fbpx
Wikipedia

Double ionization

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

Sequential double ionization edit

Sequential double ionization is a process of formation of doubly charged ions consisting of two single-electron ionization events: the first electron is removed from a neutral atom/molecule (leaving a singly charged ion in the ground state or an excited state) followed by detachment of the second electron from the ion.[1]

Non-sequential double ionization edit

Non-sequential double ionization is a process whose mechanism differs (in any detail) from the sequential one. For example, both the electrons leave the system simultaneously (as in alkaline earth atoms, see below), the second electron's liberation is assisted by the first electron (as in noble gas atoms, see below), etc.

The phenomenon of non-sequential double ionization was experimentally discovered by Suran and Zapesochny for alkaline earth atoms as early as 1975.[2] Despite extensive studies, the details of double ionization in alkaline earth atoms remain unknown. It is supposed that double ionization in this case is realized by transitions of both the electrons through the spectrum of autoionizing atomic states, located between the first and second ionization potentials.[3][4][5][6][7][8]

 
Non-sequential double ionization in alkaline earth atoms

For noble gas atoms, non-sequential double ionization was first observed by L'Huillier.[9][10]  The interest to this phenomenon grew rapidly after it was rediscovered[11][12] in infrared fields and for higher intensities. Multiple ionization has also been observed.[13][14]  The mechanism of non-sequential double ionization in noble gas atoms differs from the one in alkaline earth atoms. For noble gas atoms in infrared laser fields, following one-electron ionization, the liberated electron can recollide with the parent ion.[15][16] This electron acts as an "atomic antenna",[16] absorbing the energy from the laser field between ionization and recollision and depositing it into the parent ion. Inelastic scattering on the parent ion results in further collisional excitation and/or ionization. This mechanism is known as the three-step model of non-sequential double ionization, which is also closely related to the three step model of high harmonic generation.

Dynamics of double ionization within the three-step model strongly depends on the laser field intensity. The maximum energy (in atomic units) gained by the recolliding electron from the laser field is  ,[15] where   is the ponderomotive energy,   is the laser field strength, and   is the laser frequency. Even when   is far below ionization potential   experiments have observed correlated ionization.[13][14][17][18][19]  As opposed to the high-  regime ( )[20][21][22][23] in the low-  regime ( ) the assistance of the laser field during the recollision is vital.

Classical and quantum analysis[24][25][26] of the low-  regime demonstrates the following two ways of electron ejection after the recollision: First, the two electrons can be freed with little time delay compared to the quarter-cycle of the driving laser field. Second, the time delay between the ejection of the first and the second electron is of the order of the quarter-cycle of the driving field. In these two cases, the electrons appear in different quadrants of the correlated spectrum. If following the recollision, the electrons are ejected nearly simultaneously, their parallel momenta have equal signs, and both electrons are driven by the laser field in the same direction toward the detector [27] . If after the recollision, the electrons are ejected with a substantial delay (quarter-cycle or more), they end up going in the opposite directions. These two types of dynamics produce distinctly different correlated spectra (compare experimental results [13][14][17][18][19] with .[22][23]

See also edit

  Physics portal
  Science portal

References edit

  1. ^ Delone, N. B.; Krainov, V. P. (2000). Multiphoton Processes in Atoms. Springer. ISBN 3540646159., chapter 8.
  2. ^ Suran, V. V.; Zapesochny, I. P. (1975). "Observation of Sr2+ in multiple-photon ionization of strontium". Sov. Tech. Phys. Lett. 1 (11): 420.
  3. ^ Lambropoulos, P.; Tang, X.; Agostini, P.; Petite, G.; L'Huillier, A. (1988). "Multiphoton spectroscopy of doubly excited, bound, and autoionizing states of strontium". Physical Review A. 38 (12): 6165–6179. Bibcode:1988PhRvA..38.6165L. doi:10.1103/PhysRevA.38.6165. PMID 9900374.
  4. ^ Bondar', I. I.; Suran, V. V. (1993). "The two-electron mechanism of Ba2+ ion formation in the ionization of Ba atoms by YAG-laser radiation". JETP. 76 (3): 381. Bibcode:1993JETP...76..381B. Archived from the original on December 21, 2012.
  5. ^ Bondar’, I. I.; Suran, V. V. (1998). "Resonance structure of doubly-charged-ion production during laser dielectronic ionization of atoms". Journal of Experimental and Theoretical Physics Letters. 68 (11): 837. Bibcode:1998JETPL..68..837B. doi:10.1134/1.567802. S2CID 120658599.
  6. ^ Bondar, I. I.; Suran, V. V.; Dudich, M. I. (2000). "Resonant structure in doubly charged ion formation during multiphoton ionization of Sr and Ba atoms by infrared laser radiation". Journal of Physics B: Atomic, Molecular and Optical Physics. 33 (20): 4243. Bibcode:2000JPhB...33.4243B. doi:10.1088/0953-4075/33/20/304. S2CID 250826815.
  7. ^ Liontos, I.; Bolovinos, A.; Cohen, S.; Lyras, A. (2004). "Single and double ionization of magnesium via four-photon excitation of the 3p^{2}^{1}S_{0} autoionizing state: Experimental and theoretical analysis". Physical Review A. 70 (3): 033403. Bibcode:2004PhRvA..70c3403L. doi:10.1103/PhysRevA.70.033403.
  8. ^ Liontos, I.; Cohen, S.; Lyras, A. (2010). "Multiphoton Ca2+production occurring before the onset of Ca+saturation: Is it a fingerprint of direct double ionization?". Journal of Physics B: Atomic, Molecular and Optical Physics. 43 (9): 095602. Bibcode:2010JPhB...43i5602L. doi:10.1088/0953-4075/43/9/095602. S2CID 119869086.
  9. ^ l'Huillier, A.; Lompre, L.; Mainfray, G.; Manus, C. (1982). "Multiply Charged Ions Formed by Multiphoton Absorption Processes in the Continuum". Physical Review Letters. 48 (26): 1814. Bibcode:1982PhRvL..48.1814L. doi:10.1103/PhysRevLett.48.1814.
  10. ^ l'Huillier, A.; Lompre, L. A.; Mainfray, G.; Manus, C. (1983). "Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 μm". Physical Review A. 27 (5): 2503. Bibcode:1983PhRvA..27.2503L. doi:10.1103/PhysRevA.27.2503.
  11. ^ Walker, B.; Mevel, E.; Yang, B.; Breger, P.; Chambaret, J.; Antonetti, A.; Dimauro, L.; Agostini, P. (1993). "Double ionization in the perturbative and tunneling regimes". Physical Review A. 48 (2): R894–R897. Bibcode:1993PhRvA..48..894W. doi:10.1103/PhysRevA.48.R894. PMID 9909791.
  12. ^ Walker, B.; Sheehy, B.; Dimauro, L.; Agostini, P.; Schafer, K.; Kulander, K. (1994). "Precision Measurement of Strong Field Double Ionization of Helium". Physical Review Letters. 73 (9): 1227–1230. Bibcode:1994PhRvL..73.1227W. doi:10.1103/PhysRevLett.73.1227. PMID 10057657.
  13. ^ a b c Rudenko, A.; Zrost, K.; Feuerstein, B.; De Jesus, V.; Schröter, C.; Moshammer, R.; Ullrich, J. (2004). "Correlated Multielectron Dynamics in Ultrafast Laser Pulse Interactions with Atoms". Physical Review Letters. 93 (25): 253001. arXiv:physics/0408065. Bibcode:2004PhRvL..93y3001R. doi:10.1103/PhysRevLett.93.253001. PMID 15697894. S2CID 40450686.
  14. ^ a b c Zrost, K.; Rudenko, A.; Ergler, T.; Feuerstein, B.; Jesus, V. L. B. D.; Schröter, C. D.; Moshammer, R.; Ullrich, J. (2006). "Multiple ionization of Ne and Ar by intense 25 fs laser pulses: Few-electron dynamics studied with ion momentum spectroscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 39 (13): S371. Bibcode:2006JPhB...39S.371Z. doi:10.1088/0953-4075/39/13/S10. S2CID 122414336.
  15. ^ a b Corkum, P. (1993). "Plasma perspective on strong field multiphoton ionization". Physical Review Letters. 71 (13): 1994–1997. Bibcode:1993PhRvL..71.1994C. doi:10.1103/PhysRevLett.71.1994. PMID 10054556. S2CID 29947935.
  16. ^ a b Kuchiev, M. Y. (1987). "Atomic Antenna". JETP Letters. 45: 404. Bibcode:1987JETPL..45..404K.[permanent dead link]
  17. ^ a b Zeidler, D.; Staudte, A.; Bardon, A. B.; Villeneuve, D. M.; Dörner, R.; Corkum, P. B. (2005). "Controlling Attosecond Double Ionization Dynamics via Molecular Alignment". Physical Review Letters. 95 (20): 203003. Bibcode:2005PhRvL..95t3003Z. doi:10.1103/PhysRevLett.95.203003. PMID 16384053.
  18. ^ a b Weckenbrock, M.; Zeidler, D.; Staudte, A.; Weber, T.; Schöffler, M.; Meckel, M.; Kammer, S.; Smolarski, M.; Jagutzki, O.; Bhardwaj, V.; Rayner, D.; Villeneuve, D.; Corkum, P.; Dörner, R. (2004). "Fully Differential Rates for Femtosecond Multiphoton Double Ionization of Neon". Physical Review Letters. 92 (21): 213002. Bibcode:2004PhRvL..92u3002W. doi:10.1103/PhysRevLett.92.213002. PMID 15245277.
  19. ^ a b Liu, Y.; Tschuch, S.; Rudenko, A.; Dürr, M.; Siegel, M.; Morgner, U.; Moshammer, R.; Ullrich, J. (2008). "Strong-Field Double Ionization of Ar below the Recollision Threshold". Physical Review Letters. 101 (5): 053001. Bibcode:2008PhRvL.101e3001L. doi:10.1103/PhysRevLett.101.053001. PMID 18764387.
  20. ^ Yudin, G.; Ivanov, M. (2001). "Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit". Physical Review A. 63 (3): 033404. Bibcode:2001PhRvA..63c3404Y. doi:10.1103/PhysRevA.63.033404.
  21. ^ Becker, A.; Faisal, F. H. M. (2005). "Intense-field many-body S-matrix theory". Journal of Physics B: Atomic, Molecular and Optical Physics. 38 (3): R1. Bibcode:2005JPhB...38R...1B. doi:10.1088/0953-4075/38/3/R01. S2CID 14675241.
  22. ^ a b Staudte, A.; Ruiz, C.; Schöffler, M.; Schössler, S.; Zeidler, D.; Weber, T.; Meckel, M.; Villeneuve, D.; Corkum, P.; Becker, A.; Dörner, R. (2007). "Binary and Recoil Collisions in Strong Field Double Ionization of Helium". Physical Review Letters. 99 (26): 263002. Bibcode:2007PhRvL..99z3002S. doi:10.1103/PhysRevLett.99.263002. PMID 18233574.
  23. ^ a b Rudenko, A.; De Jesus, V.; Ergler, T.; Zrost, K.; Feuerstein, B.; Schröter, C.; Moshammer, R.; Ullrich, J. (2007). "Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm". Physical Review Letters. 99 (26): 263003. Bibcode:2007PhRvL..99z3003R. doi:10.1103/PhysRevLett.99.263003. PMID 18233575.
  24. ^ Haan, S.; Breen, L.; Karim, A.; Eberly, J. (2006). "Variable Time Lag and Backward Ejection in Full-Dimensional Analysis of Strong-Field Double Ionization". Physical Review Letters. 97 (10): 103008. Bibcode:2006PhRvL..97j3008H. doi:10.1103/PhysRevLett.97.103008. PMID 17025816.
  25. ^ Ho, P.; Eberly, J. (2006). "In-Plane Theory of Nonsequential Triple Ionization". Physical Review Letters. 97 (8): 083001. arXiv:physics/0605026. Bibcode:2006PhRvL..97h3001H. doi:10.1103/PhysRevLett.97.083001. PMID 17026298. S2CID 8978621.
  26. ^ Figueira De Morisson Faria, C.; Liu, X.; Becker, W. (2006). "Classical aspects of laser-induced non-sequential double ionization above and below the threshold". Journal of Modern Optics. 53 (1–2): 193–206. Bibcode:2006JMOp...53..193F. doi:10.1080/09500340500227869. S2CID 120011073.
  27. ^ Bondar, D.; Liu, W. K.; Ivanov, M. (2009). "Two-electron ionization in strong laser fields below intensity threshold: Signatures of attosecond timing in correlated spectra". Physical Review A. 79 (2): 023417. arXiv:0809.2630. Bibcode:2009PhRvA..79b3417B. doi:10.1103/PhysRevA.79.023417. S2CID 119275628.

double, ionization, process, formation, doubly, charged, ions, when, laser, radiation, exerted, neutral, atoms, molecules, usually, less, probable, than, single, electron, ionization, types, double, ionization, distinguished, sequential, sequential, contents, . Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules Double ionization is usually less probable than single electron ionization Two types of double ionization are distinguished sequential and non sequential Contents 1 Sequential double ionization 2 Non sequential double ionization 3 See also 4 ReferencesSequential double ionization editSequential double ionization is a process of formation of doubly charged ions consisting of two single electron ionization events the first electron is removed from a neutral atom molecule leaving a singly charged ion in the ground state or an excited state followed by detachment of the second electron from the ion 1 Examples of sequential double ionization nbsp Sequential double ionization nbsp Sequential double ionization via an ionic exited stateNon sequential double ionization editNon sequential double ionization is a process whose mechanism differs in any detail from the sequential one For example both the electrons leave the system simultaneously as in alkaline earth atoms see below the second electron s liberation is assisted by the first electron as in noble gas atoms see below etc The phenomenon of non sequential double ionization was experimentally discovered by Suran and Zapesochny for alkaline earth atoms as early as 1975 2 Despite extensive studies the details of double ionization in alkaline earth atoms remain unknown It is supposed that double ionization in this case is realized by transitions of both the electrons through the spectrum of autoionizing atomic states located between the first and second ionization potentials 3 4 5 6 7 8 nbsp Non sequential double ionization in alkaline earth atomsFor noble gas atoms non sequential double ionization was first observed by L Huillier 9 10 The interest to this phenomenon grew rapidly after it was rediscovered 11 12 in infrared fields and for higher intensities Multiple ionization has also been observed 13 14 The mechanism of non sequential double ionization in noble gas atoms differs from the one in alkaline earth atoms For noble gas atoms in infrared laser fields following one electron ionization the liberated electron can recollide with the parent ion 15 16 This electron acts as an atomic antenna 16 absorbing the energy from the laser field between ionization and recollision and depositing it into the parent ion Inelastic scattering on the parent ion results in further collisional excitation and or ionization This mechanism is known as the three step model of non sequential double ionization which is also closely related to the three step model of high harmonic generation Dynamics of double ionization within the three step model strongly depends on the laser field intensity The maximum energy in atomic units gained by the recolliding electron from the laser field is 3 2Up displaystyle sim 3 2U p nbsp 15 where Up F24w2 displaystyle U p frac F 2 4 omega 2 nbsp is the ponderomotive energy F displaystyle F nbsp is the laser field strength and w displaystyle omega nbsp is the laser frequency Even when 3 2Up displaystyle 3 2U p nbsp is far below ionization potential Ip displaystyle I p nbsp experiments have observed correlated ionization 13 14 17 18 19 As opposed to the high Up displaystyle U p nbsp regime 3 2Up gt Ip displaystyle 3 2U p gt I p nbsp 20 21 22 23 in the low Up displaystyle U p nbsp regime 3 2Up lt Ip displaystyle 3 2U p lt I p nbsp the assistance of the laser field during the recollision is vital Classical and quantum analysis 24 25 26 of the low Up displaystyle U p nbsp regime demonstrates the following two ways of electron ejection after the recollision First the two electrons can be freed with little time delay compared to the quarter cycle of the driving laser field Second the time delay between the ejection of the first and the second electron is of the order of the quarter cycle of the driving field In these two cases the electrons appear in different quadrants of the correlated spectrum If following the recollision the electrons are ejected nearly simultaneously their parallel momenta have equal signs and both electrons are driven by the laser field in the same direction toward the detector 27 If after the recollision the electrons are ejected with a substantial delay quarter cycle or more they end up going in the opposite directions These two types of dynamics produce distinctly different correlated spectra compare experimental results 13 14 17 18 19 with 22 23 Non sequential double ionization of noble gas atoms nbsp The high Up displaystyle U p nbsp regime nbsp The low Up displaystyle U p nbsp regimeSee also editList of laser articles Nonlinear optics Photoionization Ionization High harmonic generation Above threshold ionization nbsp Physics portal nbsp Science portalReferences edit Delone N B Krainov V P 2000 Multiphoton Processes in Atoms Springer ISBN 3540646159 chapter 8 Suran V V Zapesochny I P 1975 Observation of Sr2 in multiple photon ionization of strontium Sov Tech Phys Lett 1 11 420 Lambropoulos P Tang X Agostini P Petite G L Huillier A 1988 Multiphoton spectroscopy of doubly excited bound and autoionizing states of strontium Physical Review A 38 12 6165 6179 Bibcode 1988PhRvA 38 6165L doi 10 1103 PhysRevA 38 6165 PMID 9900374 Bondar I I Suran V V 1993 The two electron mechanism of Ba2 ion formation in the ionization of Ba atoms by YAG laser radiation JETP 76 3 381 Bibcode 1993JETP 76 381B Archived from the original on December 21 2012 Bondar I I Suran V V 1998 Resonance structure of doubly charged ion production during laser dielectronic ionization of atoms Journal of Experimental and Theoretical Physics Letters 68 11 837 Bibcode 1998JETPL 68 837B doi 10 1134 1 567802 S2CID 120658599 Bondar I I Suran V V Dudich M I 2000 Resonant structure in doubly charged ion formation during multiphoton ionization of Sr and Ba atoms by infrared laser radiation Journal of Physics B Atomic Molecular and Optical Physics 33 20 4243 Bibcode 2000JPhB 33 4243B doi 10 1088 0953 4075 33 20 304 S2CID 250826815 Liontos I Bolovinos A Cohen S Lyras A 2004 Single and double ionization of magnesium via four photon excitation of the 3p 2 1 S 0 autoionizing state Experimental and theoretical analysis Physical Review A 70 3 033403 Bibcode 2004PhRvA 70c3403L doi 10 1103 PhysRevA 70 033403 Liontos I Cohen S Lyras A 2010 Multiphoton Ca2 production occurring before the onset of Ca saturation Is it a fingerprint of direct double ionization Journal of Physics B Atomic Molecular and Optical Physics 43 9 095602 Bibcode 2010JPhB 43i5602L doi 10 1088 0953 4075 43 9 095602 S2CID 119869086 l Huillier A Lompre L Mainfray G Manus C 1982 Multiply Charged Ions Formed by Multiphoton Absorption Processes in the Continuum Physical Review Letters 48 26 1814 Bibcode 1982PhRvL 48 1814L doi 10 1103 PhysRevLett 48 1814 l Huillier A Lompre L A Mainfray G Manus C 1983 Multiply charged ions induced by multiphoton absorption in rare gases at 0 53 mm Physical Review A 27 5 2503 Bibcode 1983PhRvA 27 2503L doi 10 1103 PhysRevA 27 2503 Walker B Mevel E Yang B Breger P Chambaret J Antonetti A Dimauro L Agostini P 1993 Double ionization in the perturbative and tunneling regimes Physical Review A 48 2 R894 R897 Bibcode 1993PhRvA 48 894W doi 10 1103 PhysRevA 48 R894 PMID 9909791 Walker B Sheehy B Dimauro L Agostini P Schafer K Kulander K 1994 Precision Measurement of Strong Field Double Ionization of Helium Physical Review Letters 73 9 1227 1230 Bibcode 1994PhRvL 73 1227W doi 10 1103 PhysRevLett 73 1227 PMID 10057657 a b c Rudenko A Zrost K Feuerstein B De Jesus V Schroter C Moshammer R Ullrich J 2004 Correlated Multielectron Dynamics in Ultrafast Laser Pulse Interactions with Atoms Physical Review Letters 93 25 253001 arXiv physics 0408065 Bibcode 2004PhRvL 93y3001R doi 10 1103 PhysRevLett 93 253001 PMID 15697894 S2CID 40450686 a b c Zrost K Rudenko A Ergler T Feuerstein B Jesus V L B D Schroter C D Moshammer R Ullrich J 2006 Multiple ionization of Ne and Ar by intense 25 fs laser pulses Few electron dynamics studied with ion momentum spectroscopy Journal of Physics B Atomic Molecular and Optical Physics 39 13 S371 Bibcode 2006JPhB 39S 371Z doi 10 1088 0953 4075 39 13 S10 S2CID 122414336 a b Corkum P 1993 Plasma perspective on strong field multiphoton ionization Physical Review Letters 71 13 1994 1997 Bibcode 1993PhRvL 71 1994C doi 10 1103 PhysRevLett 71 1994 PMID 10054556 S2CID 29947935 a b Kuchiev M Y 1987 Atomic Antenna JETP Letters 45 404 Bibcode 1987JETPL 45 404K permanent dead link a b Zeidler D Staudte A Bardon A B Villeneuve D M Dorner R Corkum P B 2005 Controlling Attosecond Double Ionization Dynamics via Molecular Alignment Physical Review Letters 95 20 203003 Bibcode 2005PhRvL 95t3003Z doi 10 1103 PhysRevLett 95 203003 PMID 16384053 a b Weckenbrock M Zeidler D Staudte A Weber T Schoffler M Meckel M Kammer S Smolarski M Jagutzki O Bhardwaj V Rayner D Villeneuve D Corkum P Dorner R 2004 Fully Differential Rates for Femtosecond Multiphoton Double Ionization of Neon Physical Review Letters 92 21 213002 Bibcode 2004PhRvL 92u3002W doi 10 1103 PhysRevLett 92 213002 PMID 15245277 a b Liu Y Tschuch S Rudenko A Durr M Siegel M Morgner U Moshammer R Ullrich J 2008 Strong Field Double Ionization of Ar below the Recollision Threshold Physical Review Letters 101 5 053001 Bibcode 2008PhRvL 101e3001L doi 10 1103 PhysRevLett 101 053001 PMID 18764387 Yudin G Ivanov M 2001 Physics of correlated double ionization of atoms in intense laser fields Quasistatic tunneling limit Physical Review A 63 3 033404 Bibcode 2001PhRvA 63c3404Y doi 10 1103 PhysRevA 63 033404 Becker A Faisal F H M 2005 Intense field many body S matrix theory Journal of Physics B Atomic Molecular and Optical Physics 38 3 R1 Bibcode 2005JPhB 38R 1B doi 10 1088 0953 4075 38 3 R01 S2CID 14675241 a b Staudte A Ruiz C Schoffler M Schossler S Zeidler D Weber T Meckel M Villeneuve D Corkum P Becker A Dorner R 2007 Binary and Recoil Collisions in Strong Field Double Ionization of Helium Physical Review Letters 99 26 263002 Bibcode 2007PhRvL 99z3002S doi 10 1103 PhysRevLett 99 263002 PMID 18233574 a b Rudenko A De Jesus V Ergler T Zrost K Feuerstein B Schroter C Moshammer R Ullrich J 2007 Correlated Two Electron Momentum Spectra for Strong Field Nonsequential Double Ionization of He at 800 nm Physical Review Letters 99 26 263003 Bibcode 2007PhRvL 99z3003R doi 10 1103 PhysRevLett 99 263003 PMID 18233575 Haan S Breen L Karim A Eberly J 2006 Variable Time Lag and Backward Ejection in Full Dimensional Analysis of Strong Field Double Ionization Physical Review Letters 97 10 103008 Bibcode 2006PhRvL 97j3008H doi 10 1103 PhysRevLett 97 103008 PMID 17025816 Ho P Eberly J 2006 In Plane Theory of Nonsequential Triple Ionization Physical Review Letters 97 8 083001 arXiv physics 0605026 Bibcode 2006PhRvL 97h3001H doi 10 1103 PhysRevLett 97 083001 PMID 17026298 S2CID 8978621 Figueira De Morisson Faria C Liu X Becker W 2006 Classical aspects of laser induced non sequential double ionization above and below the threshold Journal of Modern Optics 53 1 2 193 206 Bibcode 2006JMOp 53 193F doi 10 1080 09500340500227869 S2CID 120011073 Bondar D Liu W K Ivanov M 2009 Two electron ionization in strong laser fields below intensity threshold Signatures of attosecond timing in correlated spectra Physical Review A 79 2 023417 arXiv 0809 2630 Bibcode 2009PhRvA 79b3417B doi 10 1103 PhysRevA 79 023417 S2CID 119275628 Retrieved from https en wikipedia org w index php title Double ionization amp oldid 1206053513, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.