fbpx
Wikipedia

Coupled cluster

Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics. Coupled cluster essentially takes the basic Hartree–Fock molecular orbital method and constructs multi-electron wavefunctions using the exponential cluster operator to account for electron correlation. Some of the most accurate calculations for small to medium-sized molecules use this method.[1][2][3]

The method was initially developed by Fritz Coester and Hermann Kümmel in the 1950s for studying nuclear-physics phenomena, but became more frequently used when in 1966 Jiří Čížek (and later together with Josef Paldus) reformulated the method for electron correlation in atoms and molecules. It is now one of the most prevalent methods in quantum chemistry that includes electronic correlation.

CC theory is simply the perturbative variant of the many-electron theory (MET) of Oktay Sinanoğlu, which is the exact (and variational) solution of the many-electron problem, so it was also called "coupled-pair MET (CPMET)". J. Čížek used the correlation function of MET and used Goldstone-type perturbation theory to get the energy expression, while original MET was completely variational. Čížek first developed the linear CPMET and then generalized it to full CPMET in the same work in 1966. He then also performed an application of it on the benzene molecule with Sinanoğlu in the same year. Because MET is somewhat difficult to perform computationally, CC is simpler and thus, in today's computational chemistry, CC is the best variant of MET and gives highly accurate results in comparison to experiments.[4][5][6]

Wavefunction ansatz Edit

Coupled-cluster theory provides the exact solution to the time-independent Schrödinger equation

 

where   is the Hamiltonian of the system,   is the exact wavefunction, and E is the exact energy of the ground state. Coupled-cluster theory can also be used to obtain solutions for excited states using, for example, linear-response,[7] equation-of-motion,[8] state-universal multi-reference,[9] or valence-universal multi-reference coupled cluster[10] approaches.

The wavefunction of the coupled-cluster theory is written as an exponential ansatz:

 

where   is the reference wave function, which is typically a Slater determinant constructed from Hartree–Fock molecular orbitals, though other wave functions such as configuration interaction, multi-configurational self-consistent field, or Brueckner orbitals can also be used.   is the cluster operator, which, when acting on  , produces a linear combination of excited determinants from the reference wave function (see section below for greater detail).

The choice of the exponential ansatz is opportune because (unlike other ansatzes, for example, configuration interaction) it guarantees the size extensivity of the solution. Size consistency in CC theory, also unlike other theories, does not depend on the size consistency of the reference wave function. This is easily seen, for example, in the single bond breaking of F2 when using a restricted Hartree–Fock (RHF) reference, which is not size-consistent, at the CCSDT (coupled cluster single-double-triple) level of theory, which provides an almost exact, full-CI-quality, potential-energy surface and does not dissociate the molecule into F and F+ ions, like the RHF wave function, but rather into two neutral F atoms.[11] If one were to use, for example, the CCSD, or CCSD(T) levels of theory, they would not provide reasonable results for the bond breaking of F2, with the latter one approaches unphysical potential energy surfaces,[12] though this is for reasons other than just size consistency.

A criticism of the method is that the conventional implementation employing the similarity-transformed Hamiltonian (see below) is not variational, though there are bi-variational and quasi-variational approaches that have been developed since the first implementations of the theory. While the above ansatz for the wave function itself has no natural truncation, however, for other properties, such as energy, there is a natural truncation when examining expectation values, which has its basis in the linked- and connected-cluster theorems, and thus does not suffer from issues such as lack of size extensivity, like the variational configuration-interaction approach.

Cluster operator Edit

The cluster operator is written in the form

 

where   is the operator of all single excitations,   is the operator of all double excitations, and so forth. In the formalism of second quantization these excitation operators are expressed as

 
 

and for the general n-fold cluster operator

 

In the above formulae   and   denote the creation and annihilation operators respectively, while ij stand for occupied (hole) and ab for unoccupied (particle) orbitals (states). The creation and annihilation operators in the coupled-cluster terms above are written in canonical form, where each term is in the normal order form, with respect to the Fermi vacuum  . Being the one-particle cluster operator and the two-particle cluster operator,   and   convert the reference function   into a linear combination of the singly and doubly excited Slater determinants respectively, if applied without the exponential (such as in CI, where a linear excitation operator is applied to the wave function). Applying the exponential cluster operator to the wave function, one can then generate more than doubly excited determinants due to the various powers of   and   that appear in the resulting expressions (see below). Solving for the unknown coefficients   and   is necessary for finding the approximate solution  .

The exponential operator   may be expanded as a Taylor series, and if we consider only the   and   cluster operators of  , we can write

 

Though in practice this series is finite because the number of occupied molecular orbitals is finite, as is the number of excitations, it is still very large, to the extent that even modern-day massively parallel computers are inadequate, except for problems of a dozen or so electrons and very small basis sets, when considering all contributions to the cluster operator and not just   and  . Often, as was done above, the cluster operator includes only singles and doubles (see CCSD below) as this offers a computationally affordable method that performs better than MP2 and CISD, but is not very accurate usually. For accurate results some form of triples (approximate or full) are needed, even near the equilibrium geometry (in the Franck–Condon region), and especially when breaking single bonds or describing diradical species (these latter examples are often what is referred to as multi-reference problems, since more than one determinant has a significant contribution to the resulting wave function). For double-bond breaking and more complicated problems in chemistry, quadruple excitations often become important as well, though usually they have small contributions for most problems, and as such, the contribution of  ,   etc. to the operator   is typically small. Furthermore, if the highest excitation level in the   operator is n,

 

then Slater determinants for an N-electron system excited more than   ( ) times may still contribute to the coupled-cluster wave function   because of the non-linear nature of the exponential ansatz, and therefore, coupled cluster terminated at   usually recovers more correlation energy than CI with maximum n excitations.

Coupled-cluster equations Edit

The Schrödinger equation can be written, using the coupled-cluster wave function, as

 

where there are a total of q coefficients (t-amplitudes) to solve for. To obtain the q equations, first, we multiply the above Schrödinger equation on the left by   and then project onto the entire set of up to m-tuply excited determinants, where m is the highest-order excitation included in   that can be constructed from the reference wave function  , denoted by  . Individually,   are singly excited determinants where the electron in orbital i has been excited to orbital a;   are doubly excited determinants where the electron in orbital i has been excited to orbital a and the electron in orbital j has been excited to orbital b, etc. In this way we generate a set of coupled energy-independent non-linear algebraic equations needed to determine the t-amplitudes:

 
 

the latter being the equations to be solved, and the former the equation for the evaluation of the energy. (Note that we have made use of  , the identity operator, and also assume that orbitals are orthogonal, though this does not necessarily have to be true, e.g., valence bond orbitals can be used, and in such cases the last set of equations are not necessarily equal to zero.)

Considering the basic CCSD method:

 
 
 

in which the similarity-transformed Hamiltonian   can be explicitly written down using Hadamard's formula in Lie algebra, also called Hadamard's lemma (see also Baker–Campbell–Hausdorff formula (BCH formula), though note that they are different, in that Hadamard's formula is a lemma of the BCH formula):

 

The subscript C designates the connected part of the corresponding operator expression.

The resulting similarity-transformed Hamiltonian is non-Hermitian, resulting in different left and right vectors (wave functions) for the same state of interest (this is what is often referred to in coupled-cluster theory as the biorthogonality of the solution, or wave function, though it also applies to other non-Hermitian theories as well). The resulting equations are a set of non-linear equations, which are solved in an iterative manner. Standard quantum-chemistry packages (GAMESS (US), NWChem, ACES II, etc.) solve the coupled-cluster equations using the Jacobi method and direct inversion of the iterative subspace (DIIS) extrapolation of the t-amplitudes to accelerate convergence.

Types of coupled-cluster methods Edit

The classification of traditional coupled-cluster methods rests on the highest number of excitations allowed in the definition of  . The abbreviations for coupled-cluster methods usually begin with the letters "CC" (for "coupled cluster") followed by

  1. S – for single excitations (shortened to singles in coupled-cluster terminology),
  2. D – for double excitations (doubles),
  3. T – for triple excitations (triples),
  4. Q – for quadruple excitations (quadruples).

Thus, the   operator in CCSDT has the form

 

Terms in round brackets indicate that these terms are calculated based on perturbation theory. For example, the CCSD(T) method means:

  1. Coupled cluster with a full treatment singles and doubles.
  2. An estimate to the connected triples contribution is calculated non-iteratively using many-body perturbation theory arguments.

General description of the theory Edit

The complexity of equations and the corresponding computer codes, as well as the cost of the computation, increases sharply with the highest level of excitation. For many applications CCSD, while relatively inexpensive, does not provide sufficient accuracy except for the smallest systems (approximately 2 to 4 electrons), and often an approximate treatment of triples is needed. The most well known coupled-cluster method that provides an estimate of connected triples is CCSD(T), which provides a good description of closed-shell molecules near the equilibrium geometry, but breaks down in more complicated situations such as bond breaking and diradicals. Another popular method that makes up for the failings of the standard CCSD(T) approach is CR-CC(2,3), where the triples contribution to the energy is computed from the difference between the exact solution and the CCSD energy and is not based on perturbation-theory arguments. More complicated coupled-cluster methods such as CCSDT and CCSDTQ are used only for high-accuracy calculations of small molecules. The inclusion of all n levels of excitation for the n-electron system gives the exact solution of the Schrödinger equation within the given basis set, within the Born–Oppenheimer approximation (although schemes have also been drawn up to work without the BO approximation[13][14]).

One possible improvement to the standard coupled-cluster approach is to add terms linear in the interelectronic distances through methods such as CCSD-R12. This improves the treatment of dynamical electron correlation by satisfying the Kato cusp condition and accelerates convergence with respect to the orbital basis set. Unfortunately, R12 methods invoke the resolution of the identity, which requires a relatively large basis set in order to be a good approximation.

The coupled-cluster method described above is also known as the single-reference (SR) coupled-cluster method because the exponential ansatz involves only one reference function  . The standard generalizations of the SR-CC method are the multi-reference (MR) approaches: state-universal coupled cluster (also known as Hilbert space coupled cluster), valence-universal coupled cluster (or Fock space coupled cluster) and state-selective coupled cluster (or state-specific coupled cluster).

Historical accounts Edit

Kümmel comments:[1]

Considering the fact that the CC method was well understood around the late fifties[,] it looks strange that nothing happened with it until 1966, as Jiří Čížek published his first paper on a quantum chemistry problem. He had looked into the 1957 and 1960 papers published in Nuclear Physics by Fritz and myself. I always found it quite remarkable that a quantum chemist would open an issue of a nuclear physics journal. I myself at the time had almost given up the CC method as not tractable and, of course, I never looked into the quantum chemistry journals. The result was that I learnt about Jiří's work as late as in the early seventies, when he sent me a big parcel with reprints of the many papers he and Joe Paldus had written until then.

Josef Paldus also wrote his first-hand account of the origins of coupled-cluster theory, its implementation, and exploitation in electronic wave-function determination; his account is primarily about the making of coupled-cluster theory rather than about the theory itself.[15]

Relation to other theories Edit

Configuration interaction Edit

The Cj excitation operators defining the CI expansion of an N-electron system for the wave function  ,

 
 

are related to the cluster operators  , since in the limit of including up to   in the cluster operator the CC theory must be equal to full CI, we obtain the following relationships[16][17]

 
 
 
 

etc. For general relationships see J. Paldus, in Methods in Computational Molecular Physics, Vol. 293 of Nato Advanced Study Institute Series B: Physics, edited by S. Wilson and G. H. F. Diercksen (Plenum, New York, 1992), pp. 99–194.

Symmetry-adapted cluster Edit

The symmetry-adapted cluster (SAC)[18][19] approach determines the (spin- and) symmetry-adapted cluster operator

 

by solving the following system of energy-dependent equations:

 
 
 

where   are the n-tuply excited determinants relative to   (usually, in practical implementations, they are the spin- and symmetry-adapted configuration state functions), and   is the highest order of excitation included in the SAC operator. If all of the nonlinear terms in   are included, then the SAC equations become equivalent to the standard coupled-cluster equations of Jiří Čížek. This is due to the cancellation of the energy-dependent terms with the disconnected terms contributing to the product of  , resulting in the same set of nonlinear energy-independent equations. Typically, all nonlinear terms, except   are dropped, as higher-order nonlinear terms are usually small.[20]

Use in nuclear physics Edit

In nuclear physics, coupled cluster saw significantly less use than in quantum chemistry during the 1980s and 1990s. More powerful computers, as well as advances in theory (such as the inclusion of three-nucleon interactions), have spawned renewed interest in the method since then, and it has been successfully applied to neutron-rich and medium-mass nuclei. Coupled cluster is one of several ab initio methods in nuclear physics and is specifically suitable for nuclei having closed or nearly closed shells.[21]

See also Edit

References Edit

  1. ^ a b Kümmel, H. G. (2002). "A biography of the coupled cluster method". In Bishop, R. F.; Brandes, T.; Gernoth, K. A.; Walet, N. R.; Xian, Y. (eds.). Recent progress in many-body theories Proceedings of the 11th international conference. Singapore: World Scientific Publishing. pp. 334–348. ISBN 978-981-02-4888-8.
  2. ^ Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley & Sons, Ltd. pp. 191–232. ISBN 0-471-48552-7.
  3. ^ Shavitt, Isaiah; Bartlett, Rodney J. (2009). Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press. ISBN 978-0-521-81832-2.
  4. ^ Čížek, Jiří (1966). "On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods". The Journal of Chemical Physics. 45 (11): 4256–4266. Bibcode:1966JChPh..45.4256C. doi:10.1063/1.1727484.
  5. ^ Sinanoğlu, O.; Brueckner, K. (1971). Three approaches to electron correlation in atoms. Yale Univ. Press. ISBN 0-300-01147-4. See also references therein.
  6. ^ Si̇nanoğlu, Oktay (1962). "Many-Electron Theory of Atoms and Molecules. I. Shells, Electron Pairs vs Many-Electron Correlations". The Journal of Chemical Physics. 36 (3): 706–717. Bibcode:1962JChPh..36..706S. doi:10.1063/1.1732596.
  7. ^ Monkhorst, H. J. (1977). "Calculation of properties with the coupled-cluster method". International Journal of Quantum Chemistry. 12, S11: 421–432. doi:10.1002/qua.560120850.
  8. ^ Stanton, John F.; Bartlett, Rodney J. (1993). "The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties". The Journal of Chemical Physics. 98 (9): 7029. Bibcode:1993JChPh..98.7029S. doi:10.1063/1.464746.
  9. ^ Jeziorski, B.; Monkhorst, H. (1981). "Coupled-cluster method for multideterminantal reference states". Physical Review A. 24 (4): 1668. Bibcode:1981PhRvA..24.1668J. doi:10.1103/PhysRevA.24.1668.
  10. ^ Lindgren, D.; Mukherjee, Debashis (1987). "On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces". Physics Reports. 151 (2): 93. Bibcode:1987PhR...151...93L. doi:10.1016/0370-1573(87)90073-1.
  11. ^ Kowalski, K.; Piecuch, P. (2001). "A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2". Chemical Physics Letters. 344 (1–2): 165–175. Bibcode:2001CPL...344..165K. doi:10.1016/s0009-2614(01)00730-8.
  12. ^ Ghose, K. B.; Piecuch, P.; Adamowicz, L. (1995). "Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule". Journal of Physical Chemistry. 103 (21): 9331. Bibcode:1995JChPh.103.9331G. doi:10.1063/1.469993.
  13. ^ Monkhorst, Hendrik J. (1987). "Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method". Physical Review A. 36 (4): 1544–1561. Bibcode:1987PhRvA..36.1544M. doi:10.1103/PhysRevA.36.1544. PMID 9899035.
  14. ^ Nakai, Hiromi; Sodeyama, Keitaro (2003). "Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO/MBPT and CC methods". The Journal of Chemical Physics. 118 (3): 1119. Bibcode:2003JChPh.118.1119N. doi:10.1063/1.1528951.
  15. ^ Paldus, J. (2005). "The beginnings of coupled-cluster theory: an eyewitness account". In Dykstra, C. (ed.). Theory and Applications of Computational Chemistry: The First Forty Years. Elsivier B.V. p. 115.
  16. ^ Paldus, J. (1981). Diagrammatic Methods for Many-Fermion Systems (Lecture Notes ed.). University of Nijmegen, Njimegen, The Netherlands.{{cite book}}: CS1 maint: location missing publisher (link)
  17. ^ Bartlett, R. J.; Dykstra, C. E.; Paldus, J. (1984). Dykstra, C. E. (ed.). Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. p. 127.
  18. ^ Nakatsuji, H.; Hirao, K. (1977). "Cluster expansion of the wavefunction. Pseudo-orbital theory applied to spin correlation". Chemical Physics Letters. 47 (3): 569. Bibcode:1977CPL....47..569N. doi:10.1016/0009-2614(77)85042-2.
  19. ^ Nakatsuji, H.; Hirao, K. (1978). "Cluster expansion of the wavefunction. Symmetry‐adapted‐cluster expansion, its variational determination, and extension of open‐shell orbital theory". Journal of Chemical Physics. 68 (5): 2053. Bibcode:1978JChPh..68.2053N. doi:10.1063/1.436028.
  20. ^ Ohtsuka, Y.; Piecuch, P.; Gour, J. R.; Ehara, M.; Nakatsuji, H. (2007). "Active-space symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster methods for high accuracy calculations of potential energy surfaces of radicals". Journal of Chemical Physics. 126 (16): 164111. Bibcode:2007JChPh.126p4111O. doi:10.1063/1.2723121. hdl:2433/50108. PMID 17477593.
  21. ^ Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J. (2014). "Coupled-cluster computations of atomic nuclei". Reports on Progress in Physics. 77 (9): 096302. arXiv:1312.7872. Bibcode:2014RPPh...77i6302H. doi:10.1088/0034-4885/77/9/096302. PMID 25222372. S2CID 10626343.

External resources Edit

coupled, cluster, numerical, technique, used, describing, many, body, systems, most, common, several, post, hartree, fock, initio, quantum, chemistry, methods, field, computational, chemistry, also, used, nuclear, physics, essentially, takes, basic, hartree, f. Coupled cluster CC is a numerical technique used for describing many body systems Its most common use is as one of several post Hartree Fock ab initio quantum chemistry methods in the field of computational chemistry but it is also used in nuclear physics Coupled cluster essentially takes the basic Hartree Fock molecular orbital method and constructs multi electron wavefunctions using the exponential cluster operator to account for electron correlation Some of the most accurate calculations for small to medium sized molecules use this method 1 2 3 The method was initially developed by Fritz Coester and Hermann Kummel in the 1950s for studying nuclear physics phenomena but became more frequently used when in 1966 Jiri Cizek and later together with Josef Paldus reformulated the method for electron correlation in atoms and molecules It is now one of the most prevalent methods in quantum chemistry that includes electronic correlation CC theory is simply the perturbative variant of the many electron theory MET of Oktay Sinanoglu which is the exact and variational solution of the many electron problem so it was also called coupled pair MET CPMET J Cizek used the correlation function of MET and used Goldstone type perturbation theory to get the energy expression while original MET was completely variational Cizek first developed the linear CPMET and then generalized it to full CPMET in the same work in 1966 He then also performed an application of it on the benzene molecule with Sinanoglu in the same year Because MET is somewhat difficult to perform computationally CC is simpler and thus in today s computational chemistry CC is the best variant of MET and gives highly accurate results in comparison to experiments 4 5 6 Contents 1 Wavefunction ansatz 2 Cluster operator 3 Coupled cluster equations 4 Types of coupled cluster methods 5 General description of the theory 6 Historical accounts 7 Relation to other theories 7 1 Configuration interaction 7 2 Symmetry adapted cluster 8 Use in nuclear physics 9 See also 10 References 11 External resourcesWavefunction ansatz EditCoupled cluster theory provides the exact solution to the time independent Schrodinger equation H PS E PS displaystyle H Psi rangle E Psi rangle nbsp where H displaystyle H nbsp is the Hamiltonian of the system PS displaystyle Psi rangle nbsp is the exact wavefunction and E is the exact energy of the ground state Coupled cluster theory can also be used to obtain solutions for excited states using for example linear response 7 equation of motion 8 state universal multi reference 9 or valence universal multi reference coupled cluster 10 approaches The wavefunction of the coupled cluster theory is written as an exponential ansatz PS e T F 0 displaystyle Psi rangle e T Phi 0 rangle nbsp where F 0 displaystyle Phi 0 rangle nbsp is the reference wave function which is typically a Slater determinant constructed from Hartree Fock molecular orbitals though other wave functions such as configuration interaction multi configurational self consistent field or Brueckner orbitals can also be used T displaystyle T nbsp is the cluster operator which when acting on F 0 displaystyle Phi 0 rangle nbsp produces a linear combination of excited determinants from the reference wave function see section below for greater detail The choice of the exponential ansatz is opportune because unlike other ansatzes for example configuration interaction it guarantees the size extensivity of the solution Size consistency in CC theory also unlike other theories does not depend on the size consistency of the reference wave function This is easily seen for example in the single bond breaking of F2 when using a restricted Hartree Fock RHF reference which is not size consistent at the CCSDT coupled cluster single double triple level of theory which provides an almost exact full CI quality potential energy surface and does not dissociate the molecule into F and F ions like the RHF wave function but rather into two neutral F atoms 11 If one were to use for example the CCSD or CCSD T levels of theory they would not provide reasonable results for the bond breaking of F2 with the latter one approaches unphysical potential energy surfaces 12 though this is for reasons other than just size consistency A criticism of the method is that the conventional implementation employing the similarity transformed Hamiltonian see below is not variational though there are bi variational and quasi variational approaches that have been developed since the first implementations of the theory While the above ansatz for the wave function itself has no natural truncation however for other properties such as energy there is a natural truncation when examining expectation values which has its basis in the linked and connected cluster theorems and thus does not suffer from issues such as lack of size extensivity like the variational configuration interaction approach Cluster operator EditThe cluster operator is written in the form T T 1 T 2 T 3 displaystyle T T 1 T 2 T 3 cdots nbsp where T 1 displaystyle T 1 nbsp is the operator of all single excitations T 2 displaystyle T 2 nbsp is the operator of all double excitations and so forth In the formalism of second quantization these excitation operators are expressed as T 1 i a t a i a a a i displaystyle T 1 sum i sum a t a i hat a a hat a i nbsp T 2 1 4 i j a b t a b i j a a a b a j a i displaystyle T 2 frac 1 4 sum i j sum a b t ab ij hat a a hat a b hat a j hat a i nbsp and for the general n fold cluster operator T n 1 n 2 i 1 i 2 i n a 1 a 2 a n t a 1 a 2 a n i 1 i 2 i n a a 1 a a 2 a a n a i n a i 2 a i 1 displaystyle T n frac 1 n 2 sum i 1 i 2 ldots i n sum a 1 a 2 ldots a n t a 1 a 2 ldots a n i 1 i 2 ldots i n hat a a 1 hat a a 2 ldots hat a a n hat a i n ldots hat a i 2 hat a i 1 nbsp In the above formulae a a a a displaystyle hat a a hat a a dagger nbsp and a i displaystyle hat a i nbsp denote the creation and annihilation operators respectively while i j stand for occupied hole and a b for unoccupied particle orbitals states The creation and annihilation operators in the coupled cluster terms above are written in canonical form where each term is in the normal order form with respect to the Fermi vacuum F 0 displaystyle Phi 0 rangle nbsp Being the one particle cluster operator and the two particle cluster operator T 1 displaystyle T 1 nbsp and T 2 displaystyle T 2 nbsp convert the reference function F 0 displaystyle Phi 0 rangle nbsp into a linear combination of the singly and doubly excited Slater determinants respectively if applied without the exponential such as in CI where a linear excitation operator is applied to the wave function Applying the exponential cluster operator to the wave function one can then generate more than doubly excited determinants due to the various powers of T 1 displaystyle T 1 nbsp and T 2 displaystyle T 2 nbsp that appear in the resulting expressions see below Solving for the unknown coefficients t a i displaystyle t a i nbsp and t a b i j displaystyle t ab ij nbsp is necessary for finding the approximate solution PS displaystyle Psi rangle nbsp The exponential operator e T displaystyle e T nbsp may be expanded as a Taylor series and if we consider only the T 1 displaystyle T 1 nbsp and T 2 displaystyle T 2 nbsp cluster operators of T displaystyle T nbsp we can write e T 1 T 1 2 T 2 1 T 1 T 2 1 2 T 1 2 1 2 T 1 T 2 1 2 T 2 T 1 1 2 T 2 2 displaystyle e T 1 T frac 1 2 T 2 cdots 1 T 1 T 2 frac 1 2 T 1 2 frac 1 2 T 1 T 2 frac 1 2 T 2 T 1 frac 1 2 T 2 2 cdots nbsp Though in practice this series is finite because the number of occupied molecular orbitals is finite as is the number of excitations it is still very large to the extent that even modern day massively parallel computers are inadequate except for problems of a dozen or so electrons and very small basis sets when considering all contributions to the cluster operator and not just T 1 displaystyle T 1 nbsp and T 2 displaystyle T 2 nbsp Often as was done above the cluster operator includes only singles and doubles see CCSD below as this offers a computationally affordable method that performs better than MP2 and CISD but is not very accurate usually For accurate results some form of triples approximate or full are needed even near the equilibrium geometry in the Franck Condon region and especially when breaking single bonds or describing diradical species these latter examples are often what is referred to as multi reference problems since more than one determinant has a significant contribution to the resulting wave function For double bond breaking and more complicated problems in chemistry quadruple excitations often become important as well though usually they have small contributions for most problems and as such the contribution of T 5 displaystyle T 5 nbsp T 6 displaystyle T 6 nbsp etc to the operator T displaystyle T nbsp is typically small Furthermore if the highest excitation level in the T displaystyle T nbsp operator is n T T 1 T n displaystyle T T 1 T n nbsp then Slater determinants for an N electron system excited more than n displaystyle n nbsp lt N displaystyle lt N nbsp times may still contribute to the coupled cluster wave function PS displaystyle Psi rangle nbsp because of the non linear nature of the exponential ansatz and therefore coupled cluster terminated at T n displaystyle T n nbsp usually recovers more correlation energy than CI with maximum n excitations Coupled cluster equations EditThe Schrodinger equation can be written using the coupled cluster wave function as H PS 0 H e T F 0 E e T F 0 displaystyle H Psi 0 rangle He T Phi 0 rangle Ee T Phi 0 rangle nbsp where there are a total of q coefficients t amplitudes to solve for To obtain the q equations first we multiply the above Schrodinger equation on the left by e T displaystyle e T nbsp and then project onto the entire set of up to m tuply excited determinants where m is the highest order excitation included in T displaystyle T nbsp that can be constructed from the reference wave function F 0 displaystyle Phi 0 rangle nbsp denoted by F displaystyle Phi rangle nbsp Individually F i a displaystyle Phi i a rangle nbsp are singly excited determinants where the electron in orbital i has been excited to orbital a F i j a b displaystyle Phi ij ab rangle nbsp are doubly excited determinants where the electron in orbital i has been excited to orbital a and the electron in orbital j has been excited to orbital b etc In this way we generate a set of coupled energy independent non linear algebraic equations needed to determine the t amplitudes F 0 e T H e T F 0 E F 0 F 0 E displaystyle langle Phi 0 e T He T Phi 0 rangle E langle Phi 0 Phi 0 rangle E nbsp F e T H e T F 0 E F F 0 0 displaystyle langle Phi e T He T Phi 0 rangle E langle Phi Phi 0 rangle 0 nbsp the latter being the equations to be solved and the former the equation for the evaluation of the energy Note that we have made use of e T e T 1 displaystyle e T e T 1 nbsp the identity operator and also assume that orbitals are orthogonal though this does not necessarily have to be true e g valence bond orbitals can be used and in such cases the last set of equations are not necessarily equal to zero Considering the basic CCSD method F 0 e T 1 T 2 H e T 1 T 2 F 0 E displaystyle langle Phi 0 e T 1 T 2 He T 1 T 2 Phi 0 rangle E nbsp F i a e T 1 T 2 H e T 1 T 2 F 0 0 displaystyle langle Phi i a e T 1 T 2 He T 1 T 2 Phi 0 rangle 0 nbsp F i j a b e T 1 T 2 H e T 1 T 2 F 0 0 displaystyle langle Phi ij ab e T 1 T 2 He T 1 T 2 Phi 0 rangle 0 nbsp in which the similarity transformed Hamiltonian H displaystyle bar H nbsp can be explicitly written down using Hadamard s formula in Lie algebra also called Hadamard s lemma see also Baker Campbell Hausdorff formula BCH formula though note that they are different in that Hadamard s formula is a lemma of the BCH formula H e T H e T H H T 1 2 H T T H e T C displaystyle bar H e T He T H H T frac 1 2 big H T T big dots He T C nbsp The subscript C designates the connected part of the corresponding operator expression The resulting similarity transformed Hamiltonian is non Hermitian resulting in different left and right vectors wave functions for the same state of interest this is what is often referred to in coupled cluster theory as the biorthogonality of the solution or wave function though it also applies to other non Hermitian theories as well The resulting equations are a set of non linear equations which are solved in an iterative manner Standard quantum chemistry packages GAMESS US NWChem ACES II etc solve the coupled cluster equations using the Jacobi method and direct inversion of the iterative subspace DIIS extrapolation of the t amplitudes to accelerate convergence Types of coupled cluster methods EditThe classification of traditional coupled cluster methods rests on the highest number of excitations allowed in the definition of T displaystyle T nbsp The abbreviations for coupled cluster methods usually begin with the letters CC for coupled cluster followed by S for single excitations shortened to singles in coupled cluster terminology D for double excitations doubles T for triple excitations triples Q for quadruple excitations quadruples Thus the T displaystyle T nbsp operator in CCSDT has the form T T 1 T 2 T 3 displaystyle T T 1 T 2 T 3 nbsp Terms in round brackets indicate that these terms are calculated based on perturbation theory For example the CCSD T method means Coupled cluster with a full treatment singles and doubles An estimate to the connected triples contribution is calculated non iteratively using many body perturbation theory arguments General description of the theory EditThe complexity of equations and the corresponding computer codes as well as the cost of the computation increases sharply with the highest level of excitation For many applications CCSD while relatively inexpensive does not provide sufficient accuracy except for the smallest systems approximately 2 to 4 electrons and often an approximate treatment of triples is needed The most well known coupled cluster method that provides an estimate of connected triples is CCSD T which provides a good description of closed shell molecules near the equilibrium geometry but breaks down in more complicated situations such as bond breaking and diradicals Another popular method that makes up for the failings of the standard CCSD T approach is CR CC 2 3 where the triples contribution to the energy is computed from the difference between the exact solution and the CCSD energy and is not based on perturbation theory arguments More complicated coupled cluster methods such as CCSDT and CCSDTQ are used only for high accuracy calculations of small molecules The inclusion of all n levels of excitation for the n electron system gives the exact solution of the Schrodinger equation within the given basis set within the Born Oppenheimer approximation although schemes have also been drawn up to work without the BO approximation 13 14 One possible improvement to the standard coupled cluster approach is to add terms linear in the interelectronic distances through methods such as CCSD R12 This improves the treatment of dynamical electron correlation by satisfying the Kato cusp condition and accelerates convergence with respect to the orbital basis set Unfortunately R12 methods invoke the resolution of the identity which requires a relatively large basis set in order to be a good approximation The coupled cluster method described above is also known as the single reference SR coupled cluster method because the exponential ansatz involves only one reference function F 0 displaystyle Phi 0 rangle nbsp The standard generalizations of the SR CC method are the multi reference MR approaches state universal coupled cluster also known as Hilbert space coupled cluster valence universal coupled cluster or Fock space coupled cluster and state selective coupled cluster or state specific coupled cluster Historical accounts EditKummel comments 1 Considering the fact that the CC method was well understood around the late fifties it looks strange that nothing happened with it until 1966 as Jiri Cizek published his first paper on a quantum chemistry problem He had looked into the 1957 and 1960 papers published in Nuclear Physics by Fritz and myself I always found it quite remarkable that a quantum chemist would open an issue of a nuclear physics journal I myself at the time had almost given up the CC method as not tractable and of course I never looked into the quantum chemistry journals The result was that I learnt about Jiri s work as late as in the early seventies when he sent me a big parcel with reprints of the many papers he and Joe Paldus had written until then Josef Paldus also wrote his first hand account of the origins of coupled cluster theory its implementation and exploitation in electronic wave function determination his account is primarily about the making of coupled cluster theory rather than about the theory itself 15 Relation to other theories EditConfiguration interaction Edit The Cj excitation operators defining the CI expansion of an N electron system for the wave function PS 0 displaystyle Psi 0 rangle nbsp PS 0 1 C F 0 displaystyle Psi 0 rangle 1 C Phi 0 rangle nbsp C j 1 N C j displaystyle C sum j 1 N C j nbsp are related to the cluster operators T displaystyle T nbsp since in the limit of including up to T N displaystyle T N nbsp in the cluster operator the CC theory must be equal to full CI we obtain the following relationships 16 17 C 1 T 1 displaystyle C 1 T 1 nbsp C 2 T 2 1 2 T 1 2 displaystyle C 2 T 2 frac 1 2 T 1 2 nbsp C 3 T 3 T 1 T 2 1 6 T 1 3 displaystyle C 3 T 3 T 1 T 2 frac 1 6 T 1 3 nbsp C 4 T 4 1 2 T 2 2 T 1 T 3 1 2 T 1 2 T 2 1 24 T 1 4 displaystyle C 4 T 4 frac 1 2 T 2 2 T 1 T 3 frac 1 2 T 1 2 T 2 frac 1 24 T 1 4 nbsp etc For general relationships see J Paldus in Methods in Computational Molecular Physics Vol 293 of Nato Advanced Study Institute Series B Physics edited by S Wilson and G H F Diercksen Plenum New York 1992 pp 99 194 Symmetry adapted cluster Edit The symmetry adapted cluster SAC 18 19 approach determines the spin and symmetry adapted cluster operator S I S I displaystyle S sum I S I nbsp by solving the following system of energy dependent equations F H E 0 e S F 0 displaystyle langle Phi H E 0 e S Phi rangle 0 nbsp F i 1 i n a 1 a n H E 0 e S F 0 displaystyle langle Phi i 1 ldots i n a 1 ldots a n H E 0 e S Phi rangle 0 nbsp i 1 lt lt i n a 1 lt lt a n n 1 M s displaystyle i 1 lt cdots lt i n quad a 1 lt cdots lt a n quad n 1 dots M s nbsp where F i 1 i n a 1 a n displaystyle Phi i 1 ldots i n a 1 ldots a n rangle nbsp are the n tuply excited determinants relative to F displaystyle Phi rangle nbsp usually in practical implementations they are the spin and symmetry adapted configuration state functions and M s displaystyle M s nbsp is the highest order of excitation included in the SAC operator If all of the nonlinear terms in e S displaystyle e S nbsp are included then the SAC equations become equivalent to the standard coupled cluster equations of Jiri Cizek This is due to the cancellation of the energy dependent terms with the disconnected terms contributing to the product of H e S displaystyle He S nbsp resulting in the same set of nonlinear energy independent equations Typically all nonlinear terms except 1 2 S 2 2 displaystyle tfrac 1 2 S 2 2 nbsp are dropped as higher order nonlinear terms are usually small 20 Use in nuclear physics EditIn nuclear physics coupled cluster saw significantly less use than in quantum chemistry during the 1980s and 1990s More powerful computers as well as advances in theory such as the inclusion of three nucleon interactions have spawned renewed interest in the method since then and it has been successfully applied to neutron rich and medium mass nuclei Coupled cluster is one of several ab initio methods in nuclear physics and is specifically suitable for nuclei having closed or nearly closed shells 21 See also EditQuantum chemistry computer programsReferences Edit a b Kummel H G 2002 A biography of the coupled cluster method In Bishop R F Brandes T Gernoth K A Walet N R Xian Y eds Recent progress in many body theories Proceedings of the 11th international conference Singapore World Scientific Publishing pp 334 348 ISBN 978 981 02 4888 8 Cramer Christopher J 2002 Essentials of Computational Chemistry Chichester John Wiley amp Sons Ltd pp 191 232 ISBN 0 471 48552 7 Shavitt Isaiah Bartlett Rodney J 2009 Many Body Methods in Chemistry and Physics MBPT and Coupled Cluster Theory Cambridge University Press ISBN 978 0 521 81832 2 Cizek Jiri 1966 On the Correlation Problem in Atomic and Molecular Systems Calculation of Wavefunction Components in Ursell Type Expansion Using Quantum Field Theoretical Methods The Journal of Chemical Physics 45 11 4256 4266 Bibcode 1966JChPh 45 4256C doi 10 1063 1 1727484 Sinanoglu O Brueckner K 1971 Three approaches to electron correlation in atoms Yale Univ Press ISBN 0 300 01147 4 See also references therein Si nanoglu Oktay 1962 Many Electron Theory of Atoms and Molecules I Shells Electron Pairs vs Many Electron Correlations The Journal of Chemical Physics 36 3 706 717 Bibcode 1962JChPh 36 706S doi 10 1063 1 1732596 Monkhorst H J 1977 Calculation of properties with the coupled cluster method International Journal of Quantum Chemistry 12 S11 421 432 doi 10 1002 qua 560120850 Stanton John F Bartlett Rodney J 1993 The equation of motion coupled cluster method A systematic biorthogonal approach to molecular excitation energies transition probabilities and excited state properties The Journal of Chemical Physics 98 9 7029 Bibcode 1993JChPh 98 7029S doi 10 1063 1 464746 Jeziorski B Monkhorst H 1981 Coupled cluster method for multideterminantal reference states Physical Review A 24 4 1668 Bibcode 1981PhRvA 24 1668J doi 10 1103 PhysRevA 24 1668 Lindgren D Mukherjee Debashis 1987 On the connectivity criteria in the open shell coupled cluster theory for general model spaces Physics Reports 151 2 93 Bibcode 1987PhR 151 93L doi 10 1016 0370 1573 87 90073 1 Kowalski K Piecuch P 2001 A comparison of the renormalized and active space coupled cluster methods Potential energy curves of BH and F2 Chemical Physics Letters 344 1 2 165 175 Bibcode 2001CPL 344 165K doi 10 1016 s0009 2614 01 00730 8 Ghose K B Piecuch P Adamowicz L 1995 Improved computational strategy for the state selective coupled cluster theory with semi internal triexcited clusters Potential energy surface of the HF molecule Journal of Physical Chemistry 103 21 9331 Bibcode 1995JChPh 103 9331G doi 10 1063 1 469993 Monkhorst Hendrik J 1987 Chemical physics without the Born Oppenheimer approximation The molecular coupled cluster method Physical Review A 36 4 1544 1561 Bibcode 1987PhRvA 36 1544M doi 10 1103 PhysRevA 36 1544 PMID 9899035 Nakai Hiromi Sodeyama Keitaro 2003 Many body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions Ab initio NOMO MBPT and CC methods The Journal of Chemical Physics 118 3 1119 Bibcode 2003JChPh 118 1119N doi 10 1063 1 1528951 Paldus J 2005 The beginnings of coupled cluster theory an eyewitness account In Dykstra C ed Theory and Applications of Computational Chemistry The First Forty Years Elsivier B V p 115 Paldus J 1981 Diagrammatic Methods for Many Fermion Systems Lecture Notes ed University of Nijmegen Njimegen The Netherlands a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Bartlett R J Dykstra C E Paldus J 1984 Dykstra C E ed Advanced Theories and Computational Approaches to the Electronic Structure of Molecules p 127 Nakatsuji H Hirao K 1977 Cluster expansion of the wavefunction Pseudo orbital theory applied to spin correlation Chemical Physics Letters 47 3 569 Bibcode 1977CPL 47 569N doi 10 1016 0009 2614 77 85042 2 Nakatsuji H Hirao K 1978 Cluster expansion of the wavefunction Symmetry adapted cluster expansion its variational determination and extension of open shell orbital theory Journal of Chemical Physics 68 5 2053 Bibcode 1978JChPh 68 2053N doi 10 1063 1 436028 Ohtsuka Y Piecuch P Gour J R Ehara M Nakatsuji H 2007 Active space symmetry adapted cluster configuration interaction and equation of motion coupled cluster methods for high accuracy calculations of potential energy surfaces of radicals Journal of Chemical Physics 126 16 164111 Bibcode 2007JChPh 126p4111O doi 10 1063 1 2723121 hdl 2433 50108 PMID 17477593 Hagen G Papenbrock T Hjorth Jensen M Dean D J 2014 Coupled cluster computations of atomic nuclei Reports on Progress in Physics 77 9 096302 arXiv 1312 7872 Bibcode 2014RPPh 77i6302H doi 10 1088 0034 4885 77 9 096302 PMID 25222372 S2CID 10626343 External resources Edit Retrieved from https en wikipedia org w index php title Coupled cluster amp oldid 1152523031, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.