fbpx
Wikipedia

Euler substitution

Euler substitution is a method for evaluating integrals of the form

where is a rational function of and . In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.[1]

Euler's first substitution

The first substitution of Euler is used when  . We substitute

 
and solve the resulting expression for  . We have that   and that the   term is expressible rationally in  .

In this substitution, either the positive sign or the negative sign can be chosen.

Euler's second substitution

If  , we take

 
We solve for   similarly as above and find
 

Again, either the positive or the negative sign can be chosen.

Euler's third substitution

If the polynomial   has real roots   and  , we may choose  . This yields   and as in the preceding cases, we can express the entire integrand rationally in  .

Worked examples

Examples for Euler's first substitution

One

In the integral   we can use the first substitution and set  , thus

 
 
Accordingly, we obtain:
 

The cases   give the formulas

 

Two

For finding the value of

 
we find   using the first substitution of Euler,  . Squaring both sides of the equation gives us  , from which the   terms will cancel out. Solving for   yields
 

From there, we find that the differentials   and   are related by  

Hence,

 

Examples for Euler's second substitution

In the integral

 
we can use the second substitution and set  . Thus
 
and
 

Accordingly, we obtain:

 

Examples for Euler's third substitution

To evaluate

 
we can use the third substitution and set  . Thus
 
and
 

Next,

 
As we can see this is a rational function which can be solved using partial fractions.

Generalizations

The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral  , the substitution   can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

The substitutions of Euler can be generalized to a larger class of functions. Consider integrals of the form

 
where   and   are rational functions of   and  . This integral can be transformed by the substitution   into another integral
 
where   and   are now simply rational functions of  . In principle, factorization and partial fraction decomposition can be employed to break the integral down into simple terms, which can be integrated analytically through use of the dilogarithm function.[2]

See also

References

  1. ^ N. Piskunov, Diferentsiaal- ja integraalarvutus körgematele tehnilistele öppeasutustele. Viies, taiendatud trukk. Kirjastus Valgus, Tallinn (1965). Note: Euler substitutions can be found in most Russian calculus textbooks.
  2. ^ Zwillinger, Daniel. The Handbook of Integration. Jones and Bartlett. pp. 145–146. ISBN 978-0867202939.

This article incorporates material from Eulers Substitutions For Integration on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

euler, substitution, method, evaluating, integrals, form, displaystyle, sqrt, where, displaystyle, rational, function, displaystyle, textstyle, sqrt, such, cases, integrand, changed, rational, function, using, substitutions, euler, contents, euler, first, subs. Euler substitution is a method for evaluating integrals of the form R x a x 2 b x c d x displaystyle int R x sqrt ax 2 bx c dx where R displaystyle R is a rational function of x displaystyle x and a x 2 b x c textstyle sqrt ax 2 bx c In such cases the integrand can be changed to a rational function by using the substitutions of Euler 1 Contents 1 Euler s first substitution 2 Euler s second substitution 3 Euler s third substitution 4 Worked examples 4 1 Examples for Euler s first substitution 4 1 1 One 4 1 2 Two 4 2 Examples for Euler s second substitution 4 3 Examples for Euler s third substitution 5 Generalizations 6 See also 7 ReferencesEuler s first substitution EditThe first substitution of Euler is used when a gt 0 displaystyle a gt 0 We substitutea x 2 b x c x a t displaystyle sqrt ax 2 bx c pm x sqrt a t and solve the resulting expression for x displaystyle x We have that x c t 2 2 t a b displaystyle x frac c t 2 pm 2t sqrt a b and that the d x displaystyle dx term is expressible rationally in t displaystyle t In this substitution either the positive sign or the negative sign can be chosen Euler s second substitution EditIf c gt 0 displaystyle c gt 0 we takea x 2 b x c x t c displaystyle sqrt ax 2 bx c xt pm sqrt c We solve for x displaystyle x similarly as above and find x 2 t c b a t 2 displaystyle x frac pm 2t sqrt c b a t 2 Again either the positive or the negative sign can be chosen Euler s third substitution EditIf the polynomial a x 2 b x c displaystyle ax 2 bx c has real roots a displaystyle alpha and b displaystyle beta we may choose a x 2 b x c a x a x b x a t textstyle sqrt ax 2 bx c sqrt a x alpha x beta x alpha t This yields x a b a t 2 a t 2 displaystyle x frac a beta alpha t 2 a t 2 and as in the preceding cases we can express the entire integrand rationally in t displaystyle t Worked examples EditExamples for Euler s first substitution Edit One Edit In the integral d x x 2 c displaystyle int frac dx sqrt x 2 c we can use the first substitution and set x 2 c x t textstyle sqrt x 2 c x t thusx t 2 c 2 t d x t 2 c 2 t 2 d t displaystyle x frac t 2 c 2t quad quad dx frac t 2 c 2t 2 dt x 2 c t 2 c 2 t t t 2 c 2 t displaystyle sqrt x 2 c frac t 2 c 2t t frac t 2 c 2t Accordingly we obtain d x x 2 c t 2 c 2 t 2 t 2 c 2 t d t d t t ln t C ln x x 2 c C displaystyle int frac dx sqrt x 2 c int frac frac t 2 c 2t 2 frac t 2 c 2t dt int frac dt t ln t C ln left x sqrt x 2 c right C The cases c 1 displaystyle c pm 1 give the formulas d x x 2 1 arsinh x C d x x 2 1 arcosh x C x gt 1 displaystyle begin aligned int frac dx sqrt x 2 1 amp operatorname arsinh x C 6pt int frac dx sqrt x 2 1 amp operatorname arcosh x C qquad x gt 1 end aligned Two Edit For finding the value of 1 x x 2 4 x 4 d x displaystyle int frac 1 x sqrt x 2 4x 4 dx we find t displaystyle t using the first substitution of Euler x 2 4 x 4 1 x t x t textstyle sqrt x 2 4x 4 sqrt 1 x t x t Squaring both sides of the equation gives us x 2 4 x 4 x 2 2 x t t 2 displaystyle x 2 4x 4 x 2 2xt t 2 from which the x 2 displaystyle x 2 terms will cancel out Solving for x displaystyle x yields x t 2 4 4 2 t displaystyle x frac t 2 4 4 2t From there we find that the differentials d x displaystyle dx and d t displaystyle dt are related by d x 2 t 2 8 t 8 4 2 t 2 d t displaystyle dx frac 2t 2 8t 8 4 2t 2 dt Hence d x x x 2 4 x 4 2 t 2 8 t 8 4 2 t 2 t 2 4 4 2 t t 2 4 t 4 4 2 t d t t x 2 4 x 4 x 2 d t t 2 4 tan 1 t 2 C tan 1 x 2 4 x 4 x 2 C displaystyle begin aligned int frac dx x sqrt x 2 4x 4 amp int frac frac 2t 2 8t 8 4 2t 2 left frac t 2 4 4 2t right left frac t 2 4t 4 4 2t right dt amp amp t sqrt x 2 4x 4 x 6pt amp 2 int frac dt t 2 4 tan 1 left frac t 2 right C 6pt amp tan 1 left frac sqrt x 2 4x 4 x 2 right C end aligned Examples for Euler s second substitution Edit In the integral d x x x 2 x 2 displaystyle int frac dx x sqrt x 2 x 2 we can use the second substitution and set x 2 x 2 x t 2 displaystyle sqrt x 2 x 2 xt sqrt 2 Thus x 1 2 2 t t 2 1 d x 2 2 t 2 2 t 2 2 t 2 1 2 d t displaystyle x frac 1 2 sqrt 2 t t 2 1 qquad dx frac 2 sqrt 2 t 2 2t 2 sqrt 2 t 2 1 2 dt and x 2 x 2 1 2 2 t t 2 1 t 2 2 t 2 t 2 t 2 1 displaystyle sqrt x 2 x 2 frac 1 2 sqrt 2 t t 2 1 t sqrt 2 frac sqrt 2 t 2 t sqrt 2 t 2 1 Accordingly we obtain d x x x 2 x 2 2 2 t 2 2 t 2 2 t 2 1 2 1 2 2 t t 2 1 2 t 2 t 2 t 2 1 d t 2 2 2 t 1 d t 1 2 2 2 2 2 t 1 d t 1 2 ln 2 2 t 1 C 2 2 ln 2 2 x 2 x 2 2 x 1 C displaystyle begin aligned int frac dx x sqrt x 2 x 2 amp int frac frac 2 sqrt 2 t 2 2t 2 sqrt 2 t 2 1 2 frac 1 2 sqrt 2 t t 2 1 frac sqrt 2 t 2 t sqrt 2 t 2 1 dt 6pt amp int frac 2 2 sqrt 2 t 1 dt frac 1 sqrt 2 int frac 2 sqrt 2 2 sqrt 2 t 1 dt 6pt amp frac 1 sqrt 2 ln left 2 sqrt 2 t 1 right C 4pt amp frac sqrt 2 2 ln left 2 sqrt 2 frac sqrt x 2 x 2 sqrt 2 x 1 right C end aligned Examples for Euler s third substitution Edit To evaluate x 2 x 2 3 x 2 d x displaystyle int frac x 2 sqrt x 2 3x 2 dx we can use the third substitution and set x 2 x 1 x 2 t textstyle sqrt x 2 x 1 x 2 t Thus x 2 t 2 1 t 2 1 d x 2 t t 2 1 2 d t displaystyle x frac 2t 2 1 t 2 1 qquad dx frac 2t t 2 1 2 dt and x 2 3 x 2 x 2 t t t 2 1 displaystyle sqrt x 2 3x 2 x 2 t frac t t 2 1 Next x 2 x 2 3 x 2 d x 2 t 2 1 t 2 1 2 2 t t 2 1 2 t t 2 1 d t 2 2 t 2 1 2 t 2 1 3 d t displaystyle int frac x 2 sqrt x 2 3x 2 dx int frac left frac 2t 2 1 t 2 1 right 2 frac 2t t 2 1 2 frac t t 2 1 dt int frac 2 2t 2 1 2 t 2 1 3 dt As we can see this is a rational function which can be solved using partial fractions Generalizations EditThe substitutions of Euler can be generalized by allowing the use of imaginary numbers For example in the integral d x x 2 c textstyle int frac dx sqrt x 2 c the substitution x 2 c i x t textstyle sqrt x 2 c pm ix t can be used Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic The substitutions of Euler can be generalized to a larger class of functions Consider integrals of the form R 1 x a x 2 b x c log R 2 x a x 2 b x c d x displaystyle int R 1 left x sqrt ax 2 bx c right log left R 2 left x sqrt ax 2 bx c right right dx where R 1 displaystyle R 1 and R 2 displaystyle R 2 are rational functions of x displaystyle x and a x 2 b x c textstyle sqrt ax 2 bx c This integral can be transformed by the substitution a x 2 b x c a x t textstyle sqrt ax 2 bx c sqrt a xt into another integral R 1 t log R 2 t d t displaystyle int tilde R 1 t log big tilde R 2 t big dt where R 1 t displaystyle tilde R 1 t and R 2 t displaystyle tilde R 2 t are now simply rational functions of t displaystyle t In principle factorization and partial fraction decomposition can be employed to break the integral down into simple terms which can be integrated analytically through use of the dilogarithm function 2 See also Edit Mathematics portalIntegration by substitution Trigonometric substitution Weierstrass substitutionReferences Edit N Piskunov Diferentsiaal ja integraalarvutus korgematele tehnilistele oppeasutustele Viies taiendatud trukk Kirjastus Valgus Tallinn 1965 Note Euler substitutions can be found in most Russian calculus textbooks Zwillinger Daniel The Handbook of Integration Jones and Bartlett pp 145 146 ISBN 978 0867202939 This article incorporates material from Eulers Substitutions For Integration on PlanetMath which is licensed under the Creative Commons Attribution Share Alike License Retrieved from https en wikipedia org w index php title Euler substitution amp oldid 1104447582, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.