fbpx
Wikipedia

Ishikawa diagram

Ishikawa diagrams (also called fishbone diagrams,[1] herringbone diagrams, cause-and-effect diagrams) are causal diagrams created by Kaoru Ishikawa that show the potential causes of a specific event.[2]

Ishikawa diagram
One of the Seven Basic Tools of Quality
First described byKaoru Ishikawa
PurposeTo break down (in successive layers of detail) root causes that potentially contribute to a particular effect

Common uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect. Each cause or reason for imperfection is a source of variation. Causes are usually grouped into major categories to identify and classify these sources of variation.

Overview edit

 
Sample Ishikawa diagram shows the causes contributing to problem.

The defect, or the problem to be solved,[1] is shown as the fish's head, facing to the right, with the causes extending to the left as fishbones; the ribs branch off the backbone for major causes, with sub-branches for root-causes, to as many levels as required.[3]

Ishikawa diagrams were popularized in the 1960s by Kaoru Ishikawa,[4] who pioneered quality management processes in the Kawasaki shipyards, and in the process became one of the founding fathers of modern management.

The basic concept was first used in the 1920s, and is considered one of the seven basic tools of quality control.[5] It is known as a fishbone diagram because of its shape, similar to the side view of a fish skeleton.

Mazda Motors famously used an Ishikawa diagram in the development of the Miata (MX5) sports car.[6]

Root causes edit

 
An Ishikawa diagram breaking down possible root causes of a blurry photo

Root-cause analysis is intended to reveal key relationships among various variables, and the possible causes provide additional insight into process behavior. It shows high-level causes that lead to the problem encountered by providing a snapshot of the current situation.[1]

There can be considerable confusion about the relationships between problems, causes, symptoms and effects. Smith[7] highlights this and the common question, “Is that a problem or a symptom?” This question mistakenly presumes that problems and symptoms are contrasting categories, like light and heavy, such that something can’t be both. A problem is a situation that bears improvement; a symptom is the effect of a cause: a situation can be both a problem and a symptom.

At a practical level, a cause is whatever is responsible for, or explains, an effect - a factor "whose presence makes a critical difference to the occurrence of an outcome".[8]

The causes emerge by analysis, often through brainstorming sessions, and are grouped into categories on the main branches off the fishbone. To help structure the approach, the categories are often selected from one of the common models shown below, but may emerge as something unique to the application in a specific case.

Each potential cause is traced back to find the root cause, often using the 5 Whys technique.[9]

Typical categories include:

The 5 Ms (used in manufacturing) edit

Originating with lean manufacturing and the Toyota Production System, the 5 Ms is one of the most common frameworks for root-cause analysis:[10]

  • Manpower / Mindpower (physical or knowledge work, includes: kaizens, suggestions)
  • Machine (equipment, technology)
  • Material (includes raw material, consumables, and information)
  • Method (process)
  • Measurement / medium (inspection, environment)

These have been expanded by some to include an additional three, and are referred to as the 8 Ms:[11]

  • Mission / mother nature (purpose, environment)
  • Management / money power (leadership)
  • Maintenance

The 8 Ps (used in product marketing) edit

This common model for identifying crucial attributes for planning in product marketing is often also used in root-cause analysis as categories for the Ishikawa diagram:[11]

  • Product (or service)
  • Price
  • Place
  • Promotion
  • People (personnel)
  • Process
  • Physical evidence (proof)
  • Performance

The 4 or 5 Ss (used in service industries) edit

An alternative used for service industries, uses four categories of possible cause:[12]

  • Surroundings
  • Suppliers
  • Systems
  • Skill
  • Safety

See also edit

Citations edit

  1. ^ a b c Project Management Institute 2015, pp. 20–24, §2.4.4.2 Cause-and-Effect Diagrams.
  2. ^ Ishikawa, Kaoru (1968). Guide to Quality Control. Tokyo: JUSE.
  3. ^ Ishikawa, Kaoru (1976). Guide to Quality Control. Asian Productivity Organization. ISBN 92-833-1036-5.
  4. ^ Hankins, Judy (2001). Infusion Therapy in Clinical Practice. p. 42.
  5. ^ Tague, Nancy R. (2004). "Seven Basic Quality Tools". The Quality Toolbox. Milwaukee, Wisconsin: American Society for Quality. p. 15. Retrieved 2010-02-05.
  6. ^ Frey, Daniel D.; Fukuda, S.; Rock, Georg (2011). Improving complex systems today : proceedings of the 18th ISPE International Conference on Concurrent Engineering. Springer-Verlag London. ISBN 978-0857297990. OCLC 769756418.
  7. ^ Smith, Gerald F. "Determining the cause of quality problems: lessons from diagnostic disciplines." Quality Management Journal 5.2 (1998): 24-41.
  8. ^ Schustack, Miriam W. "Thinking about causality." The psychology of human thought (1988): 92-115.
  9. ^ "Fishbone diagram: Solving problems properly". IONOS Startupguide. Retrieved 2021-12-23.
  10. ^ Weeden, Marcia M. (1952). Failure mode and effects analysis (FMEAs) for small business owners and non-engineers : determining and preventing what can go wrong. Quality Press. ISBN 0873899180. OCLC 921141300.
  11. ^ a b Bradley, Edgar (2016-11-03). Reliability engineering : a life cycle approach. CRC Press. ISBN 978-1498765374. OCLC 963184495.
  12. ^ Dudbridge, Michael (2011). Handbook of Lean Manufacturing in the Food Industry. John Wiley & Sons. ISBN 978-1444393118. OCLC 904826764.

References edit

  • Ishikawa, Kaoru (1990); (Translator: J. H. Loftus); Introduction to Quality Control; 448 p; ISBN 4-906224-61-X OCLC 61341428
  • Dale, Barrie G. et al. (2007); Managing Quality 5th ed; ISBN 978-1-4051-4279-3 OCLC 288977828
  • Project Management Institute (2015-01-01). Business Analysis for Practitioners. Project Management Inst. ISBN 978-1-62825-069-5.

ishikawa, diagram, also, called, fishbone, diagrams, herringbone, diagrams, cause, effect, diagrams, causal, diagrams, created, kaoru, ishikawa, that, show, potential, causes, specific, event, seven, basic, tools, qualityfirst, described, bykaoru, ishikawapurp. Ishikawa diagrams also called fishbone diagrams 1 herringbone diagrams cause and effect diagrams are causal diagrams created by Kaoru Ishikawa that show the potential causes of a specific event 2 Ishikawa diagramOne of the Seven Basic Tools of QualityFirst described byKaoru IshikawaPurposeTo break down in successive layers of detail root causes that potentially contribute to a particular effectCommon uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect Each cause or reason for imperfection is a source of variation Causes are usually grouped into major categories to identify and classify these sources of variation Contents 1 Overview 2 Root causes 2 1 The 5 Ms used in manufacturing 2 2 The 8 Ps used in product marketing 2 3 The 4 or 5 Ss used in service industries 3 See also 4 Citations 5 ReferencesOverview edit nbsp Sample Ishikawa diagram shows the causes contributing to problem The defect or the problem to be solved 1 is shown as the fish s head facing to the right with the causes extending to the left as fishbones the ribs branch off the backbone for major causes with sub branches for root causes to as many levels as required 3 Ishikawa diagrams were popularized in the 1960s by Kaoru Ishikawa 4 who pioneered quality management processes in the Kawasaki shipyards and in the process became one of the founding fathers of modern management The basic concept was first used in the 1920s and is considered one of the seven basic tools of quality control 5 It is known as a fishbone diagram because of its shape similar to the side view of a fish skeleton Mazda Motors famously used an Ishikawa diagram in the development of the Miata MX5 sports car 6 Root causes edit nbsp An Ishikawa diagram breaking down possible root causes of a blurry photoThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed June 2023 Learn how and when to remove this template message Root cause analysis is intended to reveal key relationships among various variables and the possible causes provide additional insight into process behavior It shows high level causes that lead to the problem encountered by providing a snapshot of the current situation 1 There can be considerable confusion about the relationships between problems causes symptoms and effects Smith 7 highlights this and the common question Is that a problem or a symptom This question mistakenly presumes that problems and symptoms are contrasting categories like light and heavy such that something can t be both A problem is a situation that bears improvement a symptom is the effect of a cause a situation can be both a problem and a symptom At a practical level a cause is whatever is responsible for or explains an effect a factor whose presence makes a critical difference to the occurrence of an outcome 8 The causes emerge by analysis often through brainstorming sessions and are grouped into categories on the main branches off the fishbone To help structure the approach the categories are often selected from one of the common models shown below but may emerge as something unique to the application in a specific case Each potential cause is traced back to find the root cause often using the 5 Whys technique 9 Typical categories include The 5 Ms used in manufacturing edit See also 5M modelOriginating with lean manufacturing and the Toyota Production System the 5 Ms is one of the most common frameworks for root cause analysis 10 Manpower Mindpower physical or knowledge work includes kaizens suggestions Machine equipment technology Material includes raw material consumables and information Method process Measurement medium inspection environment These have been expanded by some to include an additional three and are referred to as the 8 Ms 11 Mission mother nature purpose environment Management money power leadership MaintenanceThe 8 Ps used in product marketing edit See also Marketing mixThis common model for identifying crucial attributes for planning in product marketing is often also used in root cause analysis as categories for the Ishikawa diagram 11 Product or service Price Place Promotion People personnel Process Physical evidence proof PerformanceThe 4 or 5 Ss used in service industries edit An alternative used for service industries uses four categories of possible cause 12 Surroundings Suppliers Systems Skill SafetySee also edit nbsp Philosophy portal nbsp Psychology portalSeven basic tools of quality Five whys Issue map Issue tree Resource managementCitations edit a b c Project Management Institute 2015 pp 20 24 2 4 4 2 Cause and Effect Diagrams Ishikawa Kaoru 1968 Guide to Quality Control Tokyo JUSE Ishikawa Kaoru 1976 Guide to Quality Control Asian Productivity Organization ISBN 92 833 1036 5 Hankins Judy 2001 Infusion Therapy in Clinical Practice p 42 Tague Nancy R 2004 Seven Basic Quality Tools The Quality Toolbox Milwaukee Wisconsin American Society for Quality p 15 Retrieved 2010 02 05 Frey Daniel D Fukuda S Rock Georg 2011 Improving complex systems today proceedings of the 18th ISPE International Conference on Concurrent Engineering Springer Verlag London ISBN 978 0857297990 OCLC 769756418 Smith Gerald F Determining the cause of quality problems lessons from diagnostic disciplines Quality Management Journal 5 2 1998 24 41 Schustack Miriam W Thinking about causality The psychology of human thought 1988 92 115 Fishbone diagram Solving problems properly IONOS Startupguide Retrieved 2021 12 23 Weeden Marcia M 1952 Failure mode and effects analysis FMEAs for small business owners and non engineers determining and preventing what can go wrong Quality Press ISBN 0873899180 OCLC 921141300 a b Bradley Edgar 2016 11 03 Reliability engineering a life cycle approach CRC Press ISBN 978 1498765374 OCLC 963184495 Dudbridge Michael 2011 Handbook of Lean Manufacturing in the Food Industry John Wiley amp Sons ISBN 978 1444393118 OCLC 904826764 References edit nbsp Wikimedia Commons has media related to Ishikawa diagrams Ishikawa Kaoru 1990 Translator J H Loftus Introduction to Quality Control 448 p ISBN 4 906224 61 X OCLC 61341428 Dale Barrie G et al 2007 Managing Quality 5th ed ISBN 978 1 4051 4279 3 OCLC 288977828 Project Management Institute 2015 01 01 Business Analysis for Practitioners Project Management Inst ISBN 978 1 62825 069 5 Retrieved from https en wikipedia org w index php title Ishikawa diagram amp oldid 1216295720, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.