fbpx
Wikipedia

Faddeev–LeVerrier algorithm

In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial of a square matrix, A, named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier. Calculation of this polynomial yields the eigenvalues of A as its roots; as a matrix polynomial in the matrix A itself, it vanishes by the Cayley–Hamilton theorem. Computing the characteristic polynomial directly from the definition of the determinant is computationally cumbersome insofar as it introduces a new symbolic quantity ; by contrast, the Faddeev-Le Verrier algorithm works directly with coefficients of matrix .

Urbain Le Verrier (1811–1877)
The discoverer of Neptune.

The algorithm has been independently rediscovered several times in different forms. It was first published in 1840 by Urbain Le Verrier, subsequently redeveloped by P. Horst, Jean-Marie Souriau, in its present form here by Faddeev and Sominsky, and further by J. S. Frame, and others.[1][2][3][4][5] (For historical points, see Householder.[6] An elegant shortcut to the proof, bypassing Newton polynomials, was introduced by Hou.[7] The bulk of the presentation here follows Gantmacher, p. 88.[8])

The Algorithm edit

The objective is to calculate the coefficients ck of the characteristic polynomial of the n×n matrix A,

 

where, evidently, cn = 1 and c0 = (−1)n det A.

The coefficients cn-i are determined by induction on i, using an auxiliary sequence of matrices

 

Thus,

 
 
 
 

etc.,[9][10]   ...;

 
 

Observe A−1 = − Mn /c0 = (−1)n−1Mn/detA terminates the recursion at λ. This could be used to obtain the inverse or the determinant of A.

Derivation edit

The proof relies on the modes of the adjugate matrix, Bk ≡ Mn−k, the auxiliary matrices encountered.   This matrix is defined by

 

and is thus proportional to the resolvent

 

It is evidently a matrix polynomial in λ of degree n−1. Thus,

 

where one may define the harmless M0≡0.

Inserting the explicit polynomial forms into the defining equation for the adjugate, above,

 

Now, at the highest order, the first term vanishes by M0=0; whereas at the bottom order (constant in λ, from the defining equation of the adjugate, above),

 

so that shifting the dummy indices of the first term yields

 

which thus dictates the recursion

 

for m=1,...,n. Note that ascending index amounts to descending in powers of λ, but the polynomial coefficients c are yet to be determined in terms of the Ms and A.

This can be easiest achieved through the following auxiliary equation (Hou, 1998),

 

This is but the trace of the defining equation for B by dint of Jacobi's formula,

 

Inserting the polynomial mode forms in this auxiliary equation yields

 

so that

 

and finally

 

This completes the recursion of the previous section, unfolding in descending powers of λ.

Further note in the algorithm that, more directly,

 

and, in comportance with the Cayley–Hamilton theorem,

 

The final solution might be more conveniently expressed in terms of complete exponential Bell polynomials as

 

Example edit

 

 

Furthermore,  , which confirms the above calculations.

The characteristic polynomial of matrix A is thus  ; the determinant of A is  ; the trace is 10=−c2; and the inverse of A is

 .

An equivalent but distinct expression edit

A compact determinant of an m×m-matrix solution for the above Jacobi's formula may alternatively determine the coefficients c,[11][12]

 

See also edit

References edit

  1. ^ Urbain Le Verrier: Sur les variations séculaires des éléments des orbites pour les sept planètes principales, J. de Math. (1) 5, 230 (1840), Online
  2. ^ Paul Horst: A method of determining the coefficients of a characteristic equation. Ann. Math. Stat. 6 83-84 (1935), doi:10.1214/aoms/1177732612
  3. ^ Jean-Marie Souriau, Une méthode pour la décomposition spectrale et l'inversion des matrices, Comptes Rend. 227, 1010-1011 (1948).
  4. ^ D. K. Faddeev, and I. S. Sominsky, Sbornik zadatch po vyshej algebra (Problems in higher algebra, Mir publishers, 1972), Moscow-Leningrad (1949). Problem 979.
  5. ^ J. S. Frame: A simple recursion formula for inverting a matrix (abstract), Bull. Am. Math. Soc. 55 1045 (1949), doi:10.1090/S0002-9904-1949-09310-2
  6. ^ Householder, Alston S. (2006). The Theory of Matrices in Numerical Analysis. Dover Books on Mathematics. ISBN 0486449726.
  7. ^ Hou, S. H. (1998). "Classroom Note: A Simple Proof of the Leverrier--Faddeev Characteristic Polynomial Algorithm" SIAM review 40(3) 706-709, doi:10.1137/S003614459732076X .
  8. ^ Gantmacher, F.R. (1960). The Theory of Matrices. NY: Chelsea Publishing. ISBN 0-8218-1376-5.
  9. ^ Zadeh, Lotfi A. and Desoer, Charles A. (1963, 2008). Linear System Theory: The State Space Approach (Mc Graw-Hill; Dover Civil and Mechanical Engineering) ISBN 9780486466637, pp 303–305;
  10. ^ Abdeljaoued, Jounaidi and Lombardi, Henri (2004). Méthodes matricielles - Introduction à la complexité algébrique, (Mathématiques et Applications, 42) Springer, ISBN 3540202471 .
  11. ^ Brown, Lowell S. (1994). Quantum Field Theory, Cambridge University Press. ISBN 978-0-521-46946-3, p. 54; Also see, Curtright, T. L., Fairlie, D. B. and Alshal, H. (2012). "A Galileon Primer", arXiv:1212.6972, section 3.
  12. ^ Reed, M.; Simon, B. (1978). Methods of Modern Mathematical Physics. Vol. 4 Analysis of Operators. USA: ACADEMIC PRESS, INC. pp. 323–333, 340, 343. ISBN 0-12-585004-2.

Barbaresco F. (2019) Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups. In: Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science, vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_10

faddeev, leverrier, algorithm, mathematics, linear, algebra, recursive, method, calculate, coefficients, characteristic, polynomial, displaystyle, lambda, lambda, square, matrix, named, after, dmitry, konstantinovich, faddeev, urbain, verrier, calculation, thi. In mathematics linear algebra the Faddeev LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial p A l det l I n A displaystyle p A lambda det lambda I n A of a square matrix A named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier Calculation of this polynomial yields the eigenvalues of A as its roots as a matrix polynomial in the matrix A itself it vanishes by the Cayley Hamilton theorem Computing the characteristic polynomial directly from the definition of the determinant is computationally cumbersome insofar as it introduces a new symbolic quantity l displaystyle lambda by contrast the Faddeev Le Verrier algorithm works directly with coefficients of matrix A displaystyle A Urbain Le Verrier 1811 1877 The discoverer of Neptune The algorithm has been independently rediscovered several times in different forms It was first published in 1840 by Urbain Le Verrier subsequently redeveloped by P Horst Jean Marie Souriau in its present form here by Faddeev and Sominsky and further by J S Frame and others 1 2 3 4 5 For historical points see Householder 6 An elegant shortcut to the proof bypassing Newton polynomials was introduced by Hou 7 The bulk of the presentation here follows Gantmacher p 88 8 Contents 1 The Algorithm 2 Derivation 3 Example 4 An equivalent but distinct expression 5 See also 6 ReferencesThe Algorithm editThe objective is to calculate the coefficients ck of the characteristic polynomial of the n n matrix A p A l det l I n A k 0 n c k l k displaystyle p A lambda equiv det lambda I n A sum k 0 n c k lambda k nbsp dd where evidently cn 1 and c 0 1 n det A The coefficients cn i are determined by induction on i using an auxiliary sequence of matrices M 0 0 c n 1 k 0 M k A M k 1 c n k 1 I c n k 1 k t r A M k k 1 n displaystyle begin aligned M 0 amp equiv 0 amp c n amp 1 qquad amp k 0 M k amp equiv AM k 1 c n k 1 I qquad qquad amp c n k amp frac 1 k mathrm tr AM k qquad amp k 1 ldots n end aligned nbsp Thus M 1 I c n 1 t r A c n t r A displaystyle M 1 I quad c n 1 mathrm tr A c n mathrm tr A nbsp M 2 A I t r A c n 2 1 2 t r A 2 t r A 2 1 2 c n t r A 2 c n 1 t r A displaystyle M 2 A I mathrm tr A quad c n 2 frac 1 2 Bigl mathrm tr A 2 mathrm tr A 2 Bigr frac 1 2 c n mathrm tr A 2 c n 1 mathrm tr A nbsp M 3 A 2 A t r A 1 2 t r A 2 t r A 2 I displaystyle M 3 A 2 A mathrm tr A frac 1 2 Bigl mathrm tr A 2 mathrm tr A 2 Bigr I nbsp c n 3 1 6 tr A 3 3 tr A 2 tr A 2 tr A 3 1 3 c n t r A 3 c n 1 t r A 2 c n 2 t r A displaystyle c n 3 tfrac 1 6 Bigl operatorname tr A 3 3 operatorname tr A 2 operatorname tr A 2 operatorname tr A 3 Bigr frac 1 3 c n mathrm tr A 3 c n 1 mathrm tr A 2 c n 2 mathrm tr A nbsp dd etc 9 10 M m k 1 m c n m k A k 1 displaystyle M m sum k 1 m c n m k A k 1 nbsp c n m 1 m c n t r A m c n 1 t r A m 1 c n m 1 t r A 1 m k 1 m c n m k t r A k displaystyle c n m frac 1 m c n mathrm tr A m c n 1 mathrm tr A m 1 c n m 1 mathrm tr A frac 1 m sum k 1 m c n m k mathrm tr A k nbsp Observe A 1 Mn c0 1 n 1Mn detA terminates the recursion at l This could be used to obtain the inverse or the determinant of A Derivation editThe proof relies on the modes of the adjugate matrix Bk Mn k the auxiliary matrices encountered This matrix is defined by l I A B I p A l displaystyle lambda I A B I p A lambda nbsp dd and is thus proportional to the resolvent B l I A 1 I p A l displaystyle B lambda I A 1 I p A lambda nbsp It is evidently a matrix polynomial in l of degree n 1 Thus B k 0 n 1 l k B k k 0 n l k M n k displaystyle B equiv sum k 0 n 1 lambda k B k sum k 0 n lambda k M n k nbsp dd where one may define the harmless M0 0 Inserting the explicit polynomial forms into the defining equation for the adjugate above k 0 n l k 1 M n k l k A M n k c k I 0 displaystyle sum k 0 n lambda k 1 M n k lambda k AM n k c k I 0 nbsp Now at the highest order the first term vanishes by M0 0 whereas at the bottom order constant in l from the defining equation of the adjugate above M n A B 0 A c 0 displaystyle M n A B 0 A c 0 nbsp so that shifting the dummy indices of the first term yields k 1 n l k M 1 n k A M n k c k I 0 displaystyle sum k 1 n lambda k Big M 1 n k AM n k c k I Big 0 nbsp which thus dictates the recursion M m A M m 1 c n m 1 I displaystyle therefore qquad M m AM m 1 c n m 1 I nbsp for m 1 n Note that ascending index amounts to descending in powers of l but the polynomial coefficients c are yet to be determined in terms of the M s and A This can be easiest achieved through the following auxiliary equation Hou 1998 l p A l l n p tr A B displaystyle lambda frac partial p A lambda partial lambda np operatorname tr AB nbsp dd This is but the trace of the defining equation for B by dint of Jacobi s formula p A l l p A l m 0 l m 1 tr A m p A l tr I l I A tr B displaystyle frac partial p A lambda partial lambda p A lambda sum m 0 infty lambda m 1 operatorname tr A m p A lambda operatorname tr frac I lambda I A equiv operatorname tr B nbsp Inserting the polynomial mode forms in this auxiliary equation yields k 1 n l k k c k n c k tr A M n k 0 displaystyle sum k 1 n lambda k Big kc k nc k operatorname tr AM n k Big 0 nbsp so that m 1 n 1 l n m m c n m tr A M m 0 displaystyle sum m 1 n 1 lambda n m Big mc n m operatorname tr AM m Big 0 nbsp and finally c n m 1 m tr A M m displaystyle therefore qquad c n m frac 1 m operatorname tr AM m nbsp This completes the recursion of the previous section unfolding in descending powers of l Further note in the algorithm that more directly M m A M m 1 1 m 1 tr A M m 1 I displaystyle M m AM m 1 frac 1 m 1 operatorname tr AM m 1 I nbsp and in comportance with the Cayley Hamilton theorem adj A 1 n 1 M n 1 n 1 A n 1 c n 1 A n 2 c 2 A c 1 I 1 n 1 k 1 n c k A k 1 displaystyle operatorname adj A 1 n 1 M n 1 n 1 A n 1 c n 1 A n 2 c 2 A c 1 I 1 n 1 sum k 1 n c k A k 1 nbsp The final solution might be more conveniently expressed in terms of complete exponential Bell polynomials as c n k 1 n k k B k tr A 1 tr A 2 2 tr A 3 1 k 1 k 1 tr A k displaystyle c n k frac 1 n k k mathcal B k Bigl operatorname tr A 1 operatorname tr A 2 2 operatorname tr A 3 ldots 1 k 1 k 1 operatorname tr A k Bigr nbsp Example editA 3 1 5 3 3 1 4 6 4 displaystyle displaystyle A left begin array rrr 3 amp 1 amp 5 3 amp 3 amp 1 4 amp 6 amp 4 end array right nbsp M 0 0 0 0 0 0 0 0 0 0 c 3 1 M 1 1 0 0 0 1 0 0 0 1 A M 1 3 1 5 3 3 1 4 6 4 c 2 1 1 10 10 M 2 7 1 5 3 7 1 4 6 6 A M 2 2 26 14 8 12 12 6 14 2 c 1 1 2 8 4 M 3 6 26 14 8 8 12 6 14 6 A M 3 40 0 0 0 40 0 0 0 40 c 0 1 3 120 40 displaystyle displaystyle begin aligned M 0 amp left begin array rrr 0 amp 0 amp 0 0 amp 0 amp 0 0 amp 0 amp 0 end array right quad amp amp amp c 3 amp amp amp amp amp amp 1 M mathbf color blue 1 amp left begin array rrr 1 amp 0 amp 0 0 amp 1 amp 0 0 amp 0 amp 1 end array right amp A M 1 amp left begin array rrr mathbf color red 3 amp 1 amp 5 3 amp mathbf color red 3 amp 1 4 amp 6 amp mathbf color red 4 end array right amp c 2 amp amp amp frac 1 mathbf color blue 1 mathbf color red 10 amp amp amp 10 M mathbf color blue 2 amp left begin array rrr 7 amp 1 amp 5 3 amp 7 amp 1 4 amp 6 amp 6 end array right qquad amp A M 2 amp left begin array rrr mathbf color red 2 amp 26 amp 14 8 amp mathbf color red 12 amp 12 6 amp 14 amp mathbf color red 2 end array right qquad amp c 1 amp amp amp frac 1 mathbf color blue 2 mathbf color red 8 amp amp amp 4 M mathbf color blue 3 amp left begin array rrr 6 amp 26 amp 14 8 amp 8 amp 12 6 amp 14 amp 6 end array right qquad amp A M 3 amp left begin array rrr mathbf color red 40 amp 0 amp 0 0 amp mathbf color red 40 amp 0 0 amp 0 amp mathbf color red 40 end array right qquad amp c 0 amp amp amp frac 1 mathbf color blue 3 mathbf color red 120 amp amp amp 40 end aligned nbsp Furthermore M 4 A M 3 c 0 I 0 displaystyle displaystyle M 4 A M 3 c 0 I 0 nbsp which confirms the above calculations The characteristic polynomial of matrix A is thus p A l l 3 10 l 2 4 l 40 displaystyle displaystyle p A lambda lambda 3 10 lambda 2 4 lambda 40 nbsp the determinant of A is det A 1 3 c 0 40 displaystyle displaystyle det A 1 3 c 0 40 nbsp the trace is 10 c2 and the inverse of A is A 1 1 c 0 M 3 1 40 6 26 14 8 8 12 6 14 6 0 15 0 65 0 35 0 20 0 20 0 30 0 15 0 35 0 15 displaystyle displaystyle A 1 frac 1 c 0 M 3 frac 1 40 left begin array rrr 6 amp 26 amp 14 8 amp 8 amp 12 6 amp 14 amp 6 end array right left begin array rrr 0 15 amp 0 65 amp 0 35 0 20 amp 0 20 amp 0 30 0 15 amp 0 35 amp 0 15 end array right nbsp An equivalent but distinct expression editA compact determinant of an m m matrix solution for the above Jacobi s formula may alternatively determine the coefficients c 11 12 c n m 1 m m tr A m 1 0 0 tr A 2 tr A m 2 0 tr A m 1 tr A m 2 1 tr A m tr A m 1 tr A displaystyle c n m frac 1 m m begin vmatrix operatorname tr A amp m 1 amp 0 amp cdots amp 0 operatorname tr A 2 amp operatorname tr A amp m 2 amp cdots amp 0 vdots amp vdots amp amp amp vdots operatorname tr A m 1 amp operatorname tr A m 2 amp cdots amp cdots amp 1 operatorname tr A m amp operatorname tr A m 1 amp cdots amp cdots amp operatorname tr A end vmatrix nbsp See also editCharacteristic polynomial Exterior algebra Leverrier s algorithm Horner s method Fredholm determinantReferences edit Urbain Le Verrier Sur les variations seculaires des elements des orbites pour les sept planetes principales J de Math 1 5 230 1840 Online Paul Horst A method of determining the coefficients of a characteristic equation Ann Math Stat 6 83 84 1935 doi 10 1214 aoms 1177732612 Jean Marie Souriau Une methode pour la decomposition spectrale et l inversion des matrices Comptes Rend 227 1010 1011 1948 D K Faddeev and I S Sominsky Sbornik zadatch po vyshej algebra Problems in higher algebra Mir publishers 1972 Moscow Leningrad 1949 Problem 979 J S Frame A simple recursion formula for inverting a matrix abstract Bull Am Math Soc 55 1045 1949 doi 10 1090 S0002 9904 1949 09310 2 Householder Alston S 2006 The Theory of Matrices in Numerical Analysis Dover Books on Mathematics ISBN 0486449726 Hou S H 1998 Classroom Note A Simple Proof of the Leverrier Faddeev Characteristic Polynomial Algorithm SIAM review 40 3 706 709 doi 10 1137 S003614459732076X Gantmacher F R 1960 The Theory of Matrices NY Chelsea Publishing ISBN 0 8218 1376 5 Zadeh Lotfi A and Desoer Charles A 1963 2008 Linear System Theory The State Space Approach Mc Graw Hill Dover Civil and Mechanical Engineering ISBN 9780486466637 pp 303 305 Abdeljaoued Jounaidi and Lombardi Henri 2004 Methodes matricielles Introduction a la complexite algebrique Mathematiques et Applications 42 Springer ISBN 3540202471 Brown Lowell S 1994 Quantum Field Theory Cambridge University Press ISBN 978 0 521 46946 3 p 54 Also see Curtright T L Fairlie D B and Alshal H 2012 A Galileon Primer arXiv 1212 6972 section 3 Reed M Simon B 1978 Methods of Modern Mathematical Physics Vol 4 Analysis of Operators USA ACADEMIC PRESS INC pp 323 333 340 343 ISBN 0 12 585004 2 Barbaresco F 2019 Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups In Nielsen F Barbaresco F eds Geometric Science of Information GSI 2019 Lecture Notes in Computer Science vol 11712 Springer Cham https doi org 10 1007 978 3 030 26980 7 10 Retrieved from https en wikipedia org w index php title Faddeev LeVerrier algorithm amp oldid 1191498452, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.