fbpx
Wikipedia

Filamentation

Filamentation is the anomalous growth of certain bacteria, such as Escherichia coli, in which cells continue to elongate but do not divide (no septa formation).[1][2] The cells that result from elongation without division have multiple chromosomal copies.[1]

A Bacillus cereus cell that has undergone filamentation following antibacterial treatment (upper electron micrograph; top right) and regularly sized cells of untreated B. cereus (lower electron micrograph)

In the absence of antibiotics or other stressors, filamentation occurs at a low frequency in bacterial populations (4–8% short filaments and 0–5% long filaments in 1- to 8-hour cultures).[3] The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult.[1][3][4][5] Filamentation is also thought to protect bacteria from antibiotics, and is associated with other aspects of bacterial virulence such as biofilm formation.[6][7]

The number and length of filaments within a bacterial population increases when the bacteria are exposed to different physical, chemical and biological agents (e.g. UV light, DNA synthesis-inhibiting antibiotics, bacteriophages).[3][8] This is termed conditional filamentation.[2] Some of the key genes involved in filamentation in E. coli include sulA, minCD and damX.[9][10]

Filament formation edit

Antibiotic-induced filamentation edit

Some peptidoglycan synthesis inhibitors (e.g. cefuroxime, ceftazidime) induce filamentation by inhibiting the penicillin binding proteins (PBPs) responsible for crosslinking peptidoglycan at the septal wall (e.g. PBP3 in E. coli and P. aeruginosa). Because the PBPs responsible for lateral wall synthesis are relatively unaffected by cefuroxime and ceftazidime, cell elongation proceeds without any cell division and filamentation is observed.[3][11][12]

DNA synthesis-inhibiting and DNA damaging antibiotics (e.g. metronidazole, mitomycin C, the fluoroquinolones, novobiocin) induce filamentation via the SOS response. The SOS response inhibits septum formation until the DNA can be repaired, this delay stopping the transmission of damaged DNA to progeny. Bacteria inhibit septation by synthesizing protein SulA, an FtsZ inhibitor that halts Z-ring formation, thereby stopping recruitment and activation of PBP3.[3][13] If bacteria are deprived of the nucleobase thymine by treatment with folic acid synthesis inhibitors (e.g. trimethoprim), this also disrupts DNA synthesis and induces SOS-mediated filamentation. Direct obstruction of Z-ring formation by SulA and other FtsZ inhibitors (e.g. berberine) induces filamentation too.[3][14][15]

Some protein synthesis inhibitors (e.g. kanamycin), RNA synthesis inhibitors (e.g. bicyclomycin) and membrane disruptors (e.g. daptomycin, polymyxin B) cause filamentation too, but these filaments are much shorter than the filaments induced by the above antibiotics.[3]

Stress-induced filamentation edit

Filamentation is often a consequence of environmental stress. It has been observed in response to temperature shocks,[16] low water availability,[17] high osmolarity,[18] extreme pH,[19] and UV exposure.[20] UV light damages bacterial DNA and induces filamentation via the SOS response.[3][21] Starvation can also cause bacterial filamentation.[9] For example, if bacteria are deprived of the nucleobase thymine, this disrupts DNA synthesis and induces SOS-mediated filamentation.[3][22]

Nutrient-induced filamentation edit

Several macronutrients and biomolecules can cause bacterial cells to filament, including the amino acids glutamine, proline and arginine, and some branched-chain amino acids.[23] Certain bacterial species, such as Paraburkholderia elongata, will also filament as a result of a tendency to accumulate phosphate in the form of polyphosphate, which can chelate metal cofactors needed by division proteins.[2] In addition, filamentation is induced by nutrient-rich conditions in the intracellular pathogen Bordetella atropi. This occurs via the highly conserved UDP-glucose pathway. UDP-glucose biosynthesis and sensing suppresses bacterial cell division, with the ensuing filamentation allowing B. atropi to spread to neighboring cells.[24]

Intrinsic dysbiosis-induced filamentation edit

Filamentation can also be induced by other pathways affecting thymidylate synthesis. For instance, partial loss of dihydrofolate reductase (DHFR) activity causes reversible filamentation.[25] DHFR has a critical role in regulating the amount of tetrahydrofolate, which is essential for purine and thymidylate synthesis. DHFR activity can be inhibited by mutations or by high concentrations of the antibiotic trimethoprim (see antibiotic-induced filamentation above).

Overcrowding of the periplasm or envelope can also induce filamentation in Gram-negative bacteria by disrupting normal divisome function.[26][27]

Filamentation and biotic interactions edit

Several examples of filamentation that result from biotic interactions between bacteria and other organisms or infectious agents have been reported. Filamentous cells are resistant to ingestion by bacterivores, and environmental conditions generated during predation can trigger filamentation.[28] Filamentation can also be induced by signalling factors produced by other bacteria.[29] In addition, Agrobacterium spp. filament in proximity to plant roots,[30] and E. coli filaments when exposed to plant extracts.[31] Lastly, bacteriophage infection can result in filamentation via the expression of proteins that inhibit divisome assembly.[8]

See also edit

References edit

  1. ^ a b c Jaimes-Lizcano YA, Hunn DD, Papadopoulos KD (April 2014). "Filamentous Escherichia coli cells swimming in tapered microcapillaries". Research in Microbiology. 165 (3): 166–74. doi:10.1016/j.resmic.2014.01.007. PMID 24566556.
  2. ^ a b c Karasz DC, Weaver AI, Buckley DH, Wilhelm RC (January 2022). "Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils". Environmental Microbiology. 24 (1): 1–17. doi:10.1111/1462-2920.15871. OSTI 1863903. PMID 34929753. S2CID 245412965.
  3. ^ a b c d e f g h i Cushnie TP, O'Driscoll NH, Lamb AJ (December 2016). "Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action". Cellular and Molecular Life Sciences. 73 (23): 4471–4492. doi:10.1007/s00018-016-2302-2. hdl:10059/2129. PMID 27392605. S2CID 2065821.
  4. ^ Hahn MW, Höfle MG (May 1998). "Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures". Applied and Environmental Microbiology. 64 (5): 1910–8. Bibcode:1998ApEnM..64.1910H. doi:10.1128/AEM.64.5.1910-1918.1998. PMC 106250. PMID 9572971.
  5. ^ Hahn MW, Moore ER, Höfle MG (January 1999). "Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla". Applied and Environmental Microbiology. 65 (1): 25–35. Bibcode:1999ApEnM..65...25H. doi:10.1128/AEM.65.1.25-35.1999. PMC 90978. PMID 9872755.
  6. ^ Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (February 2008). "Morphological plasticity as a bacterial survival strategy". Nature Reviews. Microbiology. 6 (2): 162–8. doi:10.1038/nrmicro1820. PMID 18157153. S2CID 7247384.
  7. ^ Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E (June 2010). "Role of filamentation in Galleria mellonella killing by Candida albicans". Microbes and Infection. 12 (6): 488–96. doi:10.1016/j.micinf.2010.03.001. PMC 288367. PMID 20223293.
  8. ^ a b Ragunathan PT, Vanderpool CK (December 2019). "Cryptic-Prophage-Encoded Small Protein DicB Protects Escherichia coli from Phage Infection by Inhibiting Inner Membrane Receptor Proteins". Journal of Bacteriology. 201 (23). doi:10.1128/JB.00475-19. PMC 6832061. PMID 31527115.
  9. ^ a b Bi E, Lutkenhaus J (February 1993). "Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring". Journal of Bacteriology. 175 (4): 1118–1125. doi:10.1128/jb.175.4.1118-1125.1993. PMC 193028. PMID 8432706.
  10. ^ Khandige S, Asferg CA, Rasmussen KJ, Larsen MJ, Overgaard M, Andersen TE, Møller-Jensen J (August 2016). Justice S, Hultgren SJ (eds.). "DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli". mBio. 7 (4). doi:10.1128/mBio.00642-16. PMC 4981707. PMID 27486187.
  11. ^ Spratt BG (August 1975). "Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12". Proceedings of the National Academy of Sciences of the United States of America. 72 (8): 2999–3003. Bibcode:1975PNAS...72.2999S. doi:10.1073/pnas.72.8.2999. PMC 432906. PMID 1103132.
  12. ^ Bush K, Bradford PA (August 2016). "β-Lactams and β-Lactamase Inhibitors: An Overview". Cold Spring Harbor Perspectives in Medicine. 6 (8): a025247. doi:10.1101/cshperspect.a025247. PMC 4968164. PMID 27329032.
  13. ^ Cordell SC, Robinson EJ, Lowe J (June 2003). "Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ". Proceedings of the National Academy of Sciences of the United States of America. 100 (13): 7889–94. Bibcode:2003PNAS..100.7889C. doi:10.1073/pnas.1330742100. PMC 164683. PMID 12808143.
  14. ^ Ray S, Dhaked HP, Panda D (October 2014). "Antimicrobial peptide CRAMP (16-33) stalls bacterial cytokinesis by inhibiting FtsZ assembly". Biochemistry. 53 (41): 6426–9. doi:10.1021/bi501115p. PMID 25294259.
  15. ^ Sass P, Brötz-Oesterhelt H (October 2013). "Bacterial cell division as a target for new antibiotics". Current Opinion in Microbiology. 16 (5): 522–530. doi:10.1016/j.mib.2013.07.006. PMID 23932516.
  16. ^ Gill CO, Badoni M, Jones TH (November 2007). "Behaviours of log phase cultures of eight strains of Escherichia coli incubated at temperatures of 2, 6, 8 and 10 degrees C". International Journal of Food Microbiology. 119 (3): 200–206. doi:10.1016/j.ijfoodmicro.2007.07.043. PMID 17719669.
  17. ^ Mattick KL, Jørgensen F, Legan JD, Cole MB, Porter J, Lappin-Scott HM, Humphrey TJ (April 2000). "Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity". Applied and Environmental Microbiology. 66 (4): 1274–1279. Bibcode:2000ApEnM..66.1274M. doi:10.1128/AEM.66.4.1274-1279.2000. PMC 91980. PMID 10742199.
  18. ^ Chang WS, Halverson LJ (October 2003). "Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms". Journal of Bacteriology. 185 (20): 6199–6204. doi:10.1128/JB.185.20.6199-6204.2003. PMC 225025. PMID 14526033.
  19. ^ Jones TH, Vail KM, McMullen LM (July 2013). "Filament formation by foodborne bacteria under sublethal stress". International Journal of Food Microbiology. 165 (2): 97–110. doi:10.1016/j.ijfoodmicro.2013.05.001. PMID 23727653.
  20. ^ Modenutti B, Balseiro E, Corno G, Callieri C, Bertoni R, Caravati E (July 2010). "Ultraviolet radiation induces filamentation in bacterial assemblages from North Andean Patagonian lakes". Photochemistry and Photobiology. 86 (4): 871–881. doi:10.1111/j.1751-1097.2010.00758.x. PMID 20528974. S2CID 45542973.
  21. ^ Walker JR, Pardee AB (January 1968). "Evidence for a relationship between deoxyribonucleic acid metabolism and septum formation in Escherichia coli". Journal of Bacteriology. 95 (1): 123–131. doi:10.1128/JB.95.1.123-131.1968. PMC 251980. PMID 4867214.
  22. ^ Ohkawa T (December 1975). "Studies of intracellular thymidine nucleotides. Thymineless death and the recovery after re-addition of thymine in Escherichia coli K 12". European Journal of Biochemistry. 60 (1): 57–66. doi:10.1111/j.1432-1033.1975.tb20975.x. PMID 1107038.
  23. ^ Jensen RH, Woolfolk CA (August 1985). "Formation of Filaments by Pseudomonas putida". Applied and Environmental Microbiology. 50 (2): 364–372. Bibcode:1985ApEnM..50..364J. doi:10.1128/aem.50.2.364-372.1985. PMC 238629. PMID 16346856.
  24. ^ Tran TD, Ali MA, Lee D, Félix MA, Luallen RJ (February 2022). "Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host". Nature Communications. 13 (1): 693. Bibcode:2022NatCo..13..693T. doi:10.1038/s41467-022-28297-6. PMC 8816909. PMID 35121734.
  25. ^ Bhattacharyya S, Bershtein S, Adkar BV, Woodard J, Shakhnovich EI (June 2021). "Metabolic response to point mutations reveals principles of modulation of in vivo enzyme activity and phenotype". Molecular Systems Biology. 17 (6): e10200. arXiv:2012.09658. doi:10.15252/msb.202110200. PMC 8236904. PMID 34180142.
  26. ^ Lau SY, Zgurskaya HI (November 2005). "Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC". Journal of Bacteriology. 187 (22): 7815–7825. doi:10.1128/JB.187.22.7815-7825.2005. PMC 1280316. PMID 16267305.
  27. ^ Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (January 2011). "Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence". Molecular Microbiology. 79 (1): 240–263. doi:10.1111/j.1365-2958.2010.07445.x. PMC 3075615. PMID 21166906.
  28. ^ Corno G, Jürgens K (January 2006). "Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity". Applied and Environmental Microbiology. 72 (1): 78–86. Bibcode:2006ApEnM..72...78C. doi:10.1128/AEM.72.1.78-86.2006. PMC 1352273. PMID 16391028.
  29. ^ Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, et al. (April 2008). "Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa". Molecular Microbiology. 68 (1): 75–86. doi:10.1111/j.1365-2958.2008.06132.x. PMID 18312265. S2CID 26725907.
  30. ^ Finer KR, Larkin KM, Martin BJ, Finer JJ (February 2001). "Proximity of Agrobacterium to living plant tissues induces conversion to a filamentous bacterial form". Plant Cell Reports. 20 (3): 250–255. doi:10.1007/s002990100315. S2CID 24531530.
  31. ^ Mohamed-Salem R, Rodríguez Fernández C, Nieto-Pelegrín E, Conde-Valentín B, Rumbero A, Martinez-Quiles N (2019). "Aqueous extract of Hibiscus sabdariffa inhibits pedestal induction by enteropathogenic E. coli and promotes bacterial filamentation in vitro". PLOS ONE. 14 (3): e0213580. Bibcode:2019PLoSO..1413580M. doi:10.1371/journal.pone.0213580. PMC 6407759. PMID 30849110.

filamentation, other, uses, filament, disambiguation, anomalous, growth, certain, bacteria, such, escherichia, coli, which, cells, continue, elongate, divide, septa, formation, cells, that, result, from, elongation, without, division, have, multiple, chromosom. For other uses see Filament disambiguation Filamentation is the anomalous growth of certain bacteria such as Escherichia coli in which cells continue to elongate but do not divide no septa formation 1 2 The cells that result from elongation without division have multiple chromosomal copies 1 A Bacillus cereus cell that has undergone filamentation following antibacterial treatment upper electron micrograph top right and regularly sized cells of untreated B cereus lower electron micrograph In the absence of antibiotics or other stressors filamentation occurs at a low frequency in bacterial populations 4 8 short filaments and 0 5 long filaments in 1 to 8 hour cultures 3 The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult 1 3 4 5 Filamentation is also thought to protect bacteria from antibiotics and is associated with other aspects of bacterial virulence such as biofilm formation 6 7 The number and length of filaments within a bacterial population increases when the bacteria are exposed to different physical chemical and biological agents e g UV light DNA synthesis inhibiting antibiotics bacteriophages 3 8 This is termed conditional filamentation 2 Some of the key genes involved in filamentation in E coli include sulA minCD and damX 9 10 Contents 1 Filament formation 1 1 Antibiotic induced filamentation 1 2 Stress induced filamentation 1 3 Nutrient induced filamentation 1 4 Intrinsic dysbiosis induced filamentation 1 5 Filamentation and biotic interactions 2 See also 3 ReferencesFilament formation editAntibiotic induced filamentation edit Some peptidoglycan synthesis inhibitors e g cefuroxime ceftazidime induce filamentation by inhibiting the penicillin binding proteins PBPs responsible for crosslinking peptidoglycan at the septal wall e g PBP3 in E coli and P aeruginosa Because the PBPs responsible for lateral wall synthesis are relatively unaffected by cefuroxime and ceftazidime cell elongation proceeds without any cell division and filamentation is observed 3 11 12 DNA synthesis inhibiting and DNA damaging antibiotics e g metronidazole mitomycin C the fluoroquinolones novobiocin induce filamentation via the SOS response The SOS response inhibits septum formation until the DNA can be repaired this delay stopping the transmission of damaged DNA to progeny Bacteria inhibit septation by synthesizing protein SulA an FtsZ inhibitor that halts Z ring formation thereby stopping recruitment and activation of PBP3 3 13 If bacteria are deprived of the nucleobase thymine by treatment with folic acid synthesis inhibitors e g trimethoprim this also disrupts DNA synthesis and induces SOS mediated filamentation Direct obstruction of Z ring formation by SulA and other FtsZ inhibitors e g berberine induces filamentation too 3 14 15 Some protein synthesis inhibitors e g kanamycin RNA synthesis inhibitors e g bicyclomycin and membrane disruptors e g daptomycin polymyxin B cause filamentation too but these filaments are much shorter than the filaments induced by the above antibiotics 3 Stress induced filamentation edit Filamentation is often a consequence of environmental stress It has been observed in response to temperature shocks 16 low water availability 17 high osmolarity 18 extreme pH 19 and UV exposure 20 UV light damages bacterial DNA and induces filamentation via the SOS response 3 21 Starvation can also cause bacterial filamentation 9 For example if bacteria are deprived of the nucleobase thymine this disrupts DNA synthesis and induces SOS mediated filamentation 3 22 Nutrient induced filamentation edit Several macronutrients and biomolecules can cause bacterial cells to filament including the amino acids glutamine proline and arginine and some branched chain amino acids 23 Certain bacterial species such as Paraburkholderia elongata will also filament as a result of a tendency to accumulate phosphate in the form of polyphosphate which can chelate metal cofactors needed by division proteins 2 In addition filamentation is induced by nutrient rich conditions in the intracellular pathogen Bordetella atropi This occurs via the highly conserved UDP glucose pathway UDP glucose biosynthesis and sensing suppresses bacterial cell division with the ensuing filamentation allowing B atropi to spread to neighboring cells 24 Intrinsic dysbiosis induced filamentation edit Filamentation can also be induced by other pathways affecting thymidylate synthesis For instance partial loss of dihydrofolate reductase DHFR activity causes reversible filamentation 25 DHFR has a critical role in regulating the amount of tetrahydrofolate which is essential for purine and thymidylate synthesis DHFR activity can be inhibited by mutations or by high concentrations of the antibiotic trimethoprim see antibiotic induced filamentation above Overcrowding of the periplasm or envelope can also induce filamentation in Gram negative bacteria by disrupting normal divisome function 26 27 Filamentation and biotic interactions edit Several examples of filamentation that result from biotic interactions between bacteria and other organisms or infectious agents have been reported Filamentous cells are resistant to ingestion by bacterivores and environmental conditions generated during predation can trigger filamentation 28 Filamentation can also be induced by signalling factors produced by other bacteria 29 In addition Agrobacterium spp filament in proximity to plant roots 30 and E coli filaments when exposed to plant extracts 31 Lastly bacteriophage infection can result in filamentation via the expression of proteins that inhibit divisome assembly 8 See also editBacterial morphological plasticity Filamentous bacteriophage Filamentous cyanobacteria Segmented filamentous bacteriaReferences edit a b c Jaimes Lizcano YA Hunn DD Papadopoulos KD April 2014 Filamentous Escherichia coli cells swimming in tapered microcapillaries Research in Microbiology 165 3 166 74 doi 10 1016 j resmic 2014 01 007 PMID 24566556 a b c Karasz DC Weaver AI Buckley DH Wilhelm RC January 2022 Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils Environmental Microbiology 24 1 1 17 doi 10 1111 1462 2920 15871 OSTI 1863903 PMID 34929753 S2CID 245412965 a b c d e f g h i Cushnie TP O Driscoll NH Lamb AJ December 2016 Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action Cellular and Molecular Life Sciences 73 23 4471 4492 doi 10 1007 s00018 016 2302 2 hdl 10059 2129 PMID 27392605 S2CID 2065821 Hahn MW Hofle MG May 1998 Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures Applied and Environmental Microbiology 64 5 1910 8 Bibcode 1998ApEnM 64 1910H doi 10 1128 AEM 64 5 1910 1918 1998 PMC 106250 PMID 9572971 Hahn MW Moore ER Hofle MG January 1999 Bacterial filament formation a defense mechanism against flagellate grazing is growth rate controlled in bacteria of different phyla Applied and Environmental Microbiology 65 1 25 35 Bibcode 1999ApEnM 65 25H doi 10 1128 AEM 65 1 25 35 1999 PMC 90978 PMID 9872755 Justice SS Hunstad DA Cegelski L Hultgren SJ February 2008 Morphological plasticity as a bacterial survival strategy Nature Reviews Microbiology 6 2 162 8 doi 10 1038 nrmicro1820 PMID 18157153 S2CID 7247384 Fuchs BB Eby J Nobile CJ El Khoury JB Mitchell AP Mylonakis E June 2010 Role of filamentation in Galleria mellonella killing by Candida albicans Microbes and Infection 12 6 488 96 doi 10 1016 j micinf 2010 03 001 PMC 288367 PMID 20223293 a b Ragunathan PT Vanderpool CK December 2019 Cryptic Prophage Encoded Small Protein DicB Protects Escherichia coli from Phage Infection by Inhibiting Inner Membrane Receptor Proteins Journal of Bacteriology 201 23 doi 10 1128 JB 00475 19 PMC 6832061 PMID 31527115 a b Bi E Lutkenhaus J February 1993 Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring Journal of Bacteriology 175 4 1118 1125 doi 10 1128 jb 175 4 1118 1125 1993 PMC 193028 PMID 8432706 Khandige S Asferg CA Rasmussen KJ Larsen MJ Overgaard M Andersen TE Moller Jensen J August 2016 Justice S Hultgren SJ eds DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli mBio 7 4 doi 10 1128 mBio 00642 16 PMC 4981707 PMID 27486187 Spratt BG August 1975 Distinct penicillin binding proteins involved in the division elongation and shape of Escherichia coli K12 Proceedings of the National Academy of Sciences of the United States of America 72 8 2999 3003 Bibcode 1975PNAS 72 2999S doi 10 1073 pnas 72 8 2999 PMC 432906 PMID 1103132 Bush K Bradford PA August 2016 b Lactams and b Lactamase Inhibitors An Overview Cold Spring Harbor Perspectives in Medicine 6 8 a025247 doi 10 1101 cshperspect a025247 PMC 4968164 PMID 27329032 Cordell SC Robinson EJ Lowe J June 2003 Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ Proceedings of the National Academy of Sciences of the United States of America 100 13 7889 94 Bibcode 2003PNAS 100 7889C doi 10 1073 pnas 1330742100 PMC 164683 PMID 12808143 Ray S Dhaked HP Panda D October 2014 Antimicrobial peptide CRAMP 16 33 stalls bacterial cytokinesis by inhibiting FtsZ assembly Biochemistry 53 41 6426 9 doi 10 1021 bi501115p PMID 25294259 Sass P Brotz Oesterhelt H October 2013 Bacterial cell division as a target for new antibiotics Current Opinion in Microbiology 16 5 522 530 doi 10 1016 j mib 2013 07 006 PMID 23932516 Gill CO Badoni M Jones TH November 2007 Behaviours of log phase cultures of eight strains of Escherichia coli incubated at temperatures of 2 6 8 and 10 degrees C International Journal of Food Microbiology 119 3 200 206 doi 10 1016 j ijfoodmicro 2007 07 043 PMID 17719669 Mattick KL Jorgensen F Legan JD Cole MB Porter J Lappin Scott HM Humphrey TJ April 2000 Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity Applied and Environmental Microbiology 66 4 1274 1279 Bibcode 2000ApEnM 66 1274M doi 10 1128 AEM 66 4 1274 1279 2000 PMC 91980 PMID 10742199 Chang WS Halverson LJ October 2003 Reduced water availability influences the dynamics development and ultrastructural properties of Pseudomonas putida biofilms Journal of Bacteriology 185 20 6199 6204 doi 10 1128 JB 185 20 6199 6204 2003 PMC 225025 PMID 14526033 Jones TH Vail KM McMullen LM July 2013 Filament formation by foodborne bacteria under sublethal stress International Journal of Food Microbiology 165 2 97 110 doi 10 1016 j ijfoodmicro 2013 05 001 PMID 23727653 Modenutti B Balseiro E Corno G Callieri C Bertoni R Caravati E July 2010 Ultraviolet radiation induces filamentation in bacterial assemblages from North Andean Patagonian lakes Photochemistry and Photobiology 86 4 871 881 doi 10 1111 j 1751 1097 2010 00758 x PMID 20528974 S2CID 45542973 Walker JR Pardee AB January 1968 Evidence for a relationship between deoxyribonucleic acid metabolism and septum formation in Escherichia coli Journal of Bacteriology 95 1 123 131 doi 10 1128 JB 95 1 123 131 1968 PMC 251980 PMID 4867214 Ohkawa T December 1975 Studies of intracellular thymidine nucleotides Thymineless death and the recovery after re addition of thymine in Escherichia coli K 12 European Journal of Biochemistry 60 1 57 66 doi 10 1111 j 1432 1033 1975 tb20975 x PMID 1107038 Jensen RH Woolfolk CA August 1985 Formation of Filaments by Pseudomonas putida Applied and Environmental Microbiology 50 2 364 372 Bibcode 1985ApEnM 50 364J doi 10 1128 aem 50 2 364 372 1985 PMC 238629 PMID 16346856 Tran TD Ali MA Lee D Felix MA Luallen RJ February 2022 Bacterial filamentation as a mechanism for cell to cell spread within an animal host Nature Communications 13 1 693 Bibcode 2022NatCo 13 693T doi 10 1038 s41467 022 28297 6 PMC 8816909 PMID 35121734 Bhattacharyya S Bershtein S Adkar BV Woodard J Shakhnovich EI June 2021 Metabolic response to point mutations reveals principles of modulation of in vivo enzyme activity and phenotype Molecular Systems Biology 17 6 e10200 arXiv 2012 09658 doi 10 15252 msb 202110200 PMC 8236904 PMID 34180142 Lau SY Zgurskaya HI November 2005 Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF TolC Journal of Bacteriology 187 22 7815 7825 doi 10 1128 JB 187 22 7815 7825 2005 PMC 1280316 PMID 16267305 Gode Potratz CJ Kustusch RJ Breheny PJ Weiss DS McCarter LL January 2011 Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence Molecular Microbiology 79 1 240 263 doi 10 1111 j 1365 2958 2010 07445 x PMC 3075615 PMID 21166906 Corno G Jurgens K January 2006 Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity Applied and Environmental Microbiology 72 1 78 86 Bibcode 2006ApEnM 72 78C doi 10 1128 AEM 72 1 78 86 2006 PMC 1352273 PMID 16391028 Ryan RP Fouhy Y Garcia BF Watt SA Niehaus K Yang L et al April 2008 Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa Molecular Microbiology 68 1 75 86 doi 10 1111 j 1365 2958 2008 06132 x PMID 18312265 S2CID 26725907 Finer KR Larkin KM Martin BJ Finer JJ February 2001 Proximity of Agrobacterium to living plant tissues induces conversion to a filamentous bacterial form Plant Cell Reports 20 3 250 255 doi 10 1007 s002990100315 S2CID 24531530 Mohamed Salem R Rodriguez Fernandez C Nieto Pelegrin E Conde Valentin B Rumbero A Martinez Quiles N 2019 Aqueous extract of Hibiscus sabdariffa inhibits pedestal induction by enteropathogenic E coli and promotes bacterial filamentation in vitro PLOS ONE 14 3 e0213580 Bibcode 2019PLoSO 1413580M doi 10 1371 journal pone 0213580 PMC 6407759 PMID 30849110 Retrieved from https en wikipedia org w index php title Filamentation amp oldid 1210341582, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.