fbpx
Wikipedia

Cremona group

In algebraic geometry, the Cremona group, introduced by Cremona (1863, 1865), is the group of birational automorphisms of the -dimensional projective space over a field . It is denoted by or or .

The Cremona group is naturally identified with the automorphism group of the field of the rational functions in indeterminates over , or in other words a pure transcendental extension of , with transcendence degree .

The projective general linear group of order , of projective transformations, is contained in the Cremona group of order . The two are equal only when or , in which case both the numerator and the denominator of a transformation must be linear.

The Cremona group in 2 dimensions edit

In two dimensions, Max Noether and Guido Castelnuovo showed that the complex Cremona group is generated by the standard quadratic transformation, along with  , though there was some controversy about whether their proofs were correct, and Gizatullin (1983) gave a complete set of relations for these generators. The structure of this group is still not well understood, though there has been a lot of work on finding elements or subgroups of it.

  • Cantat & Lamy (2010) showed that the Cremona group is not simple as an abstract group;
  • Blanc showed that it has no nontrivial normal subgroups that are also closed in a natural topology.
  • For the finite subgroups of the Cremona group see Dolgachev & Iskovskikh (2009).

The Cremona group in higher dimensions edit

There is little known about the structure of the Cremona group in three dimensions and higher though many elements of it have been described. Blanc (2010) showed that it is (linearly) connected, answering a question of Serre (2010). There is no easy analogue of the Noether–Castelnouvo theorem as Hudson (1927) showed that the Cremona group in dimension at least 3 is not generated by its elements of degree bounded by any fixed integer.

De Jonquières groups edit

A De Jonquières group is a subgroup of a Cremona group of the following form[citation needed]. Pick a transcendence basis   for a field extension of  . Then a De Jonquières group is the subgroup of automorphisms of   mapping the subfield   into itself for some  . It has a normal subgroup given by the Cremona group of automorphisms of   over the field  , and the quotient group is the Cremona group of   over the field  . It can also be regarded as the group of birational automorphisms of the fiber bundle  .

When   and   the De Jonquières group is the group of Cremona transformations fixing a pencil of lines through a given point, and is the semidirect product of   and  .

References edit

  • Alberich-Carramiñana, Maria (2002), Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Berlin, New York: Springer-Verlag, doi:10.1007/b82933, ISBN 978-3-540-42816-9, MR 1874328
  • Blanc, Jérémy (2010), "Groupes de Cremona, connexité et simplicité", Annales Scientifiques de l'École Normale Supérieure, Série 4, 43 (2): 357–364, doi:10.24033/asens.2123, ISSN 0012-9593, MR 2662668
  • Cantat, Serge; Lamy, Stéphane (2010). "Normal subgroups in the Cremona group". Acta Mathematica. 210 (2013): 31–94. arXiv:1007.0895. Bibcode:2010arXiv1007.0895C. doi:10.1007/s11511-013-0090-1. S2CID 55261367.
  • Coolidge, Julian Lowell (1931), A treatise on algebraic plane curves, Oxford University Press, ISBN 978-0-486-49576-7, MR 0120551
  • Cremona, L. (1863), "Sulla trasformazioni geometiche delle figure piane", Giornale di Matematiche di Battaglini, 1: 305–311
  • Cremona, L. (1865), "Sulla trasformazioni geometiche delle figure piane", Giornale di Matematiche di Battaglini, 3: 269–280, 363–376
  • Demazure, Michel (1970), "Sous-groupes algébriques de rang maximum du groupe de Cremona", Annales Scientifiques de l'École Normale Supérieure, Série 4, 3 (4): 507–588, doi:10.24033/asens.1201, ISSN 0012-9593, MR 0284446
  • Dolgachev, Igor V. (2012), (PDF), Cambridge University Press, ISBN 978-1-107-01765-8, archived from the original (PDF) on 2012-03-11, retrieved 2012-04-18
  • Dolgachev, Igor V.; Iskovskikh, Vasily A. (2009), "Finite subgroups of the plane Cremona group", Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Boston, MA: Birkhäuser Boston, pp. 443–548, arXiv:math/0610595, doi:10.1007/978-0-8176-4745-2_11, ISBN 978-0-8176-4744-5, MR 2641179, S2CID 2188718
  • Gizatullin, M. Kh. (1983), "Defining relations for the Cremona group of the plane", Mathematics of the USSR-Izvestiya, 21 (2): 211–268, Bibcode:1983IzMat..21..211G, doi:10.1070/IM1983v021n02ABEH001789, ISSN 0373-2436, MR 0675525
  • Godeaux, Lucien (1927), Les transformations birationelles du plan, Mémorial des sciences mathématiques, vol. 22, Gauthier-Villars et Cie, JFM 53.0595.02
  • "Cremona group", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • "Cremona transformation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Hudson, Hilda Phoebe (1927), Cremona transformations in plane and space, Cambridge University Press, ISBN 978-0-521-35882-8, Reprinted 2012
  • Semple, J. G.; Roth, L. (1985), Introduction to algebraic geometry, Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN 978-0-19-853363-4, MR 0814690
  • Serre, Jean-Pierre (2009), "A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field", Moscow Mathematical Journal, 9 (1): 193–208, doi:10.17323/1609-4514-2009-9-1-183-198, ISSN 1609-3321, MR 2567402, S2CID 13589478
  • Serre, Jean-Pierre (2010), "Le groupe de Cremona et ses sous-groupes finis" (PDF), Astérisque, Seminaire Bourbaki 1000 (332): 75–100, ISBN 978-2-85629-291-4, ISSN 0303-1179, MR 2648675

cremona, group, algebraic, geometry, introduced, cremona, 1863, 1865, group, birational, automorphisms, displaystyle, dimensional, projective, space, over, field, displaystyle, denoted, displaystyle, mathbb, displaystyle, mathbb, displaystyle, naturally, ident. In algebraic geometry the Cremona group introduced by Cremona 1863 1865 is the group of birational automorphisms of the n displaystyle n dimensional projective space over a field k displaystyle k It is denoted by C r P n k displaystyle Cr mathbb P n k or B i r P n k displaystyle Bir mathbb P n k or C r n k displaystyle Cr n k The Cremona group is naturally identified with the automorphism group A u t k k x 1 x n displaystyle mathrm Aut k k x 1 x n of the field of the rational functions in n displaystyle n indeterminates over k displaystyle k or in other words a pure transcendental extension of k displaystyle k with transcendence degree n displaystyle n The projective general linear group of order n 1 displaystyle n 1 of projective transformations is contained in the Cremona group of order n displaystyle n The two are equal only when n 0 displaystyle n 0 or n 1 displaystyle n 1 in which case both the numerator and the denominator of a transformation must be linear Contents 1 The Cremona group in 2 dimensions 2 The Cremona group in higher dimensions 3 De Jonquieres groups 4 ReferencesThe Cremona group in 2 dimensions editIn two dimensions Max Noether and Guido Castelnuovo showed that the complex Cremona group is generated by the standard quadratic transformation along with P G L 3 k displaystyle mathrm PGL 3 k nbsp though there was some controversy about whether their proofs were correct and Gizatullin 1983 gave a complete set of relations for these generators The structure of this group is still not well understood though there has been a lot of work on finding elements or subgroups of it Cantat amp Lamy 2010 showed that the Cremona group is not simple as an abstract group Blanc showed that it has no nontrivial normal subgroups that are also closed in a natural topology For the finite subgroups of the Cremona group see Dolgachev amp Iskovskikh 2009 The Cremona group in higher dimensions editThere is little known about the structure of the Cremona group in three dimensions and higher though many elements of it have been described Blanc 2010 showed that it is linearly connected answering a question of Serre 2010 There is no easy analogue of the Noether Castelnouvo theorem as Hudson 1927 showed that the Cremona group in dimension at least 3 is not generated by its elements of degree bounded by any fixed integer De Jonquieres groups editA De Jonquieres group is a subgroup of a Cremona group of the following form citation needed Pick a transcendence basis x 1 x n displaystyle x 1 x n nbsp for a field extension of k displaystyle k nbsp Then a De Jonquieres group is the subgroup of automorphisms of k x 1 x n displaystyle k x 1 x n nbsp mapping the subfield k x 1 x r displaystyle k x 1 x r nbsp into itself for some r n displaystyle r leq n nbsp It has a normal subgroup given by the Cremona group of automorphisms of k x 1 x n displaystyle k x 1 x n nbsp over the field k x 1 x r displaystyle k x 1 x r nbsp and the quotient group is the Cremona group of k x 1 x r displaystyle k x 1 x r nbsp over the field k displaystyle k nbsp It can also be regarded as the group of birational automorphisms of the fiber bundle P r P n r P r displaystyle mathbb P r times mathbb P n r to mathbb P r nbsp When n 2 displaystyle n 2 nbsp and r 1 displaystyle r 1 nbsp the De Jonquieres group is the group of Cremona transformations fixing a pencil of lines through a given point and is the semidirect product of P G L 2 k displaystyle mathrm PGL 2 k nbsp and P G L 2 k t displaystyle mathrm PGL 2 k t nbsp References editAlberich Carraminana Maria 2002 Geometry of the plane Cremona maps Lecture Notes in Mathematics vol 1769 Berlin New York Springer Verlag doi 10 1007 b82933 ISBN 978 3 540 42816 9 MR 1874328 Blanc Jeremy 2010 Groupes de Cremona connexite et simplicite Annales Scientifiques de l Ecole Normale Superieure Serie 4 43 2 357 364 doi 10 24033 asens 2123 ISSN 0012 9593 MR 2662668 Cantat Serge Lamy Stephane 2010 Normal subgroups in the Cremona group Acta Mathematica 210 2013 31 94 arXiv 1007 0895 Bibcode 2010arXiv1007 0895C doi 10 1007 s11511 013 0090 1 S2CID 55261367 Coolidge Julian Lowell 1931 A treatise on algebraic plane curves Oxford University Press ISBN 978 0 486 49576 7 MR 0120551 Cremona L 1863 Sulla trasformazioni geometiche delle figure piane Giornale di Matematiche di Battaglini 1 305 311 Cremona L 1865 Sulla trasformazioni geometiche delle figure piane Giornale di Matematiche di Battaglini 3 269 280 363 376 Demazure Michel 1970 Sous groupes algebriques de rang maximum du groupe de Cremona Annales Scientifiques de l Ecole Normale Superieure Serie 4 3 4 507 588 doi 10 24033 asens 1201 ISSN 0012 9593 MR 0284446 Dolgachev Igor V 2012 Classical Algebraic Geometry a modern view PDF Cambridge University Press ISBN 978 1 107 01765 8 archived from the original PDF on 2012 03 11 retrieved 2012 04 18 Dolgachev Igor V Iskovskikh Vasily A 2009 Finite subgroups of the plane Cremona group Algebra arithmetic and geometry in honor of Yu I Manin Vol I Progr Math vol 269 Boston MA Birkhauser Boston pp 443 548 arXiv math 0610595 doi 10 1007 978 0 8176 4745 2 11 ISBN 978 0 8176 4744 5 MR 2641179 S2CID 2188718 Gizatullin M Kh 1983 Defining relations for the Cremona group of the plane Mathematics of the USSR Izvestiya 21 2 211 268 Bibcode 1983IzMat 21 211G doi 10 1070 IM1983v021n02ABEH001789 ISSN 0373 2436 MR 0675525 Godeaux Lucien 1927 Les transformations birationelles du plan Memorial des sciences mathematiques vol 22 Gauthier Villars et Cie JFM 53 0595 02 Cremona group Encyclopedia of Mathematics EMS Press 2001 1994 Cremona transformation Encyclopedia of Mathematics EMS Press 2001 1994 Hudson Hilda Phoebe 1927 Cremona transformations in plane and space Cambridge University Press ISBN 978 0 521 35882 8 Reprinted 2012 Semple J G Roth L 1985 Introduction to algebraic geometry Oxford Science Publications The Clarendon Press Oxford University Press ISBN 978 0 19 853363 4 MR 0814690 Serre Jean Pierre 2009 A Minkowski style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field Moscow Mathematical Journal 9 1 193 208 doi 10 17323 1609 4514 2009 9 1 183 198 ISSN 1609 3321 MR 2567402 S2CID 13589478 Serre Jean Pierre 2010 Le groupe de Cremona et ses sous groupes finis PDF Asterisque Seminaire Bourbaki 1000 332 75 100 ISBN 978 2 85629 291 4 ISSN 0303 1179 MR 2648675 Retrieved from https en wikipedia org w index php title Cremona group amp oldid 1172838806, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.