fbpx
Wikipedia

Cyanometalate

Cyanometallates or cyanometalates are a class of coordination compounds, most often consisting only of cyanide ligands.[1] Most are anions. Cyanide is a highly basic and small ligand, hence it readily saturates the coordination sphere of metal ions. The resulting cyanometallate anions are often used as building blocks for more complex structures called coordination polymers, the best known example of which is Prussian blue, a common dyestuff.[2]

Examples edit

Homoleptic cyanometallates edit

Homoleptic cyanometallates are complexes where the only ligand is cyanide. For transition metals, well known homoleptic cyanometallates are the hexacyanides. Hexacyanometalates are known for Ti(III), V(III), Cr(III), Cr(II), Mn(IV), Mn(III), Mn(II), Fe(II), Fe(III), Co(III), Ru(III), Ru(II), Os(III), and Os(II). Other more labile derivatives are also known. The Cr(II),[3] Mn(III), Mn(II), Fe(II), Fe(III), and Co(III) derivatives are low-spin, reflecting the strong binding of cyanide, i.e. cyanide ranks highly in the spectrochemical series when significant backbonding can occur. Since cyanide has the largest σ-donation ability at its C-end, most soluble (molecular) metal-cyanide complexes have metal-carbon, rather than metal-ntrogen bonds.[4] With low d-electron counts, however, inversion of cyanometallates to nitrile complexes can occur. Lower metal oxidation states can be achieved with binding of Lewis acids to the terminal nitrogen lone pairs.

  

Pentacyanocobaltate ([Co(CN)5]3−) is produced by the addition of five or more equivalents of a cyanide to a solution of a cobalt(II) salt. It is square pyramidal.[5] Solutions of [Co(CN)5]3 undergo a variety of reactions, such as hydrogenation:[6]

2[Co(CN)5]3− + H2 → 2 [Co(CN)5H]3−

Several tetracyanometalates are also known, the best known being those of the d8 metals, Ni(II), Pd(II), and Pt(II). These species are square-planar and diamagnetic. In addition to [Ni(CN)4]4−, nickel also forms [Ni2(CN)6]4-, with a Ni(I)-Ni(I) bond. The coinage metals form stable dicyanometallates, [Cu(CN)2], [Ag(CN)2], and [Au(CN)2]. For heavier metals, other stoichiometries are known such as K4Mo(CN)8 and Potassium heptacyanorhenate. Some cyanometallates are clusters featuring metal-metal bonds, such as [Mo2(CN)8]4−.

name formula formula weight charge oxidation

state

comment reference
Tetracyanidoborate [B(CN)4] −1 +3 [7]
Hexacyanidosilicate Si(CN)62– −2 +4 [8]
Tetracyanotitanate(II) [Ti(CN)4]2− −2 +2 [9]
Hexacyanotitanate(III) [Ti(CN)6]3− −3 +3 orange [9]
Heptacyanotitanate(IV) [Ti(CN)7]4− −4 +3 [9]
Octacyanotitanate(V) [Ti(CN)8]5− −5 +3 dark green [9][10]
Hexacyanovanadate(IV) [V(CN)6]4− −4 +2 yellow brown [10]
Heptacyanovanadate(IV) [V(CN)7]4− −4 +3 scarlet purple [10]
Hexacyanidochromate(VI) [Cr(CN)6]6− −6 0 dark green [10]
Hexacyanochromate(III) [Cr(CN)6]3− −3 +3 pale yellow [10]
Hexacyanomanganate(III) [MnIII(CN)6]3 −3 +3
Hexacyanoferrate(II) [FeII(CN)6]4− −4 +3 [11]
Tricyanidoferrate(−IV) [Fe(CN)3]7− −7 −4 [12]
Tricyanocobaltate(VI) [Co(CN)3]6− −6 −3 [12]
Hexacyanocobaltate(III) [Co(CN)6]3− −3 +3
Tetracyanonickelate(II) [Ni(CN)4]2– −2 +2 yellow orange
Tetracyanonickelate(II|) [Ni(CN)4] −1 +3
Hexacyanodinickelate(I) [Ni2(CN)6]4− −4 +1
Hexacyanogermanate(II) Ge(CN)62– −2 +4 [8]
Heptacyanomolybdate(IV) [Mo(CN)7]4− −4 +3 dark green [10]
Octacyanomolybdate(IV) [Mo(CN)8]4− −4 +4 yellow [13][10]
Tricyanidoruthenate(−IV) [Ru(CN)3]7− −7 −4 [12]
Tetracyanopalladate(II) [Pd(CN)4]2– −2 +2 [14]
Dicyanidoargentate(I) [Ag(CN)2] −1 +1
Hexacyanostannate(II) Sn(CN)62– −2 +4 [8]
Pentacyanoantimonate [Sb(CN)5]2– −2 +3 [15]
Heptacyanotungstate(IV) [W(CN)7]3− −3 +4 [16]
Octacyanotungstate [W(CN)8]3− −3 +5 [17]
Heptacyanorhenate [Re(CN)7]3– −3 +4 [17]
Tetracyanoplatinate [Pt(CN)4]2− −2 +2 [18]
Hexacyanoplatinate [Pt(CN)6]2– −2 +4 [17]
Dicyanidoaurate(I) [Au(CN)2] −1 +1
Tetracyanidoaurate(III) [Au(CN)4] −1 +3 [19]
Pentacyanidobismuthate(II) [Bi(CN)5]2– −2 +3 [15]
Hexacyanidobismuthate(VI) [Bi(CN)6]3– −3 +3 [15]
Hendecacyanodibismuthate [Bi2(CN)11]5– −5 +3 [15]

Heteroleptic cyanometallates edit

Mixed ligand cyanometallates with anywhere from one to five cyanide ligands have been prepared. One example is the zero-valent [Fe(CO)4(CN)]. Heteroleptic cyanometallates are of interest outside of the research laboratory, with one example being the drug sodium nitroprusside (Na2FeNO(CN)5). Other studies have demonstrated their competency as photoredox catalysts.

Synthesis edit

Because cyanide is a powerful nucleophile and a strong ligand, cyanometallates are generally prepared by the direct reaction of cyanide salts with simple metal salts. If other ligands are present on the metal, these are often displaced by cyanide. By far the largest application of cyanometalates is the production of [Au(CN)2] in the extraction of gold from low grade ores. This conversion involves oxidation of metallic gold into Au+:

4 Au + 8 CN + O2 + 2 H2O → 4 [Au(CN)2] + 4 OH

Reactions edit

Redox edit

Because the M-CN bond is strong and delocalizes electron density to the ligands, several cyanometallates exhibit multiple redox states. A well known couple is [Fe(CN)6]3−/4−. Mn(IV), Mn(III), and Mn(II) are known for hexacyanomanganate. Few unidentate ligands allow similar redox transformations wherein both members of the redox couple are observable in solution. Another perhaps more dramatic example is the 2 e reduction of the square planar tetracyanonickelate to its tetrahedral Ni(0) derivative:

[Ni(CN)4]2− + 2 e → [Ni(CN)4]4−

N-Centered reactions edit

Many characteristic reactions of metal cyanides arise from ambidentate nature of cyanide, i.e. both the nitrogen and the carbon extremities of the anion are basic. Thus cyanometalates can be alkylated to give isocyanide complexes.[20] Cyanide ligands are susceptible to protonation, hence many cyanometalates are highly solvatochromic. The nitrogen terminus is a good ligand for other metals. The latter tendency is illustrated by the condensation of ferrocyanide salts with other metal ions to give polymers, such as Prussian blue. Such polymers feature Fe-CN-M linkages.

See also edit

References edit

  1. ^ Sharpe, A. G. The Chemistry of Cyano Complexes of the Transition Metals; Academic Press: London, 1976. ISBN 0-12-638450-9.
  2. ^ *Dunbar, K. R. and Heintz, R. A., "Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives", Progress in Inorganic Chemistry, 1997, 45, 283-391.
  3. ^ Eaton, Janice P.; Nicholls, David (1981). "The Complex Cyanides of Chromium(II) and Chromium(0)". Transition Metal Chemistry. 6 (4): 203–206. doi:10.1007/BF00618223. S2CID 96193332.
  4. ^ Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. 2022. Coordination Chemistry Reviews. 453/. Y. Avila, P. Acevedo-Peña, L. Reguera, E. Reguera. doi: 10.1016/j.ccr.2021.214274
  5. ^ Brown, Leo D.; Raymond, Kenneth N. (1975). "Structural Characterization of the Pentacyanocobaltate(II) Anion in the Salt Tris(diethyldiisopropylammonium) Pentacyanocobaltate(II)". Inorganic Chemistry. 14 (11): 2590–2594. doi:10.1021/ic50153a002.
  6. ^ Kwiatek, Jack (1968). "Reactions Catalyzed by Pentacyanocobaltate(II)". Catalysis Reviews. 1: 37–72. doi:10.1080/01614946808064700.
  7. ^ Nitschke, Christian; Köckerling, Martin (March 2009). "A New Transition Metal Tetracyanidoborate: Synthesis, Structure and Properties of Co[B(CN) 4 ] 2 ·2H 2 O". Zeitschrift für anorganische und allgemeine Chemie. 635 (3): 503–507. doi:10.1002/zaac.200801234.
  8. ^ a b c Smallwood, Zoe M.; Davis, Martin F.; Hill, J. Grant; James, Lara J. R.; Portius, Peter (April 2019). "Syntheses, Structures, and Infrared Spectra of the Hexa(cyanido) Complexes of Silicon, Germanium, and Tin". Inorganic Chemistry. 58 (7): 4583–4591. doi:10.1021/acs.inorgchem.9b00150. ISSN 0020-1669.
  9. ^ a b c d Nicholls, David; Ryan, T.Anthony (January 1980). "Complex cyanides of titanium". Inorganica Chimica Acta. 41: 233–237. doi:10.1016/S0020-1693(00)88461-3.
  10. ^ a b c d e f g Chadwick, B.M.; Sharpe, A.G. (1966), "Transition Metal Cyanides and Their Complexes", Advances in Inorganic Chemistry and Radiochemistry, Elsevier, vol. 8, pp. 83–176, doi:10.1016/s0065-2792(08)60201-0, ISBN 978-0-12-023608-4, retrieved 2024-01-21
  11. ^ Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. (1977-11-01). "The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O". Inorganic Chemistry. 16 (11): 2704–2710. doi:10.1021/ic50177a008. ISSN 0020-1669.
  12. ^ a b c Jach, Franziska; Wagner, Frank R.; Amber, Zeeshan H.; Rüsing, Michael; Hunger, Jens; Prots, Yurii; Kaiser, Martin; Bobnar, Matej; Jesche, Anton; Eng, Lukas M.; Ruck, Michael (2021-07-12). "Tricyanidoferrates(−IV) and Ruthenates(−IV) with Non‐Innocent Cyanido Ligands". Angewandte Chemie International Edition. 60 (29): 15879–15885. doi:10.1002/anie.202103268. ISSN 1433-7851.
  13. ^ Dong, Wen; Wang, Chao; Ouyang, Yan; Liao, Dai-Zheng (March 2009). "Supramolecular Complexes Based on [M(CN) 8 ] 4- (M = Mo, W) and Aliphatic Amine Cu II Tectons". Zeitschrift für anorganische und allgemeine Chemie. 635 (3): 544–548. doi:10.1002/zaac.200801254.
  14. ^ Kuchár, J.; Miklošová, M.; Černák, J.; Falvello, L.R. (August 2014). "Tetracyanidopalladates of Cu(II) with 2-aminoethylpyridines as blocking ligands: The role of the 2-aminoethyl arm position on the pyridine ring". Journal of Molecular Structure. 1072: 94–102. doi:10.1016/j.molstruc.2014.04.061.
  15. ^ a b c d Arlt, Sören; Harloff, Jörg; Schulz, Axel; Stoffers, Alrik; Villinger, Alexander (5 December 2016). "Cyanido Antimonate(III) and Bismuthate(III) Anions". Inorganic Chemistry. 55 (23): 12321–12328. doi:10.1021/acs.inorgchem.6b02174.
  16. ^ Birk, Francisco J.; Pinkowicz, Dawid; Dunbar, Kim R. (2016-09-12). "The Heptacyanotungstate(IV) Anion: A New 5 d Transition‐Metal Member of the Rare Heptacyanometallate Family of Anions". Angewandte Chemie International Edition. 55 (38): 11368–11371. doi:10.1002/anie.201602949. hdl:2027.42/137239. ISSN 1433-7851.
  17. ^ a b c Kobylarczyk, Jedrzej; Pinkowicz, Dawid; Srebro-Hooper, Monika; Hooper, James; Podgajny, Robert (2019-02-06). "Anion-π Architectures of HAT(CN) 6 and 5d Polycyanidometalates: [W(CN) 8 ] 3– , [Re(CN) 7 ] 3– , and [Pt(CN) 6 ] 2–". Crystal Growth & Design. 19 (2): 1215–1225. doi:10.1021/acs.cgd.8b01653. ISSN 1528-7483.
  18. ^ Korkmaz, Şengül Aslan; Karadağ, Ahmet; Aydın, Ali; Yerli, Yusuf; Soylu, Mustafa Serkan (November 2016). "Binuclear cyanido complexes containing [Pt(CN)4]2− building block: Synthesis, crystal structures, magnetic properties and anticancer activities". Inorganica Chimica Acta. 453: 154–168. doi:10.1016/j.ica.2016.08.002.
  19. ^ Matsushita, Nobuyuki; Noguchi, Wataru; Tanaka, Rikako (2017-03-28). "Potassium tetracyanidoaurate(III) monohydrate: a redetermination". IUCrData. 2 (3): x170382. doi:10.1107/S2414314617003820. ISSN 2414-3146.
  20. ^ Fehlhammer, W. P. Fritz, M., "Emergence of a CNH and Cyano Complex Based Organometallic Chemistry", Chemical Reviews, 1993, volume 93, pp. 1243-80.doi:10.1021/cr00019a016

cyanometalate, cyanometallates, cyanometalates, class, coordination, compounds, most, often, consisting, only, cyanide, ligands, most, anions, cyanide, highly, basic, small, ligand, hence, readily, saturates, coordination, sphere, metal, ions, resulting, cyano. Cyanometallates or cyanometalates are a class of coordination compounds most often consisting only of cyanide ligands 1 Most are anions Cyanide is a highly basic and small ligand hence it readily saturates the coordination sphere of metal ions The resulting cyanometallate anions are often used as building blocks for more complex structures called coordination polymers the best known example of which is Prussian blue a common dyestuff 2 Contents 1 Examples 1 1 Homoleptic cyanometallates 1 2 Heteroleptic cyanometallates 2 Synthesis 3 Reactions 3 1 Redox 3 2 N Centered reactions 4 See also 5 ReferencesExamples editHomoleptic cyanometallates edit Homoleptic cyanometallates are complexes where the only ligand is cyanide For transition metals well known homoleptic cyanometallates are the hexacyanides Hexacyanometalates are known for Ti III V III Cr III Cr II Mn IV Mn III Mn II Fe II Fe III Co III Ru III Ru II Os III and Os II Other more labile derivatives are also known The Cr II 3 Mn III Mn II Fe II Fe III and Co III derivatives are low spin reflecting the strong binding of cyanide i e cyanide ranks highly in the spectrochemical series when significant backbonding can occur Since cyanide has the largest s donation ability at its C end most soluble molecular metal cyanide complexes have metal carbon rather than metal ntrogen bonds 4 With low d electron counts however inversion of cyanometallates to nitrile complexes can occur Lower metal oxidation states can be achieved with binding of Lewis acids to the terminal nitrogen lone pairs nbsp nbsp Pentacyanocobaltate Co CN 5 3 is produced by the addition of five or more equivalents of a cyanide to a solution of a cobalt II salt It is square pyramidal 5 Solutions of Co CN 5 3 undergo a variety of reactions such as hydrogenation 6 2 Co CN 5 3 H2 2 Co CN 5H 3 Several tetracyanometalates are also known the best known being those of the d8 metals Ni II Pd II and Pt II These species are square planar and diamagnetic In addition to Ni CN 4 4 nickel also forms Ni2 CN 6 4 with a Ni I Ni I bond The coinage metals form stable dicyanometallates Cu CN 2 Ag CN 2 and Au CN 2 For heavier metals other stoichiometries are known such as K4Mo CN 8 and Potassium heptacyanorhenate Some cyanometallates are clusters featuring metal metal bonds such as Mo2 CN 8 4 name formula formula weight charge oxidation state comment referenceTetracyanidoborate B CN 4 1 3 7 Hexacyanidosilicate Si CN 62 2 4 8 Tetracyanotitanate II Ti CN 4 2 2 2 9 Hexacyanotitanate III Ti CN 6 3 3 3 orange 9 Heptacyanotitanate IV Ti CN 7 4 4 3 9 Octacyanotitanate V Ti CN 8 5 5 3 dark green 9 10 Hexacyanovanadate IV V CN 6 4 4 2 yellow brown 10 Heptacyanovanadate IV V CN 7 4 4 3 scarlet purple 10 Hexacyanidochromate VI Cr CN 6 6 6 0 dark green 10 Hexacyanochromate III Cr CN 6 3 3 3 pale yellow 10 Hexacyanomanganate III MnIII CN 6 3 3 3Hexacyanoferrate II FeII CN 6 4 4 3 11 Tricyanidoferrate IV Fe CN 3 7 7 4 12 Tricyanocobaltate VI Co CN 3 6 6 3 12 Hexacyanocobaltate III Co CN 6 3 3 3Tetracyanonickelate II Ni CN 4 2 2 2 yellow orangeTetracyanonickelate II Ni CN 4 1 3Hexacyanodinickelate I Ni2 CN 6 4 4 1Hexacyanogermanate II Ge CN 62 2 4 8 Heptacyanomolybdate IV Mo CN 7 4 4 3 dark green 10 Octacyanomolybdate IV Mo CN 8 4 4 4 yellow 13 10 Tricyanidoruthenate IV Ru CN 3 7 7 4 12 Tetracyanopalladate II Pd CN 4 2 2 2 14 Dicyanidoargentate I Ag CN 2 1 1Hexacyanostannate II Sn CN 62 2 4 8 Pentacyanoantimonate Sb CN 5 2 2 3 15 Heptacyanotungstate IV W CN 7 3 3 4 16 Octacyanotungstate W CN 8 3 3 5 17 Heptacyanorhenate Re CN 7 3 3 4 17 Tetracyanoplatinate Pt CN 4 2 2 2 18 Hexacyanoplatinate Pt CN 6 2 2 4 17 Dicyanidoaurate I Au CN 2 1 1Tetracyanidoaurate III Au CN 4 1 3 19 Pentacyanidobismuthate II Bi CN 5 2 2 3 15 Hexacyanidobismuthate VI Bi CN 6 3 3 3 15 Hendecacyanodibismuthate Bi2 CN 11 5 5 3 15 Heteroleptic cyanometallates edit Mixed ligand cyanometallates with anywhere from one to five cyanide ligands have been prepared One example is the zero valent Fe CO 4 CN Heteroleptic cyanometallates are of interest outside of the research laboratory with one example being the drug sodium nitroprusside Na2FeNO CN 5 Other studies have demonstrated their competency as photoredox catalysts Synthesis editBecause cyanide is a powerful nucleophile and a strong ligand cyanometallates are generally prepared by the direct reaction of cyanide salts with simple metal salts If other ligands are present on the metal these are often displaced by cyanide By far the largest application of cyanometalates is the production of Au CN 2 in the extraction of gold from low grade ores This conversion involves oxidation of metallic gold into Au 4 Au 8 CN O2 2 H2O 4 Au CN 2 4 OH Reactions editRedox edit Because the M CN bond is strong and delocalizes electron density to the ligands several cyanometallates exhibit multiple redox states A well known couple is Fe CN 6 3 4 Mn IV Mn III and Mn II are known for hexacyanomanganate Few unidentate ligands allow similar redox transformations wherein both members of the redox couple are observable in solution Another perhaps more dramatic example is the 2 e reduction of the square planar tetracyanonickelate to its tetrahedral Ni 0 derivative Ni CN 4 2 2 e Ni CN 4 4 N Centered reactions edit Many characteristic reactions of metal cyanides arise from ambidentate nature of cyanide i e both the nitrogen and the carbon extremities of the anion are basic Thus cyanometalates can be alkylated to give isocyanide complexes 20 Cyanide ligands are susceptible to protonation hence many cyanometalates are highly solvatochromic The nitrogen terminus is a good ligand for other metals The latter tendency is illustrated by the condensation of ferrocyanide salts with other metal ions to give polymers such as Prussian blue Such polymers feature Fe CN M linkages See also editTransition metal nitrile complexes coordination compounds containing nitrile ligands coordinating via N References edit Sharpe A G The Chemistry of Cyano Complexes of the Transition Metals Academic Press London 1976 ISBN 0 12 638450 9 Dunbar K R and Heintz R A Chemistry of Transition Metal Cyanide Compounds Modern Perspectives Progress in Inorganic Chemistry 1997 45 283 391 Eaton Janice P Nicholls David 1981 The Complex Cyanides of Chromium II and Chromium 0 Transition Metal Chemistry 6 4 203 206 doi 10 1007 BF00618223 S2CID 96193332 Recent progress in transition metal hexacyanometallates From structure to properties and functionality 2022 Coordination Chemistry Reviews 453 Y Avila P Acevedo Pena L Reguera E Reguera doi 10 1016 j ccr 2021 214274 Brown Leo D Raymond Kenneth N 1975 Structural Characterization of the Pentacyanocobaltate II Anion in the Salt Tris diethyldiisopropylammonium Pentacyanocobaltate II Inorganic Chemistry 14 11 2590 2594 doi 10 1021 ic50153a002 Kwiatek Jack 1968 Reactions Catalyzed by Pentacyanocobaltate II Catalysis Reviews 1 37 72 doi 10 1080 01614946808064700 Nitschke Christian Kockerling Martin March 2009 A New Transition Metal Tetracyanidoborate Synthesis Structure and Properties of Co B CN 4 2 2H 2 O Zeitschrift fur anorganische und allgemeine Chemie 635 3 503 507 doi 10 1002 zaac 200801234 a b c Smallwood Zoe M Davis Martin F Hill J Grant James Lara J R Portius Peter April 2019 Syntheses Structures and Infrared Spectra of the Hexa cyanido Complexes of Silicon Germanium and Tin Inorganic Chemistry 58 7 4583 4591 doi 10 1021 acs inorgchem 9b00150 ISSN 0020 1669 a b c d Nicholls David Ryan T Anthony January 1980 Complex cyanides of titanium Inorganica Chimica Acta 41 233 237 doi 10 1016 S0020 1693 00 88461 3 a b c d e f g Chadwick B M Sharpe A G 1966 Transition Metal Cyanides and Their Complexes Advances in Inorganic Chemistry and Radiochemistry Elsevier vol 8 pp 83 176 doi 10 1016 s0065 2792 08 60201 0 ISBN 978 0 12 023608 4 retrieved 2024 01 21 Buser H J Schwarzenbach D Petter W Ludi A 1977 11 01 The crystal structure of Prussian Blue Fe4 Fe CN 6 3 xH2O Inorganic Chemistry 16 11 2704 2710 doi 10 1021 ic50177a008 ISSN 0020 1669 a b c Jach Franziska Wagner Frank R Amber Zeeshan H Rusing Michael Hunger Jens Prots Yurii Kaiser Martin Bobnar Matej Jesche Anton Eng Lukas M Ruck Michael 2021 07 12 Tricyanidoferrates IV and Ruthenates IV with Non Innocent Cyanido Ligands Angewandte Chemie International Edition 60 29 15879 15885 doi 10 1002 anie 202103268 ISSN 1433 7851 Dong Wen Wang Chao Ouyang Yan Liao Dai Zheng March 2009 Supramolecular Complexes Based on M CN 8 4 M Mo W and Aliphatic Amine Cu II Tectons Zeitschrift fur anorganische und allgemeine Chemie 635 3 544 548 doi 10 1002 zaac 200801254 Kuchar J Miklosova M Cernak J Falvello L R August 2014 Tetracyanidopalladates of Cu II with 2 aminoethylpyridines as blocking ligands The role of the 2 aminoethyl arm position on the pyridine ring Journal of Molecular Structure 1072 94 102 doi 10 1016 j molstruc 2014 04 061 a b c d Arlt Soren Harloff Jorg Schulz Axel Stoffers Alrik Villinger Alexander 5 December 2016 Cyanido Antimonate III and Bismuthate III Anions Inorganic Chemistry 55 23 12321 12328 doi 10 1021 acs inorgchem 6b02174 Birk Francisco J Pinkowicz Dawid Dunbar Kim R 2016 09 12 The Heptacyanotungstate IV Anion A New 5 d Transition Metal Member of the Rare Heptacyanometallate Family of Anions Angewandte Chemie International Edition 55 38 11368 11371 doi 10 1002 anie 201602949 hdl 2027 42 137239 ISSN 1433 7851 a b c Kobylarczyk Jedrzej Pinkowicz Dawid Srebro Hooper Monika Hooper James Podgajny Robert 2019 02 06 Anion p Architectures of HAT CN 6 and 5d Polycyanidometalates W CN 8 3 Re CN 7 3 and Pt CN 6 2 Crystal Growth amp Design 19 2 1215 1225 doi 10 1021 acs cgd 8b01653 ISSN 1528 7483 Korkmaz Sengul Aslan Karadag Ahmet Aydin Ali Yerli Yusuf Soylu Mustafa Serkan November 2016 Binuclear cyanido complexes containing Pt CN 4 2 building block Synthesis crystal structures magnetic properties and anticancer activities Inorganica Chimica Acta 453 154 168 doi 10 1016 j ica 2016 08 002 Matsushita Nobuyuki Noguchi Wataru Tanaka Rikako 2017 03 28 Potassium tetracyanidoaurate III monohydrate a redetermination IUCrData 2 3 x170382 doi 10 1107 S2414314617003820 ISSN 2414 3146 Fehlhammer W P Fritz M Emergence of a CNH and Cyano Complex Based Organometallic Chemistry Chemical Reviews 1993 volume 93 pp 1243 80 doi 10 1021 cr00019a016 Retrieved from https en wikipedia org w index php title Cyanometalate amp oldid 1210868198, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.