fbpx
Wikipedia

Five color theorem

The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of the world, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color.

A Five-Color Map

The five color theorem is implied by the stronger four color theorem, but is considerably easier to prove. It was based on a failed attempt at the four color proof by Alfred Kempe in 1879. Percy John Heawood found an error 11 years later, and proved the five color theorem based on Kempe's work.

Outline of the proof by contradiction edit

First of all, one associates a simple planar graph   to the given map, namely one puts a vertex in each region of the map, then connects two vertices with an edge if and only if the corresponding regions share a common border. The problem is then translated into a graph coloring problem: one has to paint the vertices of the graph so that no edge has endpoints of the same color.

Because   is a simple planar, i.e. it may be embedded in the plane without intersecting edges, and it does not have two vertices sharing more than one edge, and it does not have loops, then it can be shown (using the Euler characteristic of the plane) that it must have a vertex shared by at most five edges. (Note: This is the only place where the five-color condition is used in the proof. If this technique is used to prove the four-color theorem, it will fail on this step. In fact, an icosahedral graph is 5-regular and planar, and thus does not have a vertex shared by at most four edges.) Find such a vertex, and call it  .

Now remove   from  . The graph   obtained this way has one fewer vertex than  , so we can assume by induction that it can be colored with only five colors. If the coloring did not use all five colors on the five neighboring vertices of  , it can be colored in   with a color not used by the neighbors. So now look at those five vertices  ,  ,  ,  ,   that were adjacent to   in cyclic order (which depends on how we write G). So we can assume that  ,  ,  ,  ,   are colored with colors 1, 2, 3, 4, 5 respectively.

Now consider the subgraph   of   consisting of the vertices that are colored with colors 1 and 3 only and the edges connecting them. To be clear, each edge connects a color 1 vertex to a color 3 vertex (this is called a Kempe chain). If   and   lie in different connected components of  , we can swap the 1 and 3 colors on the component containing   without affecting the coloring of the rest of  . This frees color 1 for   completing the task. If on the contrary   and   lie in the same connected component of  , we can find a path in   joining them that consists of only color 1 and 3 vertices.

Now turn to the subgraph   of   consisting of the vertices that are colored with colors 2 and 4 only and the edges connecting them, and apply the same arguments as before. Then either we are able to reverse the 2-4 coloration on the subgraph of   containing   and paint   color 2, or we can connect   and   with a path that consists of only color 2 and 4 vertices. Such a path would intersect the 1-3 colored path we constructed before since   through   were in cyclic order. This is clearly absurd as it contradicts the planarity of the graph.

So   can in fact be five-colored, contrary to the initial presumption.

Linear time five-coloring algorithm edit

Multiple authors, beginning with Lipton and Miller in 1978, have studied efficient algorithms for five-coloring planar graphs. The algorithm of Lipton and Miller took time  ,[1] but subsequent researchers reduced the time bound to  .[2][3][4][5][6] The version below is from a 1996 paper by Robertson, Sanders, Seymour, and Thomas, which describes it briefly in connection with a slower  -time algorithm for four-coloring.[7] The algorithm as described here operates on multigraphs and relies on the ability to have multiple copies of edges between a single pair of vertices. It is based on Wernicke's theorem, which states the following:

Wernicke's theorem: Assume G is planar, nonempty, has no faces bounded by two edges, and has minimum degree 5. Then G has a vertex of degree 5 which is adjacent to a vertex of degree at most 6.

We will use a representation of the graph in which each vertex maintains a circular linked list of adjacent vertices, in clockwise planar order.

In concept, the algorithm is recursive, reducing the graph to a smaller graph with one less vertex, five-coloring that graph, and then using that coloring to determine a coloring for the larger graph in constant time. In practice, rather than maintain an explicit graph representation for each reduced graph, we will remove vertices from the graph as we go, adding them to a stack, then color them as we pop them back off the stack at the end. We will maintain three stacks:

  • S4: Contains all remaining vertices with either degree at most four, or degree five and at most four distinct adjacent vertices (due to multiple edges).
  • S5: Contains all remaining vertices that have degree five, five distinct adjacent vertices, and at least one adjacent vertex with degree at most six.
  • Sd: Contains all vertices deleted from the graph so far, in the order that they were deleted.

The algorithm works as follows:

  1. In the first step, we collapse all multiple edges to single edges, so that the graph is simple. Next, we iterate over the vertices of the graph, pushing any vertex matching the conditions for S4 or S5 onto the appropriate stack.
  2. Next, as long as S4 is non-empty, we pop v from S4 and delete v from the graph, pushing it onto Sd, along with a list of its neighbors at this point in time. We check each former neighbor of v, pushing it onto S4 or S5 if it now meets the necessary conditions.
  3. When S4 becomes empty, we know that our graph has minimum degree five. If the graph is empty, we go to the final step 5 below. Otherwise, Wernicke's Theorem tells us that S5 is nonempty. Pop v off S5, delete it from the graph, and let v1, v2, v3, v4, v5 be the former neighbors of v in clockwise planar order, where v1 is the neighbor of degree at most 6. We check if v1 is adjacent to v3 (which we can do in constant time due to the degree of v1). There are two cases:
    1. If v1 is not adjacent to v3, we can merge these two vertices into a single vertex. To do this, we remove v from both circular adjacency lists, and then splice the two lists together into one list at the point where v was formerly found. Provided that v maintains a reference to its position in each list, this can be done in constant time. It's possible that this might create faces bounded by two edges at the two points where the lists are spliced together; we delete one edge from any such faces. After doing this, we push v3 onto Sd, along with a note that v1 is the vertex that it was merged with. Any vertices affected by the merge are added or removed from the stacks as appropriate.
    2. Otherwise, v2 lies inside the face outlined by v, v1, and v3. Consequently, v2 cannot be adjacent to v4, which lies outside this face. We merge v2 and v4 in the same manner as v1 and v3 above.
  4. Go to step 2.
  5. At this point S4, S5, and the graph are empty. We pop vertices off Sd. If the vertex were merged with another vertex in step 3, the vertex that it was merged with will already have been colored, and we assign it the same color. This is valid because we only merged vertices that were not adjacent in the original graph. If we had removed it in step 2 because it had at most 4 adjacent vertices, all of its neighbors at the time of its removal will have already been colored, and we can simply assign it a color that none of its neighbors is using.

Alternate proof edit

Kainen (1974) provides a simplified proof of the five color theorem, based on the non-planarity of K6 (the complete graph with 6 vertices) and graph minors. This proof generalizes to graphs that can be made planar by deleting 2 edges.[8]

See also edit

References edit

  1. ^ Lipton, Richard J.; Miller, Raymond E. (1978), "A batching method for coloring planar graphs", Information Processing Letters, 7 (4): 185–188, doi:10.1016/0020-0190(78)90065-0, MR 0497394
  2. ^ Chiba, Norishige; Nishizeki, Takao; Saito, Nobuji (1981), "A linear 5-coloring algorithm of planar graphs", Journal of Algorithms, 2 (4): 317–327, doi:10.1016/0196-6774(81)90031-6, MR 0640516
  3. ^ Matula, David; Shiloach, Yossi; Tarjan, Robert (November 1980), Two linear-time algorithms for five-coloring a planar graph (PDF), Tech. Report STAN-CS-80-830, Stanford University
  4. ^ Frederickson, Greg N. (1984), "On linear-time algorithms for five-coloring planar graphs", Information Processing Letters, 19 (5): 219–224, CiteSeerX 10.1.1.158.5812, doi:10.1016/0020-0190(84)90056-5, MR 0777802
  5. ^ Williams, M. H. (1985), "A linear algorithm for colouring planar graphs with five colours", The Computer Journal, 28 (1): 78–81, doi:10.1093/comjnl/28.1.78, MR 0786929
  6. ^ Hagerup, Torben; Chrobak, Marek; Diks, Krzysztof (1989), "Optimal parallel 5-colouring of planar graphs", SIAM Journal on Computing, 18 (2): 288–300, doi:10.1137/0218020, MR 0986668
  7. ^ Robertson, Neil; Sanders, Daniel P.; Seymour, Paul; Thomas, Robin (1996), "Efficiently four-coloring planar graphs" (PDF), Proc. 28th ACM Symposium on Theory of Computing (STOC), New York: ACM Press.
  8. ^ Kainen, Paul C. (September 1974). "A Generalization of the 5-Color Theorem" (PDF). Proceedings of the American Mathematical Society. 45 (3): 450–452. doi:10.2307/2039977.

Further reading edit

  • Heawood, P. J. (1890), "Map-Colour Theorems", Quarterly Journal of Mathematics, Oxford, vol. 24, pp. 332–338

five, color, theorem, this, article, relies, largely, entirely, single, source, relevant, discussion, found, talk, page, please, help, improve, this, article, introducing, citations, additional, sources, find, sources, news, newspapers, books, scholar, jstor, . This article relies largely or entirely on a single source Relevant discussion may be found on the talk page Please help improve this article by introducing citations to additional sources Find sources Five color theorem news newspapers books scholar JSTOR July 2023 The five color theorem is a result from graph theory that given a plane separated into regions such as a political map of the countries of the world the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color A Five Color MapThe five color theorem is implied by the stronger four color theorem but is considerably easier to prove It was based on a failed attempt at the four color proof by Alfred Kempe in 1879 Percy John Heawood found an error 11 years later and proved the five color theorem based on Kempe s work Contents 1 Outline of the proof by contradiction 2 Linear time five coloring algorithm 3 Alternate proof 4 See also 5 References 6 Further readingOutline of the proof by contradiction editFirst of all one associates a simple planar graph G displaystyle G nbsp to the given map namely one puts a vertex in each region of the map then connects two vertices with an edge if and only if the corresponding regions share a common border The problem is then translated into a graph coloring problem one has to paint the vertices of the graph so that no edge has endpoints of the same color Because G displaystyle G nbsp is a simple planar i e it may be embedded in the plane without intersecting edges and it does not have two vertices sharing more than one edge and it does not have loops then it can be shown using the Euler characteristic of the plane that it must have a vertex shared by at most five edges Note This is the only place where the five color condition is used in the proof If this technique is used to prove the four color theorem it will fail on this step In fact an icosahedral graph is 5 regular and planar and thus does not have a vertex shared by at most four edges Find such a vertex and call it v displaystyle v nbsp Now remove v displaystyle v nbsp from G displaystyle G nbsp The graph G displaystyle G nbsp obtained this way has one fewer vertex than G displaystyle G nbsp so we can assume by induction that it can be colored with only five colors If the coloring did not use all five colors on the five neighboring vertices of v displaystyle v nbsp it can be colored in G displaystyle G nbsp with a color not used by the neighbors So now look at those five vertices v1 displaystyle v 1 nbsp v2 displaystyle v 2 nbsp v3 displaystyle v 3 nbsp v4 displaystyle v 4 nbsp v5 displaystyle v 5 nbsp that were adjacent to v displaystyle v nbsp in cyclic order which depends on how we write G So we can assume that v1 displaystyle v 1 nbsp v2 displaystyle v 2 nbsp v3 displaystyle v 3 nbsp v4 displaystyle v 4 nbsp v5 displaystyle v 5 nbsp are colored with colors 1 2 3 4 5 respectively Now consider the subgraph G1 3 displaystyle G 1 3 nbsp of G displaystyle G nbsp consisting of the vertices that are colored with colors 1 and 3 only and the edges connecting them To be clear each edge connects a color 1 vertex to a color 3 vertex this is called a Kempe chain If v1 displaystyle v 1 nbsp and v3 displaystyle v 3 nbsp lie in different connected components of G1 3 displaystyle G 1 3 nbsp we can swap the 1 and 3 colors on the component containing v1 displaystyle v 1 nbsp without affecting the coloring of the rest of G displaystyle G nbsp This frees color 1 for v displaystyle v nbsp completing the task If on the contrary v1 displaystyle v 1 nbsp and v3 displaystyle v 3 nbsp lie in the same connected component of G1 3 displaystyle G 1 3 nbsp we can find a path in G1 3 displaystyle G 1 3 nbsp joining them that consists of only color 1 and 3 vertices Now turn to the subgraph G2 4 displaystyle G 2 4 nbsp of G displaystyle G nbsp consisting of the vertices that are colored with colors 2 and 4 only and the edges connecting them and apply the same arguments as before Then either we are able to reverse the 2 4 coloration on the subgraph of G2 4 displaystyle G 2 4 nbsp containing v2 displaystyle v 2 nbsp and paint v displaystyle v nbsp color 2 or we can connect v2 displaystyle v 2 nbsp and v4 displaystyle v 4 nbsp with a path that consists of only color 2 and 4 vertices Such a path would intersect the 1 3 colored path we constructed before since v1 displaystyle v 1 nbsp through v5 displaystyle v 5 nbsp were in cyclic order This is clearly absurd as it contradicts the planarity of the graph So G displaystyle G nbsp can in fact be five colored contrary to the initial presumption Linear time five coloring algorithm editMultiple authors beginning with Lipton and Miller in 1978 have studied efficient algorithms for five coloring planar graphs The algorithm of Lipton and Miller took time O nlog n displaystyle O n log n nbsp 1 but subsequent researchers reduced the time bound to O n displaystyle O n nbsp 2 3 4 5 6 The version below is from a 1996 paper by Robertson Sanders Seymour and Thomas which describes it briefly in connection with a slower O n2 displaystyle O n 2 nbsp time algorithm for four coloring 7 The algorithm as described here operates on multigraphs and relies on the ability to have multiple copies of edges between a single pair of vertices It is based on Wernicke s theorem which states the following Wernicke s theorem Assume G is planar nonempty has no faces bounded by two edges and has minimum degree 5 Then G has a vertex of degree 5 which is adjacent to a vertex of degree at most 6 We will use a representation of the graph in which each vertex maintains a circular linked list of adjacent vertices in clockwise planar order In concept the algorithm is recursive reducing the graph to a smaller graph with one less vertex five coloring that graph and then using that coloring to determine a coloring for the larger graph in constant time In practice rather than maintain an explicit graph representation for each reduced graph we will remove vertices from the graph as we go adding them to a stack then color them as we pop them back off the stack at the end We will maintain three stacks S4 Contains all remaining vertices with either degree at most four or degree five and at most four distinct adjacent vertices due to multiple edges S5 Contains all remaining vertices that have degree five five distinct adjacent vertices and at least one adjacent vertex with degree at most six Sd Contains all vertices deleted from the graph so far in the order that they were deleted The algorithm works as follows In the first step we collapse all multiple edges to single edges so that the graph is simple Next we iterate over the vertices of the graph pushing any vertex matching the conditions for S4 or S5 onto the appropriate stack Next as long as S4 is non empty we pop v from S4 and delete v from the graph pushing it onto Sd along with a list of its neighbors at this point in time We check each former neighbor of v pushing it onto S4 or S5 if it now meets the necessary conditions When S4 becomes empty we know that our graph has minimum degree five If the graph is empty we go to the final step 5 below Otherwise Wernicke s Theorem tells us that S5 is nonempty Pop v off S5 delete it from the graph and let v1 v2 v3 v4 v5 be the former neighbors of v in clockwise planar order where v1 is the neighbor of degree at most 6 We check if v1 is adjacent to v3 which we can do in constant time due to the degree of v1 There are two cases If v1 is not adjacent to v3 we can merge these two vertices into a single vertex To do this we remove v from both circular adjacency lists and then splice the two lists together into one list at the point where v was formerly found Provided that v maintains a reference to its position in each list this can be done in constant time It s possible that this might create faces bounded by two edges at the two points where the lists are spliced together we delete one edge from any such faces After doing this we push v3 onto Sd along with a note that v1 is the vertex that it was merged with Any vertices affected by the merge are added or removed from the stacks as appropriate Otherwise v2 lies inside the face outlined by v v1 and v3 Consequently v2 cannot be adjacent to v4 which lies outside this face We merge v2 and v4 in the same manner as v1 and v3 above Go to step 2 At this point S4 S5 and the graph are empty We pop vertices off Sd If the vertex were merged with another vertex in step 3 the vertex that it was merged with will already have been colored and we assign it the same color This is valid because we only merged vertices that were not adjacent in the original graph If we had removed it in step 2 because it had at most 4 adjacent vertices all of its neighbors at the time of its removal will have already been colored and we can simply assign it a color that none of its neighbors is using Alternate proof editKainen 1974 provides a simplified proof of the five color theorem based on the non planarity of K6 the complete graph with 6 vertices and graph minors This proof generalizes to graphs that can be made planar by deleting 2 edges 8 See also editFour color theoremReferences edit Lipton Richard J Miller Raymond E 1978 A batching method for coloring planar graphs Information Processing Letters 7 4 185 188 doi 10 1016 0020 0190 78 90065 0 MR 0497394 Chiba Norishige Nishizeki Takao Saito Nobuji 1981 A linear 5 coloring algorithm of planar graphs Journal of Algorithms 2 4 317 327 doi 10 1016 0196 6774 81 90031 6 MR 0640516 Matula David Shiloach Yossi Tarjan Robert November 1980 Two linear time algorithms for five coloring a planar graph PDF Tech Report STAN CS 80 830 Stanford University Frederickson Greg N 1984 On linear time algorithms for five coloring planar graphs Information Processing Letters 19 5 219 224 CiteSeerX 10 1 1 158 5812 doi 10 1016 0020 0190 84 90056 5 MR 0777802 Williams M H 1985 A linear algorithm for colouring planar graphs with five colours The Computer Journal 28 1 78 81 doi 10 1093 comjnl 28 1 78 MR 0786929 Hagerup Torben Chrobak Marek Diks Krzysztof 1989 Optimal parallel 5 colouring of planar graphs SIAM Journal on Computing 18 2 288 300 doi 10 1137 0218020 MR 0986668 Robertson Neil Sanders Daniel P Seymour Paul Thomas Robin 1996 Efficiently four coloring planar graphs PDF Proc 28th ACM Symposium on Theory of Computing STOC New York ACM Press Kainen Paul C September 1974 A Generalization of the 5 Color Theorem PDF Proceedings of the American Mathematical Society 45 3 450 452 doi 10 2307 2039977 Further reading editHeawood P J 1890 Map Colour Theorems Quarterly Journal of Mathematics Oxford vol 24 pp 332 338 Retrieved from https en wikipedia org w index php title Five color theorem amp oldid 1205050884, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.