconductors using Nuclear Magnetic Resonance (NMR) [7][8][9] and heat capacity.[10][11][12] In recent years, the concept of the FFLO state was taken up in the field of atomic physics and experiments to detect the FFLO state in atomic ensembles in optical lattices.[13][14] Moreover, there are indicators of the FFLO phase existence in two-component Fermi gases confined in a harmonic potential. These signatures are suppressed neither by phase separation nor by vortex lattice formation.[15]

Theory edit

If a BCS superconductor with a ground state consisting of Cooper pair singlets (and center-of-mass momentum q=0) is subjected to an applied magnetic field, then the spin structure is not affected until the Zeeman energy is strong enough to flip one spin of the singlet and break the Cooper pair, thus destroying superconductivity (paramagnetic or Pauli pair breaking). If instead one considers the normal, metallic state at the same finite magnetic field, then the Zeeman energy leads to different Fermi surfaces for spin-up and spin-down electrons, which can lead to superconducting pairing where Cooper pair singlets are formed with a finite center-of-mass momentum q, corresponding to the displacement of the two Fermi surfaces. A non-vanishing pairing momentum leads to a spatially modulated order parameter with wave vector q.[6]

Experiment edit

For the FFLO phase to appear, it is required that Pauli paramagnetic pair-breaking is the relevant mechanism to suppress superconductivity (Pauli limiting field, also Chandrasekhar-Clogston limit). In particular, orbital pair breaking (when the vortices induced by the magnetic field overlap in space) has to be weaker, which is not the case for most conventional superconductors. Certain unusual superconductors, on the other hand, may favor Pauli pair breaking: materials with large effective electron mass or layered materials (with quasi-two-dimensional electrical conduction).[5]

Heavy-fermion superconductors edit

Heavy-fermion superconductivity is caused by electrons with a drastically enhanced effective mass (the heavy fermions, also heavy quasiparticles), which suppresses orbital pair breaking. Furthermore, certain heavy-fermion superconductors, such as CeCoIn5, have a layered crystal structure, with somewhat two-dimensional electronic transport properties.[5] Indeed, in CeCoIn5 there is thermodynamic evidence for the existence of an unconventional low temperature phase within the superconducting state.[16][17] Subsequently, the neutron-diffraction experiments showed that this phase exhibits also incommensurate anti-ferromagnetic order[18] and that the superconducting and magnetic ordering phenomena are coupled with each other.[19]

Organic superconductors edit

Most organic superconductors are strongly anisotropic, in particular there are charge-transfer salts based on the molecule BEDT-TTF (or ET, "bisethylendithiotetrathiofulvalene") or BEDT-TSF (or BETS, "bisethylendithiotetraselenafulvalene") that are highly two dimensional. In one plane, the electric conductivity is high compared to a direction perpendicular to the plane. When applying large magnetic fields exactly parallel to the conducting planes, penetration depth[20][21][22] demonstrates and specific heat confirms[23][citation needed] the existence of the FFLO state. This finding was corroborated by NMR data that proved the existence of an inhomogeneous superconducting state, most probable the FFLO state.[24]

References edit

  1. ^ Casalbuoni, Roberto; Nardulli, Giuseppe (26 February 2004). "Inhomogeneous superconductivity in condensed matter and QCD". Rev. Mod. Phys. 76 (1): 263–320. arXiv:hep-ph/0305069. Bibcode:2004RvMP...76..263C. doi:10.1103/RevModPhys.76.263. S2CID 119472323.
  2. ^ Fulde, Peter; Ferrell, Richard A. (1964). "Superconductivity in a Strong Spin-Exchange Field". Phys. Rev. 135 (3A): A550–A563. Bibcode:1964PhRv..135..550F. doi:10.1103/PhysRev.135.A550. OSTI 5017462.
  3. ^ Larkin, A.I.; Ovchinnikov, Yu.N. (1964). Zh. Eksp. Teor. Fiz. 47: 1136. {{cite journal}}: Missing or empty |title= (help)
  4. ^ Larkin, A.I.; Ovchinnikov, Yu.N. (1965). "Inhomogeneous State of Superconductors". Sov. Phys. JETP. 20: 762.
  5. ^ a b c Matsuda, Yuji; Shimahara, Hiroshi (2007). "Fulde-Ferrell-Larkin-Ovchinnikov State in Heavy Fermion Superconductors". J. Phys. Soc. Jpn. 76 (5): 051005. arXiv:cond-mat/0702481. Bibcode:2007JPSJ...76e1005M. doi:10.1143/JPSJ.76.051005. S2CID 119429977.
  6. ^ a b H. Shimahara: Theory of the Fulde-Ferrell-Larkin-Ovchinnikov State and Application to Quasi-Low-Dimensional Organic Superconductors, in: A.G. Lebed (ed.): The Physics of Organic Superconductors and Conductors, Springer, Berlin (2008).
  7. ^ Wright, J. A.; Green, E.; Kuhns, P.; Reyes, A.; Brooks, J.; Schlueter, J.; Kato, R.; Yamamoto, H.; Kobayashi, M.; Brown, S. E. (2011-08-16). "Zeeman-Driven Phase Transition within the Superconducting State of  ". Physical Review Letters. 107 (8): 087002. Bibcode:2011PhRvL.107h7002W. doi:10.1103/PhysRevLett.107.087002. PMID 21929196.
  8. ^ Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Miyagawa, K.; Kanoda, K.; Mitrović, V. F. (2014-10-26). "Evidence of Andreev bound states as a hallmark of the FFLO phase in  ". Nature Physics. 10 (12): 928–932. arXiv:1409.0786. Bibcode:2014NatPh..10..928M. doi:10.1038/nphys3121. S2CID 118641407.
  9. ^ Koutroulakis, G.; Kühne, H.; Schlueter, J. A.; Wosnitza, J.; Brown, S. E. (2016-02-12). "Microscopic Study of the Fulde-Ferrell-Larkin-Ovchinnikov State in an All-Organic Superconductor". Physical Review Letters. 116 (6): 067003. arXiv:1511.03758. Bibcode:2016PhRvL.116f7003K. doi:10.1103/PhysRevLett.116.067003. PMID 26919012. S2CID 24383751.
  10. ^ Lortz, R.; Wang, Y.; Demuer, A.; Böttger, P. H. M.; Bergk, B.; Zwicknagl, G.; Nakazawa, Y.; Wosnitza, J. (2007-10-30). "Calorimetric Evidence for a Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in the Layered Organic Superconductor  ". Physical Review Letters. 99 (18): 187002. arXiv:0706.3584. Bibcode:2007PhRvL..99r7002L. doi:10.1103/PhysRevLett.99.187002. PMID 17995428. S2CID 18387354.
  11. ^ Beyer, R.; Bergk, B.; Yasin, S.; Schlueter, J. A.; Wosnitza, J. (2012-07-11). "Angle-Dependent Evolution of the Fulde-Ferrell-Larkin-Ovchinnikov State in an Organic Superconductor". Physical Review Letters. 109 (2): 027003. Bibcode:2012PhRvL.109b7003B. doi:10.1103/PhysRevLett.109.027003. PMID 23030197.
  12. ^ Agosta, C. C.; Fortune, N. A.; Hannash, S. T.; Gu, S.; Liang, L.; Park, J.-H.; Schlueter, J. A. (2017-06-28). "Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit". Physical Review Letters. 118 (26): 267001. arXiv:1602.06496. Bibcode:2017PhRvL.118z7001A. doi:10.1103/PhysRevLett.118.267001. PMID 28707943. S2CID 23554914.
  13. ^ Zwierlein, Martin W.; Schirotzek, André; Schunck, Christian H.; Ketterle, Wolfgang (2006). "Fermionic Superfluidity with Imbalanced Spin Populations". Science. 311 (5760): 492–496. arXiv:cond-mat/0511197. Bibcode:2006Sci...311..492Z. doi:10.1126/science.1122318. PMID 16373535. S2CID 13801977.
  14. ^ Liao, Y. A.; Rittner, A. S. C.; Paprotta, T.; Li, W.; Partridge, G. B.; Hulet, R. G.; Baur, S. K.; Mueller, E. J. (2010). "Spin-imbalance in a one-dimensional Fermi gas". Nature. 467 (7315): 567–9. arXiv:0912.0092. Bibcode:2010Natur.467..567L. doi:10.1038/nature09393. PMID 20882011. S2CID 4397457.
  15. ^ Kopyciński, Jakub; Pudelko, Wojciech R.; Wlazłowski, Gabriel (2021-11-23). "Vortex lattice in spin-imbalanced unitary Fermi gas". Physical Review A. 104 (5): 053322. arXiv:2109.00427. Bibcode:2021PhRvA.104e3322K. doi:10.1103/PhysRevA.104.053322. S2CID 237372963.
  16. ^ Radovan, H. A.; Fortune, N.A.; Murphy, T.P.; Hannahs, S.T.; Palm, E.C.; Tozer, S.W.; Hall, D. (2003). "Magnetic enhancement of superconductivity from electron spin domains". Nature. 425 (6953): 51–55. Bibcode:2003Natur.425...51R. doi:10.1038/nature01842. PMID 12955136. S2CID 4422876.
  17. ^ Bianchi, A.; Movshovich, R.; Capan, C.; Pagliuso, P.G.; Sarrao, J.L. (2003). "Possible Fulde-Ferrell-Larkin-Ovchinnikov State in CeCoIn5". Phys. Rev. Lett. 91 (18): 187004. arXiv:cond-mat/0304420. Bibcode:2003PhRvL..91r7004B. doi:10.1103/PhysRevLett.91.187004. PMID 14611309. S2CID 25005211.
  18. ^ Kenzelmann, M.; Strässle, Th; Niedermayer, C.; Sigrist, M.; Padmanabhan, B.; Zolliker, M.; Bianchi, A. D.; Movshovich, R.; Bauer, E. D. (2008-09-19). "Coupled Superconducting and Magnetic Order in CeCoIn5". Science. 321 (5896): 1652–1654. Bibcode:2008Sci...321.1652K. doi:10.1126/science.1161818. ISSN 0036-8075. OSTI 960586. PMID 18719250. S2CID 40014478.
  19. ^ Kumagai, K.; Shishido, H.; Shibauchi, T.; Matsuda, Y. (2011-03-30). "Evolution of Paramagnetic Quasiparticle Excitations Emerged in the High-Field Superconducting Phase of  ". Physical Review Letters. 106 (13): 137004. arXiv:1103.1440. Bibcode:2011PhRvL.106m7004K. doi:10.1103/PhysRevLett.106.137004. PMID 21517416. S2CID 13870107.
  20. ^ Cho, K.; Smith, B.E.; Coniglio, W.A.; Winter, L.E.; Agosta, C.C.; Schlueter, J. (2009). "Upper critical field in the organic superconductor β"−(ET)2SF5CH2CF2SO3 : Possibility of Fulde-Ferrell-Larkin-Ovchinnikov state". Physical Review B. 79 (22): 220507. arXiv:0811.3647. doi:10.1103/PhysRevB.79.220507. S2CID 119192749.
  21. ^ Coniglio, W.A.; Winter, L.E.; Cho, K.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. (2011). "Superconducting Phase Diagram and FFLO Signature in Λ-(BETS)2gacl4 from Rf Penetration Depth Measurements". Physical Review B. 83 (22): 224507. arXiv:1003.6088. Bibcode:2011PhRvB..83v4507C. doi:10.1103/PhysRevB.83.224507.
  22. ^ Agosta, C.C.; Jin, J.; Coniglio, W.A.; Smith, B.E.; Cho, K.; Stroe, I.; Martin, C.; Tozer, S.W.; Murphy, T.P.; Palm, E.C.; Schlueter, J.A.; Kurmoo, M. (2012). "Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state". Physical Review B. 85 (21): 214514. arXiv:1111.5025. Bibcode:2012PhRvB..85u4514A. doi:10.1103/PhysRevB.85.214514.
  23. ^ Agosta, C.C.; Fortune, N.A.; Hannahs, S.T.; Gu, Shuyao; Liang, Lucy; Park, J.-H.; Schlueter, J.A. (2017). "Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state". Physical Review Letters. 118 (26): 267001. doi:10.1103/PhysRevLett.118.267001. PMID 28707943.
  24. ^ Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Miyagawa, K.; Kanoda, K.; Mitrović, V. (2014). "Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2". Nature Physics. 10 (12): 928–932. arXiv:1409.0786. Bibcode:2014NatPh..10..928M. doi:10.1038/nphys3121.

fulde, ferrell, larkin, ovchinnikov, phase, fulde, ferrell, larkin, ovchinnikov, fflo, phase, also, occasionally, called, larkin, ovchinnikov, fulde, ferrell, phase, loff, arise, superconductor, large, magnetic, field, among, characteristics, cooper, pairs, wi. The Fulde Ferrell Larkin Ovchinnikov FFLO phase also occasionally called the Larkin Ovchinnikov Fulde Ferrell phase or LOFF 1 can arise in a superconductor in large magnetic field Among its characteristics are Cooper pairs with nonzero total momentum and a spatially non uniform order parameter leading to normal conducting areas in the superconductor Contents 1 History 2 Theory 3 Experiment 3 1 Heavy fermion superconductors 3 2 Organic superconductors 4 ReferencesHistory editTwo independent publications in 1964 one by Peter Fulde and Richard A Ferrell 2 and the other by Anatoly Larkin and Yuri Ovchinnikov 3 4 theoretically predicted a new state appearing in a certain regime of superconductors at low temperatures and in high magnetic fields This particular superconducting state is nowadays known as the Fulde Ferrell Larkin Ovchinnikov state abbreviated FFLO state also LOFF state Since then experimental observations of the FFLO state have been searched for in different classes of superconducting materials first in thin films and later in exotic superconductors such as heavy fermion 5 and organic 6 superconductors Good evidence for the existence of the FFLO state was found in organic superconductors using Nuclear Magnetic Resonance NMR 7 8 9 and heat capacity 10 11 12 In recent years the concept of the FFLO state was taken up in the field of atomic physics and experiments to detect the FFLO state in atomic ensembles in optical lattices 13 14 Moreover there are indicators of the FFLO phase existence in two component Fermi gases confined in a harmonic potential These signatures are suppressed neither by phase separation nor by vortex lattice formation 15 Theory editIf a BCS superconductor with a ground state consisting of Cooper pair singlets and center of mass momentum q 0 is subjected to an applied magnetic field then the spin structure is not affected until the Zeeman energy is strong enough to flip one spin of the singlet and break the Cooper pair thus destroying superconductivity paramagnetic or Pauli pair breaking If instead one considers the normal metallic state at the same finite magnetic field then the Zeeman energy leads to different Fermi surfaces for spin up and spin down electrons which can lead to superconducting pairing where Cooper pair singlets are formed with a finite center of mass momentum q corresponding to the displacement of the two Fermi surfaces A non vanishing pairing momentum leads to a spatially modulated order parameter with wave vector q 6 Experiment editFor the FFLO phase to appear it is required that Pauli paramagnetic pair breaking is the relevant mechanism to suppress superconductivity Pauli limiting field also Chandrasekhar Clogston limit In particular orbital pair breaking when the vortices induced by the magnetic field overlap in space has to be weaker which is not the case for most conventional superconductors Certain unusual superconductors on the other hand may favor Pauli pair breaking materials with large effective electron mass or layered materials with quasi two dimensional electrical conduction 5 Heavy fermion superconductors edit Heavy fermion superconductivity is caused by electrons with a drastically enhanced effective mass the heavy fermions also heavy quasiparticles which suppresses orbital pair breaking Furthermore certain heavy fermion superconductors such as CeCoIn5 have a layered crystal structure with somewhat two dimensional electronic transport properties 5 Indeed in CeCoIn5 there is thermodynamic evidence for the existence of an unconventional low temperature phase within the superconducting state 16 17 Subsequently the neutron diffraction experiments showed that this phase exhibits also incommensurate anti ferromagnetic order 18 and that the superconducting and magnetic ordering phenomena are coupled with each other 19 Organic superconductors edit Most organic superconductors are strongly anisotropic in particular there are charge transfer salts based on the molecule BEDT TTF or ET bisethylendithiotetrathiofulvalene or BEDT TSF or BETS bisethylendithiotetraselenafulvalene that are highly two dimensional In one plane the electric conductivity is high compared to a direction perpendicular to the plane When applying large magnetic fields exactly parallel to the conducting planes penetration depth 20 21 22 demonstrates and specific heat confirms 23 citation needed the existence of the FFLO state This finding was corroborated by NMR data that proved the existence of an inhomogeneous superconducting state most probable the FFLO state 24 References edit Casalbuoni Roberto Nardulli Giuseppe 26 February 2004 Inhomogeneous superconductivity in condensed matter and QCD Rev Mod Phys 76 1 263 320 arXiv hep ph 0305069 Bibcode 2004RvMP 76 263C doi 10 1103 RevModPhys 76 263 S2CID 119472323 Fulde Peter Ferrell Richard A 1964 Superconductivity in a Strong Spin Exchange Field Phys Rev 135 3A A550 A563 Bibcode 1964PhRv 135 550F doi 10 1103 PhysRev 135 A550 OSTI 5017462 Larkin A I Ovchinnikov Yu N 1964 Zh Eksp Teor Fiz 47 1136 a href Template Cite journal html title Template Cite journal cite journal a Missing or empty title help Larkin A I Ovchinnikov Yu N 1965 Inhomogeneous State of Superconductors Sov Phys JETP 20 762 a b c Matsuda Yuji Shimahara Hiroshi 2007 Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors J Phys Soc Jpn 76 5 051005 arXiv cond mat 0702481 Bibcode 2007JPSJ 76e1005M doi 10 1143 JPSJ 76 051005 S2CID 119429977 a b H Shimahara Theory of the Fulde Ferrell Larkin Ovchinnikov State and Application to Quasi Low Dimensional Organic Superconductors in A G Lebed ed The Physics of Organic Superconductors and Conductors Springer Berlin 2008 Wright J A Green E Kuhns P Reyes A Brooks J Schlueter J Kato R Yamamoto H Kobayashi M Brown S E 2011 08 16 Zeeman Driven Phase Transition within the Superconducting State of k BEDT TTF 2 Cu NCS 2 displaystyle kappa text left text BEDT text text TTF right 2 text Cu left text NCS right 2 nbsp Physical Review Letters 107 8 087002 Bibcode 2011PhRvL 107h7002W doi 10 1103 PhysRevLett 107 087002 PMID 21929196 Mayaffre H Kramer S Horvatic M Berthier C Miyagawa K Kanoda K Mitrovic V F 2014 10 26 Evidence of Andreev bound states as a hallmark of the FFLO phase in k BEDT TTF 2 Cu NCS 2 displaystyle kappa text left text BEDT text text TTF right 2 text Cu left text NCS right 2 nbsp Nature Physics 10 12 928 932 arXiv 1409 0786 Bibcode 2014NatPh 10 928M doi 10 1038 nphys3121 S2CID 118641407 Koutroulakis G Kuhne H Schlueter J A Wosnitza J Brown S E 2016 02 12 Microscopic Study of the Fulde Ferrell Larkin Ovchinnikov State in an All Organic Superconductor Physical Review Letters 116 6 067003 arXiv 1511 03758 Bibcode 2016PhRvL 116f7003K doi 10 1103 PhysRevLett 116 067003 PMID 26919012 S2CID 24383751 Lortz R Wang Y Demuer A Bottger P H M Bergk B Zwicknagl G Nakazawa Y Wosnitza J 2007 10 30 Calorimetric Evidence for a Fulde Ferrell Larkin Ovchinnikov Superconducting State in the Layered Organic Superconductor k BEDT TTF 2 Cu NCS 2 displaystyle kappa text left text BEDT text text TTF right 2 text Cu left text NCS right 2 nbsp Physical Review Letters 99 18 187002 arXiv 0706 3584 Bibcode 2007PhRvL 99r7002L doi 10 1103 PhysRevLett 99 187002 PMID 17995428 S2CID 18387354 Beyer R Bergk B Yasin S Schlueter J A Wosnitza J 2012 07 11 Angle Dependent Evolution of the Fulde Ferrell Larkin Ovchinnikov State in an Organic Superconductor Physical Review Letters 109 2 027003 Bibcode 2012PhRvL 109b7003B doi 10 1103 PhysRevLett 109 027003 PMID 23030197 Agosta C C Fortune N A Hannash S T Gu S Liang L Park J H Schlueter J A 2017 06 28 Calorimetric Measurements of Magnetic Field Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit Physical Review Letters 118 26 267001 arXiv 1602 06496 Bibcode 2017PhRvL 118z7001A doi 10 1103 PhysRevLett 118 267001 PMID 28707943 S2CID 23554914 Zwierlein Martin W Schirotzek Andre Schunck Christian H Ketterle Wolfgang 2006 Fermionic Superfluidity with Imbalanced Spin Populations Science 311 5760 492 496 arXiv cond mat 0511197 Bibcode 2006Sci 311 492Z doi 10 1126 science 1122318 PMID 16373535 S2CID 13801977 Liao Y A Rittner A S C Paprotta T Li W Partridge G B Hulet R G Baur S K Mueller E J 2010 Spin imbalance in a one dimensional Fermi gas Nature 467 7315 567 9 arXiv 0912 0092 Bibcode 2010Natur 467 567L doi 10 1038 nature09393 PMID 20882011 S2CID 4397457 Kopycinski Jakub Pudelko Wojciech R Wlazlowski Gabriel 2021 11 23 Vortex lattice in spin imbalanced unitary Fermi gas Physical Review A 104 5 053322 arXiv 2109 00427 Bibcode 2021PhRvA 104e3322K doi 10 1103 PhysRevA 104 053322 S2CID 237372963 Radovan H A Fortune N A Murphy T P Hannahs S T Palm E C Tozer S W Hall D 2003 Magnetic enhancement of superconductivity from electron spin domains Nature 425 6953 51 55 Bibcode 2003Natur 425 51R doi 10 1038 nature01842 PMID 12955136 S2CID 4422876 Bianchi A Movshovich R Capan C Pagliuso P G Sarrao J L 2003 Possible Fulde Ferrell Larkin Ovchinnikov State in CeCoIn5 Phys Rev Lett 91 18 187004 arXiv cond mat 0304420 Bibcode 2003PhRvL 91r7004B doi 10 1103 PhysRevLett 91 187004 PMID 14611309 S2CID 25005211 Kenzelmann M Strassle Th Niedermayer C Sigrist M Padmanabhan B Zolliker M Bianchi A D Movshovich R Bauer E D 2008 09 19 Coupled Superconducting and Magnetic Order in CeCoIn5 Science 321 5896 1652 1654 Bibcode 2008Sci 321 1652K doi 10 1126 science 1161818 ISSN 0036 8075 OSTI 960586 PMID 18719250 S2CID 40014478 Kumagai K Shishido H Shibauchi T Matsuda Y 2011 03 30 Evolution of Paramagnetic Quasiparticle Excitations Emerged in the High Field Superconducting Phase of CeCoIn 5 displaystyle text CeCoIn 5 nbsp Physical Review Letters 106 13 137004 arXiv 1103 1440 Bibcode 2011PhRvL 106m7004K doi 10 1103 PhysRevLett 106 137004 PMID 21517416 S2CID 13870107 Cho K Smith B E Coniglio W A Winter L E Agosta C C Schlueter J 2009 Upper critical field in the organic superconductor b ET 2SF5CH2CF2SO3 Possibility of Fulde Ferrell Larkin Ovchinnikov state Physical Review B 79 22 220507 arXiv 0811 3647 doi 10 1103 PhysRevB 79 220507 S2CID 119192749 Coniglio W A Winter L E Cho K Agosta C C Fravel B Montgomery L K 2011 Superconducting Phase Diagram and FFLO Signature in L BETS 2gacl4 from Rf Penetration Depth Measurements Physical Review B 83 22 224507 arXiv 1003 6088 Bibcode 2011PhRvB 83v4507C doi 10 1103 PhysRevB 83 224507 Agosta C C Jin J Coniglio W A Smith B E Cho K Stroe I Martin C Tozer S W Murphy T P Palm E C Schlueter J A Kurmoo M 2012 Experimental and semiempirical method to determine the Pauli limiting field in quasi two dimensional superconductors as applied to k BEDT TTF 2Cu NCS 2 Strong evidence of a FFLO state Physical Review B 85 21 214514 arXiv 1111 5025 Bibcode 2012PhRvB 85u4514A doi 10 1103 PhysRevB 85 214514 Agosta C C Fortune N A Hannahs S T Gu Shuyao Liang Lucy Park J H Schlueter J A 2017 Experimental and semiempirical method to determine the Pauli limiting field in quasi two dimensional superconductors as applied to k BEDT TTF 2Cu NCS 2 Strong evidence of a FFLO state Physical Review Letters 118 26 267001 doi 10 1103 PhysRevLett 118 267001 PMID 28707943 Mayaffre H Kramer S Horvatic M Berthier C Miyagawa K Kanoda K Mitrovic V 2014 Evidence of Andreev bound states as a hallmark of the FFLO phase in k BEDT TTF 2Cu NCS 2 Nature Physics 10 12 928 932 arXiv 1409 0786 Bibcode 2014NatPh 10 928M doi 10 1038 nphys3121 Retrieved from https en wikipedia org w index php title Fulde Ferrell Larkin Ovchinnikov phase amp oldid 1187163350, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.