fbpx
Wikipedia

Dry line

A dry line (also called a dew point line, or Marfa front, after Marfa, Texas)[1] is a line across a continent that separates moist air and dry air. One of the most prominent examples of such a separation occurs in central North America, especially Texas, Oklahoma, and Kansas, where the moist air from the Gulf of Mexico meets dry air from the desert south-western states. The dry line is an important factor in severe weather frequency in the Great Plains of North America. It typically lies north-south across the High Plains states in the warm sector of an extratropical cyclone and stretches into the Canadian Prairies during the spring and early summer.[citation needed] The dry line is also important for severe convective storms in other regions of the world, such as northern India and Southern Africa.[2] In general, thunderstorms and other forms of severe weather occur on the moist side of the dryline.

Idealized depiction of where a dryline is located around an extratropical cyclone

Characteristics edit

 
Satellite view of severe thunderstorms developing along the dry line.

Near the surface, warm dry air is denser than warm moist air of lesser or similar temperature, and thus the warm dry air wedges under the moist air like a cold front.[3][4] At higher altitudes, the warm moist air is less dense than the cooler, drier air and the boundary slope reverses. In the vicinity of the reversal aloft, severe weather is possible, especially when a triple point is formed with a cold front. The dry line is most common in the spring.[5] Its location is close to the location of the 55 °F (13 °C) isodrosotherm, or line of equal dewpoint. The location of the dryline may not be marked with a surface pressure trough or shift of the wind direction. It bulges more to the east underneath the location of the highest winds within the jet stream.[6] While dry lines are most common in the Great Plains, northern India also witnesses a similar moisture boundary.[7] In northeast India, it occurs mainly before the onset of their summer monsoon,[8] while northwest India experiences it during the monsoon season.[9]

Daily progression in North America edit

The dry line typically advances eastward during the afternoon and retreats westward at night, mainly due to the increased mixing down to the surface of moist air aloft, rather than the air mass' surface density contrast. The movement of the dry line during daylight hours is quickest in areas where low level moisture is most shallow, as dryline movement slows in areas with deeper low-level moisture. Weaker winds aloft also slow its progression.[10] However, a strong storm system can sweep the dry line eastward into the Mississippi Valley or Texas/Louisiana border, regardless of the time of day. Stronger dry line passages result in a sharp drop in dew point, clearing skies, and a wind shift from south or south-easterly to west or south-westerly. Blowing dust and rising temperatures also may follow, especially if the dry line passes during the daytime. These changes occur in reverse order when the dry line retreats westward during the evening and nighttime hours. Severe and sometimes tornadic thunderstorms often develop along the slope-reversal zone east of the surface dry line, especially when it begins moving eastward.

Associated weather edit

In the dry sector west of the dry line, clear skies are the rule due to the dryness of the air mass sweeping in from the Desert Southwest in North America,[11] and the Aravalli range in India.[9] If winds are strong enough, dust storms can develop.[7]Cumulus clouds are common east of the dry line in the moist sector, though they are taller with greater development along the dry line itself.[12] The moist sector is normally capped with a lid of an elevated mixed drier layer which represents subsidence from aloft as the surface air cools and contracts at night. The same process promotes the development of a low level jet to the east of the dryline. During the daytime, if heating and/or convergence are sufficient, the cap can be broken, resulting in convective clouds.[7]

See also edit

References edit

  1. ^ Scott Girhard (2007-05-04). . San Antonio College. Archived from the original on 2007-09-27. Retrieved 2008-03-15.
  2. ^ >Howard, E., and R. Washington, 2019: Drylines in Southern Africa: Rediscovering the Congo Air Boundary. J. Climate, 32, 8223–8242, https://doi.org/10.1175/JCLI-D-19-0437.1.
  3. ^ Carlson and Ludlam, "Conditions for the occurrence of severe local storms", orig. Tellus, Vol.20, No.2, pp.203-226 (May 1968), republished online at Wiley Online Library, March 18, 2010
  4. ^ Huaqing Cai (2001-09-24). . University of California Los Angeles. Archived from the original on 2008-01-20. Retrieved 2006-12-05.
  5. ^ Glossary of Meteorology (June 2000). . American Meteorological Society. Archived from the original on 2011-06-06. Retrieved 2010-04-25.
  6. ^ Daniel Dix (June 2000). . The Weather Channel. Archived from the original on 2007-07-29. Retrieved 2010-04-25.
  7. ^ a b c T. N. Carlson (1991). Mid-Latitude Weather Systems. HarperCollinsAcademic. pp. 449–481. ISBN 978-0-04-551116-7.
  8. ^ K. J. Weston (1972-03-07). "The dry-line of Northern India and its role in cumulonimbus convection". Quarterly Journal of the Royal Meteorological Society. 98 (417): 519–531. Bibcode:1972QJRMS..98..519W. doi:10.1002/qj.49709841704. Archived from the original on 2013-01-05. Retrieved 2010-04-25.
  9. ^ a b Sen Chiao and Ana P. Barros (2007). "A Numerical Study of the Hydrometeorological Dryline in Northwest India During the Monsoon". Journal of the Meteorological Society of Japan. 85A: 337–361. Bibcode:2007JMeSJ..85A.337C. doi:10.2151/jmsj.85A.337. ISSN 0026-1165.
  10. ^ Todd Lindley (1997-09-01). "Effects of Texas Panhandle Topography on Dryline Movement". National Weather Service Southern Region Headquarters. Retrieved 2010-04-25.
  11. ^ National Severe Storms Laboratory (2006-10-11). . National Oceanic and Atmospheric Administration. Archived from the original on 2012-03-20. Retrieved 2010-04-25.
  12. ^ Michael William Carr (1999). International Marine's Weather Predicting Simplified: How to Read Weather Maps. McGraw-Hill Professional. p. 70. ISBN 978-0-07-012031-0. Retrieved 2010-04-25.

line, been, suggested, that, punch, merged, into, this, article, discuss, proposed, since, january, 2024, examples, perspective, this, article, deal, primarily, with, united, states, represent, worldwide, view, subject, improve, this, article, discuss, issue, . It has been suggested that Dry punch be merged into this article Discuss Proposed since January 2024 The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject You may improve this article discuss the issue on the talk page or create a new article as appropriate March 2018 Learn how and when to remove this template message A dry line also called a dew point line or Marfa front after Marfa Texas 1 is a line across a continent that separates moist air and dry air One of the most prominent examples of such a separation occurs in central North America especially Texas Oklahoma and Kansas where the moist air from the Gulf of Mexico meets dry air from the desert south western states The dry line is an important factor in severe weather frequency in the Great Plains of North America It typically lies north south across the High Plains states in the warm sector of an extratropical cyclone and stretches into the Canadian Prairies during the spring and early summer citation needed The dry line is also important for severe convective storms in other regions of the world such as northern India and Southern Africa 2 In general thunderstorms and other forms of severe weather occur on the moist side of the dryline Idealized depiction of where a dryline is located around an extratropical cyclone Contents 1 Characteristics 2 Daily progression in North America 3 Associated weather 4 See also 5 ReferencesCharacteristics edit nbsp Satellite view of severe thunderstorms developing along the dry line Near the surface warm dry air is denser than warm moist air of lesser or similar temperature and thus the warm dry air wedges under the moist air like a cold front 3 4 At higher altitudes the warm moist air is less dense than the cooler drier air and the boundary slope reverses In the vicinity of the reversal aloft severe weather is possible especially when a triple point is formed with a cold front The dry line is most common in the spring 5 Its location is close to the location of the 55 F 13 C isodrosotherm or line of equal dewpoint The location of the dryline may not be marked with a surface pressure trough or shift of the wind direction It bulges more to the east underneath the location of the highest winds within the jet stream 6 While dry lines are most common in the Great Plains northern India also witnesses a similar moisture boundary 7 In northeast India it occurs mainly before the onset of their summer monsoon 8 while northwest India experiences it during the monsoon season 9 Daily progression in North America editThe dry line typically advances eastward during the afternoon and retreats westward at night mainly due to the increased mixing down to the surface of moist air aloft rather than the air mass surface density contrast The movement of the dry line during daylight hours is quickest in areas where low level moisture is most shallow as dryline movement slows in areas with deeper low level moisture Weaker winds aloft also slow its progression 10 However a strong storm system can sweep the dry line eastward into the Mississippi Valley or Texas Louisiana border regardless of the time of day Stronger dry line passages result in a sharp drop in dew point clearing skies and a wind shift from south or south easterly to west or south westerly Blowing dust and rising temperatures also may follow especially if the dry line passes during the daytime These changes occur in reverse order when the dry line retreats westward during the evening and nighttime hours Severe and sometimes tornadic thunderstorms often develop along the slope reversal zone east of the surface dry line especially when it begins moving eastward Associated weather editIn the dry sector west of the dry line clear skies are the rule due to the dryness of the air mass sweeping in from the Desert Southwest in North America 11 and the Aravalli range in India 9 If winds are strong enough dust storms can develop 7 Cumulus clouds are common east of the dry line in the moist sector though they are taller with greater development along the dry line itself 12 The moist sector is normally capped with a lid of an elevated mixed drier layer which represents subsidence from aloft as the surface air cools and contracts at night The same process promotes the development of a low level jet to the east of the dryline During the daytime if heating and or convergence are sufficient the cap can be broken resulting in convective clouds 7 See also editSurface weather analysis Weather front Outflow boundaryReferences edit Scott Girhard 2007 05 04 Lecture 3 Thunderstorms San Antonio College Archived from the original on 2007 09 27 Retrieved 2008 03 15 gt Howard E and R Washington 2019 Drylines in Southern Africa Rediscovering the Congo Air Boundary J Climate 32 8223 8242 https doi org 10 1175 JCLI D 19 0437 1 Carlson and Ludlam Conditions for the occurrence of severe local storms orig Tellus Vol 20 No 2 pp 203 226 May 1968 republished online at Wiley Online Library March 18 2010 Huaqing Cai 2001 09 24 Dryline cross section University of California Los Angeles Archived from the original on 2008 01 20 Retrieved 2006 12 05 Glossary of Meteorology June 2000 Dryline American Meteorological Society Archived from the original on 2011 06 06 Retrieved 2010 04 25 Daniel Dix June 2000 Dryline Thunderstorms The Weather Channel Archived from the original on 2007 07 29 Retrieved 2010 04 25 a b c T N Carlson 1991 Mid Latitude Weather Systems HarperCollinsAcademic pp 449 481 ISBN 978 0 04 551116 7 K J Weston 1972 03 07 The dry line of Northern India and its role in cumulonimbus convection Quarterly Journal of the Royal Meteorological Society 98 417 519 531 Bibcode 1972QJRMS 98 519W doi 10 1002 qj 49709841704 Archived from the original on 2013 01 05 Retrieved 2010 04 25 a b Sen Chiao and Ana P Barros 2007 A Numerical Study of the Hydrometeorological Dryline in Northwest India During the Monsoon Journal of the Meteorological Society of Japan 85A 337 361 Bibcode 2007JMeSJ 85A 337C doi 10 2151 jmsj 85A 337 ISSN 0026 1165 Todd Lindley 1997 09 01 Effects of Texas Panhandle Topography on Dryline Movement National Weather Service Southern Region Headquarters Retrieved 2010 04 25 National Severe Storms Laboratory 2006 10 11 Tornado Climatology National Oceanic and Atmospheric Administration Archived from the original on 2012 03 20 Retrieved 2010 04 25 Michael William Carr 1999 International Marine s Weather Predicting Simplified How to Read Weather Maps McGraw Hill Professional p 70 ISBN 978 0 07 012031 0 Retrieved 2010 04 25 nbsp Wikimedia Commons has media related to Dry line Retrieved from https en wikipedia org w index php title Dry line amp oldid 1200054354, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.