fbpx
Wikipedia

Electrooculography

Electrooculography (EOG) is a technique for measuring the corneo-retinal standing potential that exists between the front and the back of the human eye. The resulting signal is called the electrooculogram. Primary applications are in ophthalmological diagnosis and in recording eye movements. Unlike the electroretinogram, the EOG does not measure response to individual visual stimuli.[citation needed]

Electrooculography
Electrooculograms for the left eye (LEOG) and the right eye (REOG) for the period of REM sleep.
ICD-9-CM95.22
MeSHD004585
[edit on Wikidata]

To measure eye movement, pairs of electrodes are typically placed either above and below the eye or to the left and right of the eye. If the eye moves from center position toward one of the two electrodes, this electrode "sees" the positive side of the retina and the opposite electrode "sees" the negative side of the retina. Consequently, a potential difference occurs between the electrodes. Assuming that the resting potential is constant, the recorded potential is a measure of the eye's position.

In 1951 Elwin Marg described and named electrooculogram for a technique of measuring the resting potential of the retina in the human eye.[1]

Principle edit

The eye acts as a dipole in which the anterior pole is positive and the posterior pole is negative.

  1. Left gaze: the cornea approaches the electrode near the outer canthus of the left eye, resulting in a negative-trending change in the recorded potential difference.
  2. Right gaze: the cornea approaches the electrode near the inner canthus of the left eye, resulting in a positive-trending change in the recorded potential difference.

Ophthalmological diagnosis edit

The EOG is used to assess the function of the pigment epithelium. During dark adaptation, resting potential decreases slightly and reaches a minimum ("dark trough") after several minutes. When light is switched on, a substantial increase of the resting potential occurs ("light peak"), which drops off after a few minutes when the retina adapts to the light. The ratio of the voltages (i.e. light peak divided by dark trough) is known as the Arden ratio. In practice, the measurement is similar to eye movement recordings (see above). The patient is asked to switch eye position repeatedly between two points (alternating looking from center to the left and from center to the right). Since these positions are constant, a change in the recorded potential originates from a change in the resting potential.[citation needed]

See also edit

References edit

  1. ^ Marg, Elwin (1951). "Development of electro-oculography; standing potential of the eye in registration of eye movement". AMA Arch Ophthalmol. 45 (2): 169–185. doi:10.1001/archopht.1951.01700010174006. PMID 14799014.
  • Brown, M., Marmor, M. and Vaegan, ISCEV Standard for Clinical Electro-oculography (EOG) (2006), in: Documenta Ophthalmologica, 113:3(205—212)
  • Bulling, A. et al.: It's in Your Eyes - Towards Context-Awareness and Mobile HCI Using Wearable EOG Goggles, Proc. of the 10th International Conference on Ubiquitous Computing (UbiComp 2008), pages 84–93, ACM Press, 2008
  • Bulling, A. et al.: Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography, Proc. of the 6th International Conference on Pervasive Computing (Pervasive 2008), pages 19–37, Springer, 2008
  • Bulling, A. et al.: Wearable EOG goggles: Seamless sensing and context-awareness in everyday environments, Journal of Ambient Intelligence and Smart Environments, 1(2):157-171, 2009
  • Bulling, A. et al.: Eye Movement Analysis for Activity Recognition Using Electrooculography, IEEE Transactions on Pattern Analysis and Machine Intelligence, in press
  • Bulling, A. et al.: Eye Movement Analysis for Activity Recognition, International Conference on Ubiquitous Computing (UbiComp 2009), pages 41–50, ACM Press, 2009.

electrooculography, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, decembe. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Electrooculography news newspapers books scholar JSTOR December 2016 Learn how and when to remove this template message EOG redirects here For other uses see EOG disambiguation Not to be confused with other types of electrography Electrooculography EOG is a technique for measuring the corneo retinal standing potential that exists between the front and the back of the human eye The resulting signal is called the electrooculogram Primary applications are in ophthalmological diagnosis and in recording eye movements Unlike the electroretinogram the EOG does not measure response to individual visual stimuli citation needed ElectrooculographyElectrooculograms for the left eye LEOG and the right eye REOG for the period of REM sleep ICD 9 CM95 22MeSHD004585 edit on Wikidata To measure eye movement pairs of electrodes are typically placed either above and below the eye or to the left and right of the eye If the eye moves from center position toward one of the two electrodes this electrode sees the positive side of the retina and the opposite electrode sees the negative side of the retina Consequently a potential difference occurs between the electrodes Assuming that the resting potential is constant the recorded potential is a measure of the eye s position In 1951 Elwin Marg described and named electrooculogram for a technique of measuring the resting potential of the retina in the human eye 1 Contents 1 Principle 2 Ophthalmological diagnosis 3 See also 4 ReferencesPrinciple editThe eye acts as a dipole in which the anterior pole is positive and the posterior pole is negative Left gaze the cornea approaches the electrode near the outer canthus of the left eye resulting in a negative trending change in the recorded potential difference Right gaze the cornea approaches the electrode near the inner canthus of the left eye resulting in a positive trending change in the recorded potential difference Ophthalmological diagnosis editThe EOG is used to assess the function of the pigment epithelium During dark adaptation resting potential decreases slightly and reaches a minimum dark trough after several minutes When light is switched on a substantial increase of the resting potential occurs light peak which drops off after a few minutes when the retina adapts to the light The ratio of the voltages i e light peak divided by dark trough is known as the Arden ratio In practice the measurement is similar to eye movement recordings see above The patient is asked to switch eye position repeatedly between two points alternating looking from center to the left and from center to the right Since these positions are constant a change in the recorded potential originates from a change in the resting potential citation needed See also editInternational Society for Clinical Electrophysiology of Vision Nystagmus Optokinetic drum OrthoptistReferences edit Marg Elwin 1951 Development of electro oculography standing potential of the eye in registration of eye movement AMA Arch Ophthalmol 45 2 169 185 doi 10 1001 archopht 1951 01700010174006 PMID 14799014 Brown M Marmor M and Vaegan ISCEV Standard for Clinical Electro oculography EOG 2006 in Documenta Ophthalmologica 113 3 205 212 Bulling A et al It s in Your Eyes Towards Context Awareness and Mobile HCI Using Wearable EOG Goggles Proc of the 10th International Conference on Ubiquitous Computing UbiComp 2008 pages 84 93 ACM Press 2008 Bulling A et al Robust Recognition of Reading Activity in Transit Using Wearable Electrooculography Proc of the 6th International Conference on Pervasive Computing Pervasive 2008 pages 19 37 Springer 2008 Bulling A et al Wearable EOG goggles Seamless sensing and context awareness in everyday environments Journal of Ambient Intelligence and Smart Environments 1 2 157 171 2009 Bulling A et al Eye Movement Analysis for Activity Recognition Using Electrooculography IEEE Transactions on Pattern Analysis and Machine Intelligence in press Bulling A et al Eye Movement Analysis for Activity Recognition International Conference on Ubiquitous Computing UbiComp 2009 pages 41 50 ACM Press 2009 Retrieved from https en wikipedia org w index php title Electrooculography amp oldid 1181551711, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.