fbpx
Wikipedia

Dual graviton

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.[3]

The dual graviton was first hypothesized in 1980.[4] It was theoretically modeled in 2000s,[1][2] which was then predicted in eleven-dimensional mathematics of SO(8) supergravity in the framework of electric-magnetic duality.[3] It again emerged in the E11 generalized geometry in eleven dimensions,[5] and the E7 generalized vielbein-geometry in eleven dimensions.[6] While there is no local coupling between graviton and dual graviton, the field introduced by dual graviton may be coupled to a BF model as non-local gravitational fields in extra dimensions.[7]

A massive dual gravity of Ogievetsky–Polubarinov model[8] can be obtained by coupling the dual graviton field to the curl of its own energy-momentum tensor.[9][10]

The previously mentioned theories of dual graviton are in flat space. In de Sitter and anti-de Sitter spaces (A)dS, the massless dual graviton exhibits less gauge symmetries dynamics compared with those of Curtright field in flat space, hence the mixed-symmetry field propagates in more degrees of freedom.[11] However, the dual graviton in (A)dS transforms under GL(D) representation, which is identical to that of massive dual graviton in flat space.[12] This apparent paradox can be resolved using the unfolding technique in Brink, Metsaev, and Vasiliev conjecture.[13][14] For the massive dual graviton in (A)dS, the flat limit is clarified after expressing dual field in terms of the Stueckelberg coupling of a massless spin-2 field with a Proca field.[11]

Dual linearized gravity edit

The dual formulations of linearized gravity are described by a mixed Young symmetry tensor  , the so-called dual graviton, in any spacetime dimension D > 4 with the following characters:[2][15]

 
 

where square brackets show antisymmetrization.

For 5-D spacetime, the spin-2 dual graviton is described by the Curtright field  . The symmetry properties imply that

 
 

The Lagrangian action for the spin-2 dual graviton   in 5-D spacetime, the Curtright field, becomes[2][15]

 

where   is defined as

 

and the gauge symmetry of the Curtright field is

 

The dual Riemann curvature tensor of the dual graviton is defined as follows:[2]

 

and the dual Ricci curvature tensor and scalar curvature of the dual graviton become, respectively

 
 

They fulfill the following Bianchi identities

 

where   is the 5-D spacetime metric.

Massive dual gravity edit

In 4-D, the Lagrangian of the spinless massive version of the dual gravity is

 

where  [16] The coupling constant   appears in the equation of motion to couple the trace of the conformally improved energy momentum tensor   to the field as in the following equation

 

And for the spin-2 massive dual gravity in 4-D,[10] the Lagrangian is formulated in terms of the Hessian matrix that also constitutes Horndeski theory (Galileons/massive gravity) through

 

where  .

So the zeroth interaction part, i.e., the third term in the Lagrangian, can be read as   so the equation of motion becomes

 

where the   is Young symmetrizer of such SO(2) theory.

For solutions of the massive theory in arbitrary N-D, i.e., Curtright field  , the symmetrizer becomes that of SO(N-2).[9]

Dual graviton coupling with BF theory edit

Dual gravitons have interaction with topological BF model in D = 5 through the following Lagrangian action[7]

 

where

 

Here,   is the curvature form, and   is the background field.

In principle, it should similarly be coupled to a BF model of gravity as the linearized Einstein–Hilbert action in D > 4:

 

where   is the determinant of the metric tensor matrix, and   is the Ricci scalar.

Dual gravitoelectromagnetism edit

In similar manner while we define gravitomagnetic and gravitoelectic for the graviton, we can define electric and magnetic fields for the dual graviton.[17] There are the following relation between the gravitoelectic field   and gravitomagnetic field   of the graviton   and the gravitoelectic field   and gravitomagnetic field   of the dual graviton  :[18][15]

 
 

and scalar curvature   with dual scalar curvature  :[18]

 
 

where   denotes the Hodge dual.

Dual graviton in conformal gravity edit

The free (4,0) conformal gravity in D = 6 is defined as

 

where   is the Weyl tensor in D = 6. The free (4,0) conformal gravity can be reduced to the graviton in the ordinary space, and the dual graviton in the dual space in D = 4.[19]

It is easy to notice the similarity between the Lanczos tensor, that generates the Weyl tensor in geometric theories of gravity, and Curtright tensor, particularly their shared symmetry properties of the linearized spin connection in Einstein's theory. However, Lanczos tensor is a tensor of geometry in D=4,[20] meanwhile Curtright tensor is a field tensor in arbitrary dimensions.

See also edit

References edit

  1. ^ a b Hull, C. M. (2001). "Duality in Gravity and Higher Spin Gauge Fields". Journal of High Energy Physics. 2001 (9): 27. arXiv:hep-th/0107149. Bibcode:2001JHEP...09..027H. doi:10.1088/1126-6708/2001/09/027.
  2. ^ a b c d e Bekaert, X.; Boulanger, N.; Henneaux, M. (2003). "Consistent deformations of dual formulations of linearized gravity: A no-go result". Physical Review D. 67 (4): 044010. arXiv:hep-th/0210278. Bibcode:2003PhRvD..67d4010B. doi:10.1103/PhysRevD.67.044010. S2CID 14739195.
  3. ^ a b de Wit, B.; Nicolai, H. (2013). "Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions". Journal of High Energy Physics. 2013 (5): 77. arXiv:1302.6219. Bibcode:2013JHEP...05..077D. doi:10.1007/JHEP05(2013)077. S2CID 119201330.
  4. ^ Curtright, T. (1985). "Generalised Gauge Fields". Physics Letters B. 165 (4–6): 304. Bibcode:1985PhLB..165..304C. doi:10.1016/0370-2693(85)91235-3.
  5. ^ West, P. (2012). "Generalised geometry, eleven dimensions and E11". Journal of High Energy Physics. 2012 (2): 18. arXiv:1111.1642. Bibcode:2012JHEP...02..018W. doi:10.1007/JHEP02(2012)018. S2CID 119240022.
  6. ^ Godazgar, H.; Godazgar, M.; Nicolai, H. (2014). "Generalised geometry from the ground up". Journal of High Energy Physics. 2014 (2): 75. arXiv:1307.8295. Bibcode:2014JHEP...02..075G. doi:10.1007/JHEP02(2014)075.
  7. ^ a b Bizdadea, C.; Cioroianu, E. M.; Danehkar, A.; Iordache, M.; Saliu, S. O.; Sararu, S. C. (2009). "Consistent interactions of dual linearized gravity in D = 5: couplings with a topological BF model". European Physical Journal C. 63 (3): 491–519. arXiv:0908.2169. Bibcode:2009EPJC...63..491B. doi:10.1140/epjc/s10052-009-1105-0. S2CID 15873396.
  8. ^ Ogievetsky, V. I; Polubarinov, I. V (1965-11-01). "Interacting field of spin 2 and the einstein equations". Annals of Physics. 35 (2): 167–208. Bibcode:1965AnPhy..35..167O. doi:10.1016/0003-4916(65)90077-1. ISSN 0003-4916.
  9. ^ a b Alshal, H.; Curtright, T. L. (2019-09-10). "Massive dual gravity in N spacetime dimensions". Journal of High Energy Physics. 2019 (9): 63. arXiv:1907.11537. Bibcode:2019JHEP...09..063A. doi:10.1007/JHEP09(2019)063. ISSN 1029-8479. S2CID 198953238.
  10. ^ a b Curtright, T. L.; Alshal, H. (2019-10-01). "Massive dual spin 2 revisited". Nuclear Physics B. 948: 114777. arXiv:1907.11532. Bibcode:2019NuPhB.94814777C. doi:10.1016/j.nuclphysb.2019.114777. ISSN 0550-3213. S2CID 198953158.
  11. ^ a b Boulanger, N.; Campoleoni, A.; Cortese, I. (July 2018). "Dual actions for massless, partially-massless and massive gravitons in (A)dS". Physics Letters B. 782: 285–290. arXiv:1804.05588. Bibcode:2018PhLB..782..285B. doi:10.1016/j.physletb.2018.05.046. S2CID 54826796.
  12. ^ Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (2016-06-21). "Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS". Physical Review D. 93 (12): 124047. arXiv:1512.09060. Bibcode:2016PhRvD..93l4047B. doi:10.1103/PhysRevD.93.124047. ISSN 2470-0010. S2CID 55583084.
  13. ^ Brink, L.; Metsaev, R.R.; Vasiliev, M.A. (October 2000). "How massless are massless fields in AdS". Nuclear Physics B. 586 (1–2): 183–205. arXiv:hep-th/0005136. Bibcode:2000NuPhB.586..183B. doi:10.1016/S0550-3213(00)00402-8. S2CID 119512854.
  14. ^ Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (May 2017). "Mixed-symmetry fields in de Sitter space: a group theoretical glance". Journal of High Energy Physics. 2017 (5): 81. arXiv:1612.08166. Bibcode:2017JHEP...05..081B. doi:10.1007/JHEP05(2017)081. ISSN 1029-8479. S2CID 119185373.
  15. ^ a b c Danehkar, A. (2019). "Electric-magnetic duality in gravity and higher-spin fields". Frontiers in Physics. 6: 146. Bibcode:2019FrP.....6..146D. doi:10.3389/fphy.2018.00146.
  16. ^ Curtright, Thomas L. (2019-10-01). "Massive dual spinless fields revisited". Nuclear Physics B. 948: 114784. arXiv:1907.11530. Bibcode:2019NuPhB.94814784C. doi:10.1016/j.nuclphysb.2019.114784. ISSN 0550-3213. S2CID 198953144.
  17. ^ Henneaux, M.; Teitelboim, C. (2005). "Duality in linearized gravity". Physical Review D. 71 (2): 024018. arXiv:gr-qc/0408101. Bibcode:2005PhRvD..71b4018H. doi:10.1103/PhysRevD.71.024018. S2CID 119022015.
  18. ^ a b Henneaux, M., "E10 and gravitational duality" https://www.theorie.physik.uni-muenchen.de/activities/workshops/archive_workshops_conferences/jointerc_2014/henneaux.pdf
  19. ^ Hull, C. M. (2000). "Symmetries and Compactifications of (4,0) Conformal Gravity". Journal of High Energy Physics. 2000 (12): 007. arXiv:hep-th/0011215. Bibcode:2000JHEP...12..007H. doi:10.1088/1126-6708/2000/12/007. S2CID 18326976.
  20. ^ Bampi, Franco; Caviglia, Giacomo (April 1983). "Third-order tensor potentials for the Riemann and Weyl tensors". General Relativity and Gravitation. 15 (4): 375–386. Bibcode:1983GReGr..15..375B. doi:10.1007/BF00759166. ISSN 0001-7701. S2CID 122782358.

dual, graviton, theoretical, physics, dual, graviton, hypothetical, elementary, particle, that, dual, graviton, under, electric, magnetic, duality, duality, predicted, some, formulations, supergravity, eleven, dimensions, compositionelementary, particlefamilyg. In theoretical physics the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric magnetic duality as an S duality predicted by some formulations of supergravity in eleven dimensions 3 Dual gravitonCompositionElementary particleFamilyGauge bosonInteractionsGravitationStatusHypotheticalAntiparticleSelfTheorized2000s 1 2 Electric charge0 eSpin2The dual graviton was first hypothesized in 1980 4 It was theoretically modeled in 2000s 1 2 which was then predicted in eleven dimensional mathematics of SO 8 supergravity in the framework of electric magnetic duality 3 It again emerged in the E11 generalized geometry in eleven dimensions 5 and the E7 generalized vielbein geometry in eleven dimensions 6 While there is no local coupling between graviton and dual graviton the field introduced by dual graviton may be coupled to a BF model as non local gravitational fields in extra dimensions 7 A massive dual gravity of Ogievetsky Polubarinov model 8 can be obtained by coupling the dual graviton field to the curl of its own energy momentum tensor 9 10 The previously mentioned theories of dual graviton are in flat space In de Sitter and anti de Sitter spaces A dS the massless dual graviton exhibits less gauge symmetries dynamics compared with those of Curtright field in flat space hence the mixed symmetry field propagates in more degrees of freedom 11 However the dual graviton in A dS transforms under GL D representation which is identical to that of massive dual graviton in flat space 12 This apparent paradox can be resolved using the unfolding technique in Brink Metsaev and Vasiliev conjecture 13 14 For the massive dual graviton in A dS the flat limit is clarified after expressing dual field in terms of the Stueckelberg coupling of a massless spin 2 field with a Proca field 11 Contents 1 Dual linearized gravity 2 Massive dual gravity 3 Dual graviton coupling with BF theory 4 Dual gravitoelectromagnetism 5 Dual graviton in conformal gravity 6 See also 7 ReferencesDual linearized gravity editThe dual formulations of linearized gravity are described by a mixed Young symmetry tensor Tl1l2 lD 3m displaystyle T lambda 1 lambda 2 cdots lambda D 3 mu nbsp the so called dual graviton in any spacetime dimension D gt 4 with the following characters 2 15 Tl1l2 lD 3m T l1l2 lD 3 m displaystyle T lambda 1 lambda 2 cdots lambda D 3 mu T lambda 1 lambda 2 cdots lambda D 3 mu nbsp T l1l2 lD 3m 0 displaystyle T lambda 1 lambda 2 cdots lambda D 3 mu 0 nbsp where square brackets show antisymmetrization For 5 D spacetime the spin 2 dual graviton is described by the Curtright field Tabg displaystyle T alpha beta gamma nbsp The symmetry properties imply that Tabg T ab g displaystyle T alpha beta gamma T alpha beta gamma nbsp T ab g T bg a T ga b 0 displaystyle T alpha beta gamma T beta gamma alpha T gamma alpha beta 0 nbsp The Lagrangian action for the spin 2 dual graviton Tl1l2m displaystyle T lambda 1 lambda 2 mu nbsp in 5 D spacetime the Curtright field becomes 2 15 Ldual 112 F abg dF abg d 3F ab3 3F abl l displaystyle cal L rm dual frac 1 12 left F alpha beta gamma delta F alpha beta gamma delta 3F alpha beta xi xi F alpha beta lambda lambda right nbsp where Fabgd displaystyle F alpha beta gamma delta nbsp is defined as F abg d aT bg d bT ga d gT ab d displaystyle F alpha beta gamma delta partial alpha T beta gamma delta partial beta T gamma alpha delta partial gamma T alpha beta delta nbsp and the gauge symmetry of the Curtright field is ds aT ab g 2 asb g aab g gaab displaystyle delta sigma alpha T alpha beta gamma 2 partial alpha sigma beta gamma partial alpha alpha beta gamma partial gamma alpha alpha beta nbsp The dual Riemann curvature tensor of the dual graviton is defined as follows 2 E abd eg 12 eF abd g gF abd e displaystyle E alpha beta delta varepsilon gamma equiv frac 1 2 partial varepsilon F alpha beta delta gamma partial gamma F alpha beta delta varepsilon nbsp and the dual Ricci curvature tensor and scalar curvature of the dual graviton become respectively E ab g gedE abd eg displaystyle E alpha beta gamma g varepsilon delta E alpha beta delta varepsilon gamma nbsp Ea gbgE ab g displaystyle E alpha g beta gamma E alpha beta gamma nbsp They fulfill the following Bianchi identities a E ab g gg aEb 0 displaystyle partial alpha E alpha beta gamma g gamma alpha E beta 0 nbsp where gab displaystyle g alpha beta nbsp is the 5 D spacetime metric Massive dual gravity editIn 4 D the Lagrangian of the spinless massive version of the dual gravity isLdual massivespinless 12u 12 v gu 2 13g v gu 3F3F2 1 12 32 2 52 4g2 v gu 2 displaystyle mathcal L rm dual massive rm spinless frac 1 2 u frac 1 2 v gu 2 frac 1 3 g v gu 3 sideset 3 2 F 1 frac 1 2 frac 3 2 2 frac 5 2 4g 2 v gu 2 nbsp where Vm 16ϵmabgVabg v VmVmand u mVm displaystyle V mu frac 1 6 epsilon mu alpha beta gamma V alpha beta gamma v V mu V mu text and u partial mu V mu nbsp 16 The coupling constant g m displaystyle g m nbsp appears in the equation of motion to couple the trace of the conformally improved energy momentum tensor 8 displaystyle theta nbsp to the field as in the following equation m2 Vm gm m8 displaystyle left Box m 2 right V mu frac g m partial mu theta nbsp And for the spin 2 massive dual gravity in 4 D 10 the Lagrangian is formulated in terms of the Hessian matrix that also constitutes Horndeski theory Galileons massive gravity throughdet dnm gmKnm 1 12 g m 2KabKba 13 g m 3KabKbgKga 18 g m 4 KabKba 2 2KabKbgKgdKda displaystyle text det delta nu mu frac g m K nu mu 1 frac 1 2 g m 2 K alpha beta K beta alpha frac 1 3 g m 3 K alpha beta K beta gamma K gamma alpha frac 1 8 g m 4 left K alpha beta K beta alpha 2 2K alpha beta K beta gamma K gamma delta K delta alpha right nbsp where Kmn 3 aT bg mϵabgn displaystyle K mu nu 3 partial alpha T beta gamma mu epsilon alpha beta gamma nu nbsp So the zeroth interaction part i e the third term in the Lagrangian can be read as Kab8ba displaystyle K alpha beta theta beta alpha nbsp so the equation of motion becomes m2 T ab g gmPabg lmn l8mn displaystyle left Box m 2 right T alpha beta gamma frac g m P alpha beta gamma lambda mu nu partial lambda theta mu nu nbsp where the Pabg lmn 2ϵablmhgn ϵaglmhbn ϵbglmhan displaystyle P alpha beta gamma lambda mu nu 2 epsilon alpha beta lambda mu eta gamma nu epsilon alpha gamma lambda mu eta beta nu epsilon beta gamma lambda mu eta alpha nu nbsp is Young symmetrizer of such SO 2 theory For solutions of the massive theory in arbitrary N D i e Curtright field T l1l2 lN 3 m displaystyle T lambda 1 lambda 2 lambda N 3 mu nbsp the symmetrizer becomes that of SO N 2 9 Dual graviton coupling with BF theory editDual gravitons have interaction with topological BF model in D 5 through the following Lagrangian action 7 SL d5x Ldual LBF displaystyle S rm L int d 5 x cal L rm dual cal L rm BF nbsp where LBF Tr B F displaystyle cal L rm BF Tr mathbf B wedge mathbf F nbsp Here F dA Rab displaystyle mathbf F equiv d mathbf A sim R ab nbsp is the curvature form and B ea eb displaystyle mathbf B equiv e a wedge e b nbsp is the background field In principle it should similarly be coupled to a BF model of gravity as the linearized Einstein Hilbert action in D gt 4 SBF d5xLBF SEH 12 d5xR g displaystyle S rm BF int d 5 x cal L rm BF sim S rm EH 1 over 2 int mathrm d 5 xR sqrt g nbsp where g det gmn displaystyle g det g mu nu nbsp is the determinant of the metric tensor matrix and R displaystyle R nbsp is the Ricci scalar Dual gravitoelectromagnetism editIn similar manner while we define gravitomagnetic and gravitoelectic for the graviton we can define electric and magnetic fields for the dual graviton 17 There are the following relation between the gravitoelectic field Eab hab displaystyle E ab h ab nbsp and gravitomagnetic field Bab hab displaystyle B ab h ab nbsp of the graviton hab displaystyle h ab nbsp and the gravitoelectic field Eab Tabc displaystyle E ab T abc nbsp and gravitomagnetic field Bab Tabc displaystyle B ab T abc nbsp of the dual graviton Tabc displaystyle T abc nbsp 18 15 Bab Tabc Eab hab displaystyle B ab T abc E ab h ab nbsp Eab Tabc Bab hab displaystyle E ab T abc B ab h ab nbsp and scalar curvature R displaystyle R nbsp with dual scalar curvature E displaystyle E nbsp 18 E R displaystyle E star R nbsp R E displaystyle R star E nbsp where displaystyle star nbsp denotes the Hodge dual Dual graviton in conformal gravity editThe free 4 0 conformal gravity in D 6 is defined as S d6x gCABCDCABCD displaystyle mathcal S int mathrm d 6 x sqrt g C ABCD C ABCD nbsp where CABCD displaystyle C ABCD nbsp is the Weyl tensor in D 6 The free 4 0 conformal gravity can be reduced to the graviton in the ordinary space and the dual graviton in the dual space in D 4 19 It is easy to notice the similarity between the Lanczos tensor that generates the Weyl tensor in geometric theories of gravity and Curtright tensor particularly their shared symmetry properties of the linearized spin connection in Einstein s theory However Lanczos tensor is a tensor of geometry in D 4 20 meanwhile Curtright tensor is a field tensor in arbitrary dimensions See also editGraviton Gravitino Gravity Gravitoelectromagnetism Curtright field Taub NUT space Nielsen Olesen vortex t Hooft loop Dual photon Massive gravity Horndeski s theoryReferences edit a b Hull C M 2001 Duality in Gravity and Higher Spin Gauge Fields Journal of High Energy Physics 2001 9 27 arXiv hep th 0107149 Bibcode 2001JHEP 09 027H doi 10 1088 1126 6708 2001 09 027 a b c d e Bekaert X Boulanger N Henneaux M 2003 Consistent deformations of dual formulations of linearized gravity A no go result Physical Review D 67 4 044010 arXiv hep th 0210278 Bibcode 2003PhRvD 67d4010B doi 10 1103 PhysRevD 67 044010 S2CID 14739195 a b de Wit B Nicolai H 2013 Deformations of gauged SO 8 supergravity and supergravity in eleven dimensions Journal of High Energy Physics 2013 5 77 arXiv 1302 6219 Bibcode 2013JHEP 05 077D doi 10 1007 JHEP05 2013 077 S2CID 119201330 Curtright T 1985 Generalised Gauge Fields Physics Letters B 165 4 6 304 Bibcode 1985PhLB 165 304C doi 10 1016 0370 2693 85 91235 3 West P 2012 Generalised geometry eleven dimensions and E11 Journal of High Energy Physics 2012 2 18 arXiv 1111 1642 Bibcode 2012JHEP 02 018W doi 10 1007 JHEP02 2012 018 S2CID 119240022 Godazgar H Godazgar M Nicolai H 2014 Generalised geometry from the ground up Journal of High Energy Physics 2014 2 75 arXiv 1307 8295 Bibcode 2014JHEP 02 075G doi 10 1007 JHEP02 2014 075 a b Bizdadea C Cioroianu E M Danehkar A Iordache M Saliu S O Sararu S C 2009 Consistent interactions of dual linearized gravity in D 5 couplings with a topological BF model European Physical Journal C 63 3 491 519 arXiv 0908 2169 Bibcode 2009EPJC 63 491B doi 10 1140 epjc s10052 009 1105 0 S2CID 15873396 Ogievetsky V I Polubarinov I V 1965 11 01 Interacting field of spin 2 and the einstein equations Annals of Physics 35 2 167 208 Bibcode 1965AnPhy 35 167O doi 10 1016 0003 4916 65 90077 1 ISSN 0003 4916 a b Alshal H Curtright T L 2019 09 10 Massive dual gravity in N spacetime dimensions Journal of High Energy Physics 2019 9 63 arXiv 1907 11537 Bibcode 2019JHEP 09 063A doi 10 1007 JHEP09 2019 063 ISSN 1029 8479 S2CID 198953238 a b Curtright T L Alshal H 2019 10 01 Massive dual spin 2 revisited Nuclear Physics B 948 114777 arXiv 1907 11532 Bibcode 2019NuPhB 94814777C doi 10 1016 j nuclphysb 2019 114777 ISSN 0550 3213 S2CID 198953158 a b Boulanger N Campoleoni A Cortese I July 2018 Dual actions for massless partially massless and massive gravitons in A dS Physics Letters B 782 285 290 arXiv 1804 05588 Bibcode 2018PhLB 782 285B doi 10 1016 j physletb 2018 05 046 S2CID 54826796 Basile Thomas Bekaert Xavier Boulanger Nicolas 2016 06 21 Note about a pure spin connection formulation of general relativity and spin 2 duality in A dS Physical Review D 93 12 124047 arXiv 1512 09060 Bibcode 2016PhRvD 93l4047B doi 10 1103 PhysRevD 93 124047 ISSN 2470 0010 S2CID 55583084 Brink L Metsaev R R Vasiliev M A October 2000 How massless are massless fields in AdS Nuclear Physics B 586 1 2 183 205 arXiv hep th 0005136 Bibcode 2000NuPhB 586 183B doi 10 1016 S0550 3213 00 00402 8 S2CID 119512854 Basile Thomas Bekaert Xavier Boulanger Nicolas May 2017 Mixed symmetry fields in de Sitter space a group theoretical glance Journal of High Energy Physics 2017 5 81 arXiv 1612 08166 Bibcode 2017JHEP 05 081B doi 10 1007 JHEP05 2017 081 ISSN 1029 8479 S2CID 119185373 a b c Danehkar A 2019 Electric magnetic duality in gravity and higher spin fields Frontiers in Physics 6 146 Bibcode 2019FrP 6 146D doi 10 3389 fphy 2018 00146 Curtright Thomas L 2019 10 01 Massive dual spinless fields revisited Nuclear Physics B 948 114784 arXiv 1907 11530 Bibcode 2019NuPhB 94814784C doi 10 1016 j nuclphysb 2019 114784 ISSN 0550 3213 S2CID 198953144 Henneaux M Teitelboim C 2005 Duality in linearized gravity Physical Review D 71 2 024018 arXiv gr qc 0408101 Bibcode 2005PhRvD 71b4018H doi 10 1103 PhysRevD 71 024018 S2CID 119022015 a b Henneaux M E10 and gravitational duality https www theorie physik uni muenchen de activities workshops archive workshops conferences jointerc 2014 henneaux pdf Hull C M 2000 Symmetries and Compactifications of 4 0 Conformal Gravity Journal of High Energy Physics 2000 12 007 arXiv hep th 0011215 Bibcode 2000JHEP 12 007H doi 10 1088 1126 6708 2000 12 007 S2CID 18326976 Bampi Franco Caviglia Giacomo April 1983 Third order tensor potentials for the Riemann and Weyl tensors General Relativity and Gravitation 15 4 375 386 Bibcode 1983GReGr 15 375B doi 10 1007 BF00759166 ISSN 0001 7701 S2CID 122782358 Retrieved from https en wikipedia org w index php title Dual graviton amp oldid 1110019783, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.