fbpx
Wikipedia

Descriptive geometry

Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art.[1] The theoretical basis for descriptive geometry is provided by planar geometric projections. The earliest known publication on the technique was "Underweysung der Messung mit dem Zirckel und Richtscheyt" (Observation of the measurement with the compass and spirit level), published in Linien, Nuremberg: 1525, by Albrecht Dürer. Italian architect Guarino Guarini was also a pioneer of projective and descriptive geometry, as is clear from his Placita Philosophica (1665), Euclides Adauctus (1671) and Architettura Civile (1686—not published until 1737), anticipating the work of Gaspard Monge (1746–1818), who is usually credited with the invention of descriptive geometry.[2][3] Gaspard Monge is usually considered the "father of descriptive geometry" due to his developments in geometric problem solving. His first discoveries were in 1765 while he was working as a draftsman for military fortifications, although his findings were published later on.[4]

Example of four different 2D representations of the same 3D object
Example object and its six principal views
Different orthographic projections of a house. The file below shows three principal views and one that shows the true lengths in the plane of the roof. (The conic dormer shows parts of an ellipse and a hyperbola.)

Monge's protocols allow an imaginary object to be drawn in such a way that it may be modeled in three dimensions. All geometric aspects of the imaginary object are accounted for in true size/to-scale and shape, and can be imaged as seen from any position in space. All images are represented on a two-dimensional surface.

Descriptive geometry uses the image-creating technique of imaginary, parallel projectors emanating from an imaginary object and intersecting an imaginary plane of projection at right angles. The cumulative points of intersections create the desired image.

Protocols edit

  • Project two images of an object into mutually perpendicular, arbitrary directions. Each image view accommodates three dimensions of space, two dimensions displayed as full-scale, mutually-perpendicular axes and one as an invisible (point view) axis receding into the image space (depth). Each of the two adjacent image views shares a full-scale view of one of the three dimensions of space.
  • Either of these images may serve as the beginning point for a third projected view. The third view may begin a fourth projection, and on ad infinitum. These sequential projections each represent a circuitous, 90° turn in space in order to view the object from a different direction.
  • Each new projection utilizes a dimension in full scale that appears as point-view dimension in the previous view. To achieve the full-scale view of this dimension and accommodate it within the new view requires one to ignore the previous view and proceed to the second previous view where this dimension appears in full-scale.
  • Each new view may be created by projecting into any of an infinite number of directions, perpendicular to the previous direction of projection. (Envision the many directions of the spokes of a wagon wheel each perpendicular to the direction of the axle.) The result is one of stepping circuitously about an object in 90° turns and viewing the object from each step. Each new view is added as an additional view to an orthographic projection layout display and appears in an "unfolding of the glass box model".

Aside from the Orthographic, six standard principal views (Front; Right Side; Left Side; Top; Bottom; Rear), descriptive geometry strives to yield four basic solution views: the true length of a line (i.e., full size, not foreshortened), the point view (end view) of a line, the true shape of a plane (i.e., full size to scale, or not foreshortened), and the edge view of a plane (i.e., view of a plane with the line of sight perpendicular to the line of sight associated with the line of sight for producing the true shape of a plane). These often serve to determine the direction of projection for the subsequent view. By the 90° circuitous stepping process, projecting in any direction from the point view of a line yields its true length view; projecting in a direction parallel to a true length line view yields its point view, projecting the point view of any line on a plane yields the plane's edge view; projecting in a direction perpendicular to the edge view of a plane will yield the true shape (to scale) view. These various views may be called upon to help solve engineering problems posed by solid-geometry principles

Heuristics edit

There is heuristic value to studying descriptive geometry. It promotes visualization and spatial analytical abilities, as well as the intuitive ability to recognize the direction of viewing for best presenting a geometric problem for solution. Representative examples:

The best direction to view edit

  • Two skew lines (pipes, perhaps) in general positions in order to determine the location of their shortest connector (common perpendicular)
  • Two skew lines (pipes) in general positions such that their shortest connector is seen in full scale
  • Two skew lines in general positions such the shortest connector parallel to a given plane is seen in full scale (say, to determine the position and the dimension of the shortest connector at a constant distance from a radiating surface)
  • A plane surface such that a hole drilled perpendicular is seen in full scale, as if looking through the hole (say, to test for clearances with other drilled holes)
  • A plane equidistant from two skew lines in general positions (say, to confirm safe radiation distance?)
  • The shortest distance from a point to a plane (say, to locate the most economical position for bracing)
  • The line of intersection between two surfaces, including curved surfaces (say, for the most economical sizing of sections?)
  • The true size of the angle between two planes

A standard for presenting computer-modeling views analogous to orthographic, sequential projections has not yet been adopted. One candidate for such is presented in the illustrations below. The images in the illustrations were created using three-dimensional, engineering computer graphics.

Three-dimensional, computer modeling produces virtual space "behind the tube", as it were, and may produce any view of a model from any direction within this virtual space. It does so without the need for adjacent orthographic views and therefore may seem to render the circuitous, stepping protocol of Descriptive Geometry obsolete. However, since descriptive geometry is the science of the legitimate or allowable imaging of three or more dimensional space, on a flat plane, it is an indispensable study, to enhance computer modeling possibilities.

Examples edit

Finding the shortest connector between two given skew lines PR and SU edit

 
Example of the use of descriptive geometry to find the shortest connector between two skew lines. The red, yellow and green highlights show distances which are the same for projections of point P.

Given the X, Y and Z coordinates of P, R, S and U, projections 1 and 2 are drawn to scale on the X-Y and X-Z planes, respectively.

To get a true view (length in the projection is equal to length in 3D space) of one of the lines: SU in this example, projection 3 is drawn with hinge line H2,3 parallel to S2U2. To get an end view of SU, projection 4 is drawn with hinge line H3,4 perpendicular to S3U3. The perpendicular distance d gives the shortest distance between PR and SU.

To get points Q and T on these lines giving this shortest distance, projection 5 is drawn with hinge line H4,5 parallel to P4R4, making both P5R5 and S5U5 true views (any projection of an end view is a true view). Projecting the intersection of these lines, Q5 and T5 back to projection 1 (magenta lines and labels) allows their coordinates to be read off the X, Y and Z axes.

General solutions edit

General solutions are a class of solutions within descriptive geometry that contain all possible solutions to a problem. The general solution is represented by a single, three-dimensional object, usually a cone, the directions of the elements of which are the desired direction of viewing (projection) for any of an infinite number of solution views.

For example: To find the general solution such that two, unequal length, skew lines in general positions (say, rockets in flight?) appear:

  • Equal length
  • Equal length and parallel
  • Equal length and perpendicular (say, for ideal targeting of at least one)
  • Equal to lengths of a specified ratio
  • others.

In the examples, the general solution for each desired characteristic solution is a cone, each element of which produces one of an infinite number of solution views. When two or more characteristics of, say those listed above, are desired (and for which a solution exists) projecting in the direction of either of the two elements of intersections (one element, if cones are tangent) between the two cones produces the desired solution view. If the cones do not intersect a solution does not exist. The examples below are annotated to show the descriptive geometric principles used in the solutions. TL = True-Length; EV = Edge View.

Figs. 1-3 below demonstrate (1) Descriptive geometry, general solutions and (2) simultaneously, a potential standard for presenting such solutions in orthographic, multiview, layout formats.

The potential standard employs two adjacent, standard, orthographic views (here, Front and Top) with a standard "folding line" between. As there is no subsequent need to 'circuitously step' 90° around the object, in standard, two-step sequences in order to arrive at a solution view (it is possible to go directly to the solution view), this shorter protocol is accounted for in the layout. Where the one step protocol replaces the two-step protocol, "double folding" lines are used. In other words, when one crosses the double lines he is not making a circuitous 90° turn but a non-orthodirectional turn directly to the solution view. As most engineering computer graphics packages automatically generates the six principal views of the glass box model, as well as an isometric view, these views are sometimes added out of heuristic curiosity.

 
Figure 1: Descriptive geometry - skew lines appearing perpendicular
 
Figure 2: Descriptive geometry - skew lines appear equal length
 
Figure 3: Descriptive geometry - skew lines appear in specified length ratio

See also edit

References edit

  1. ^ Joseph Malkevitch (April 2003), "Mathematics and Art", Feature Column Archive, American Mathematical Society
  2. ^ James Stevens Curl, ed. (2015). "Guarini, Guarino". A Dictionary of Architecture. Oxford University Press. p. 337. ISBN 9780198606789.
  3. ^ Bianchini, Carlo (2012). "Stereotomy Role in Guarino Guarini's Space Research". Nuts and Bolts of Construction History. 1: 257–263. ISBN 978-2-7084-0929-3.
  4. ^ Ingrid Carlbom, Joseph Paciorek (December 1978), "Planar Geometric Projections and Viewing Transformations", ACM Computing Surveys, 10 (4): 465–502, CiteSeerX 10.1.1.532.4774, doi:10.1145/356744.356750, S2CID 708008

descriptive, geometry, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, technical, most, readers, understand, please, help, improve, make, understandable,. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details January 2017 Learn how and when to remove this message This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Descriptive geometry news newspapers books scholar JSTOR February 2011 Learn how and when to remove this message Learn how and when to remove this message Descriptive geometry is the branch of geometry which allows the representation of three dimensional objects in two dimensions by using a specific set of procedures The resulting techniques are important for engineering architecture design and in art 1 The theoretical basis for descriptive geometry is provided by planar geometric projections The earliest known publication on the technique was Underweysung der Messung mit dem Zirckel und Richtscheyt Observation of the measurement with the compass and spirit level published in Linien Nuremberg 1525 by Albrecht Durer Italian architect Guarino Guarini was also a pioneer of projective and descriptive geometry as is clear from his Placita Philosophica 1665 Euclides Adauctus 1671 and Architettura Civile 1686 not published until 1737 anticipating the work of Gaspard Monge 1746 1818 who is usually credited with the invention of descriptive geometry 2 3 Gaspard Monge is usually considered the father of descriptive geometry due to his developments in geometric problem solving His first discoveries were in 1765 while he was working as a draftsman for military fortifications although his findings were published later on 4 Example of four different 2D representations of the same 3D object Example object and its six principal views Different orthographic projections of a house The file below shows three principal views and one that shows the true lengths in the plane of the roof The conic dormer shows parts of an ellipse and a hyperbola Monge s protocols allow an imaginary object to be drawn in such a way that it may be modeled in three dimensions All geometric aspects of the imaginary object are accounted for in true size to scale and shape and can be imaged as seen from any position in space All images are represented on a two dimensional surface Descriptive geometry uses the image creating technique of imaginary parallel projectors emanating from an imaginary object and intersecting an imaginary plane of projection at right angles The cumulative points of intersections create the desired image Contents 1 Protocols 2 Heuristics 2 1 The best direction to view 2 2 Examples 2 2 1 Finding the shortest connector between two given skew lines PR and SU 3 General solutions 4 See also 5 ReferencesProtocols editProject two images of an object into mutually perpendicular arbitrary directions Each image view accommodates three dimensions of space two dimensions displayed as full scale mutually perpendicular axes and one as an invisible point view axis receding into the image space depth Each of the two adjacent image views shares a full scale view of one of the three dimensions of space Either of these images may serve as the beginning point for a third projected view The third view may begin a fourth projection and on ad infinitum These sequential projections each represent a circuitous 90 turn in space in order to view the object from a different direction Each new projection utilizes a dimension in full scale that appears as point view dimension in the previous view To achieve the full scale view of this dimension and accommodate it within the new view requires one to ignore the previous view and proceed to the second previous view where this dimension appears in full scale Each new view may be created by projecting into any of an infinite number of directions perpendicular to the previous direction of projection Envision the many directions of the spokes of a wagon wheel each perpendicular to the direction of the axle The result is one of stepping circuitously about an object in 90 turns and viewing the object from each step Each new view is added as an additional view to an orthographic projection layout display and appears in an unfolding of the glass box model Aside from the Orthographic six standard principal views Front Right Side Left Side Top Bottom Rear descriptive geometry strives to yield four basic solution views the true length of a line i e full size not foreshortened the point view end view of a line the true shape of a plane i e full size to scale or not foreshortened and the edge view of a plane i e view of a plane with the line of sight perpendicular to the line of sight associated with the line of sight for producing the true shape of a plane These often serve to determine the direction of projection for the subsequent view By the 90 circuitous stepping process projecting in any direction from the point view of a line yields its true length view projecting in a direction parallel to a true length line view yields its point view projecting the point view of any line on a plane yields the plane s edge view projecting in a direction perpendicular to the edge view of a plane will yield the true shape to scale view These various views may be called upon to help solve engineering problems posed by solid geometry principlesHeuristics editThere is heuristic value to studying descriptive geometry It promotes visualization and spatial analytical abilities as well as the intuitive ability to recognize the direction of viewing for best presenting a geometric problem for solution Representative examples The best direction to view edit Two skew lines pipes perhaps in general positions in order to determine the location of their shortest connector common perpendicular Two skew lines pipes in general positions such that their shortest connector is seen in full scale Two skew lines in general positions such the shortest connector parallel to a given plane is seen in full scale say to determine the position and the dimension of the shortest connector at a constant distance from a radiating surface A plane surface such that a hole drilled perpendicular is seen in full scale as if looking through the hole say to test for clearances with other drilled holes A plane equidistant from two skew lines in general positions say to confirm safe radiation distance The shortest distance from a point to a plane say to locate the most economical position for bracing The line of intersection between two surfaces including curved surfaces say for the most economical sizing of sections The true size of the angle between two planes A standard for presenting computer modeling views analogous to orthographic sequential projections has not yet been adopted One candidate for such is presented in the illustrations below The images in the illustrations were created using three dimensional engineering computer graphics Three dimensional computer modeling produces virtual space behind the tube as it were and may produce any view of a model from any direction within this virtual space It does so without the need for adjacent orthographic views and therefore may seem to render the circuitous stepping protocol of Descriptive Geometry obsolete However since descriptive geometry is the science of the legitimate or allowable imaging of three or more dimensional space on a flat plane it is an indispensable study to enhance computer modeling possibilities Examples edit Finding the shortest connector between two given skew lines PR and SU edit nbsp Example of the use of descriptive geometry to find the shortest connector between two skew lines The red yellow and green highlights show distances which are the same for projections of point P Given the X Y and Z coordinates of P R S and U projections 1 and 2 are drawn to scale on the X Y and X Z planes respectively To get a true view length in the projection is equal to length in 3D space of one of the lines SU in this example projection 3 is drawn with hinge line H2 3 parallel to S2U2 To get an end view of SU projection 4 is drawn with hinge line H3 4 perpendicular to S3U3 The perpendicular distance d gives the shortest distance between PR and SU To get points Q and T on these lines giving this shortest distance projection 5 is drawn with hinge line H4 5 parallel to P4R4 making both P5R5 and S5U5 true views any projection of an end view is a true view Projecting the intersection of these lines Q5 and T5 back to projection 1 magenta lines and labels allows their coordinates to be read off the X Y and Z axes General solutions editGeneral solutions are a class of solutions within descriptive geometry that contain all possible solutions to a problem The general solution is represented by a single three dimensional object usually a cone the directions of the elements of which are the desired direction of viewing projection for any of an infinite number of solution views For example To find the general solution such that two unequal length skew lines in general positions say rockets in flight appear Equal length Equal length and parallel Equal length and perpendicular say for ideal targeting of at least one Equal to lengths of a specified ratio others In the examples the general solution for each desired characteristic solution is a cone each element of which produces one of an infinite number of solution views When two or more characteristics of say those listed above are desired and for which a solution exists projecting in the direction of either of the two elements of intersections one element if cones are tangent between the two cones produces the desired solution view If the cones do not intersect a solution does not exist The examples below are annotated to show the descriptive geometric principles used in the solutions TL True Length EV Edge View Figs 1 3 below demonstrate 1 Descriptive geometry general solutions and 2 simultaneously a potential standard for presenting such solutions in orthographic multiview layout formats The potential standard employs two adjacent standard orthographic views here Front and Top with a standard folding line between As there is no subsequent need to circuitously step 90 around the object in standard two step sequences in order to arrive at a solution view it is possible to go directly to the solution view this shorter protocol is accounted for in the layout Where the one step protocol replaces the two step protocol double folding lines are used In other words when one crosses the double lines he is not making a circuitous 90 turn but a non orthodirectional turn directly to the solution view As most engineering computer graphics packages automatically generates the six principal views of the glass box model as well as an isometric view these views are sometimes added out of heuristic curiosity nbsp Figure 1 Descriptive geometry skew lines appearing perpendicular nbsp Figure 2 Descriptive geometry skew lines appear equal length nbsp Figure 3 Descriptive geometry skew lines appear in specified length ratioSee also editProjective geometry Graphical projection Orthographic projection Axonometric projection Isometric projection Dimetric projection Trimetric projection Orthogonal projection Oblique projection Perspective projection Perspective graphical Stereotomy descriptive geometry Technical drawing Engineering drawingReferences edit nbsp Wikimedia Commons has media related to Descriptive geometry Joseph Malkevitch April 2003 Mathematics and Art Feature Column Archive American Mathematical Society James Stevens Curl ed 2015 Guarini Guarino A Dictionary of Architecture Oxford University Press p 337 ISBN 9780198606789 Bianchini Carlo 2012 Stereotomy Role in Guarino Guarini s Space Research Nuts and Bolts of Construction History 1 257 263 ISBN 978 2 7084 0929 3 Ingrid Carlbom Joseph Paciorek December 1978 Planar Geometric Projections and Viewing Transformations ACM Computing Surveys 10 4 465 502 CiteSeerX 10 1 1 532 4774 doi 10 1145 356744 356750 S2CID 708008 Retrieved from https en wikipedia org w index php title Descriptive geometry amp oldid 1217469706, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.