fbpx
Wikipedia

Church–Rosser theorem

In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result.

More precisely, if there are two distinct reductions or sequences of reductions that can be applied to the same term, then there exists a term that is reachable from both results, by applying (possibly empty) sequences of additional reductions.[1] The theorem was proved in 1936 by Alonzo Church and J. Barkley Rosser, after whom it is named.

The theorem is symbolized by the adjacent diagram: If term a can be reduced to both b and c, then there must be a further term d (possibly equal to either b or c) to which both b and c can be reduced. Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda calculus has at most one normal form, justifying reference to "the normal form" of a given normalizable term.

History edit

In 1936, Alonzo Church and J. Barkley Rosser proved that the theorem holds for β-reduction in the λI-calculus (in which every abstracted variable must appear in the term's body). The proof method is known as "finiteness of developments", and it has additional consequences such as the Standardization Theorem, which relates to a method in which reductions can be performed from left to right to reach a normal form (if one exists). The result for the pure untyped lambda calculus was proved by D. E. Schroer in 1965.[2]

Pure untyped lambda calculus edit

One type of reduction in the pure untyped lambda calculus for which the Church–Rosser theorem applies is β-reduction, in which a subterm of the form   is contracted by the substitution  . If β-reduction is denoted by   and its reflexive, transitive closure by   then the Church–Rosser theorem is that:[3]

 

A consequence of this property is that two terms equal in   must reduce to a common term:[4]

 

The theorem also applies to η-reduction, in which a subterm   is replaced by  . It also applies to βη-reduction, the union of the two reduction rules.

Proof edit

For β-reduction, one proof method originates from William W. Tait and Per Martin-Löf.[5] Say that a binary relation   satisfies the diamond property if:

 

Then the Church–Rosser property is the statement that   satisfies the diamond property. We introduce a new reduction   whose reflexive transitive closure is   and which satisfies the diamond property. By induction on the number of steps in the reduction, it thus follows that   satisfies the diamond property.

The relation   has the formation rules:

  •  
  • If   and   then   and   and  

The η-reduction rule can be proved to be Church–Rosser directly. Then, it can be proved that β-reduction and η-reduction commute in the sense that:[6]

If   and   then there exists a term   such that   and  .

Hence we can conclude that βη-reduction is Church–Rosser.[7]

Normalisation edit

A reduction rule that satisfies the Church–Rosser property has the property that every term M can have at most one distinct normal form, as follows: if X and Y are normal forms of M then by the Church–Rosser property, they both reduce to an equal term Z. Both terms are already normal forms so  .[4]

If a reduction is strongly normalising (there are no infinite reduction paths) then a weak form of the Church–Rosser property implies the full property (see Newman's lemma). The weak property, for a relation  , is:[8]

  if   and   then there exists a term   such that   and  .

Variants edit

The Church–Rosser theorem also holds for many variants of the lambda calculus, such as the simply-typed lambda calculus, many calculi with advanced type systems, and Gordon Plotkin's beta-value calculus. Plotkin also used a Church–Rosser theorem to prove that the evaluation of functional programs (for both lazy evaluation and eager evaluation) is a function from programs to values (a subset of the lambda terms).

In older research papers, a rewriting system is said to be Church–Rosser, or to have the Church–Rosser property, when it is confluent.

Notes edit

  1. ^ Alama (2017).
  2. ^ Barendregt (1984), p. 283.
  3. ^ Barendregt (1984), p. 53–54.
  4. ^ a b Barendregt (1984), p. 54.
  5. ^ Barendregt (1984), p. 59-62.
  6. ^ Barendregt (1984), p. 64–65.
  7. ^ Barendregt (1984), p. 66.
  8. ^ Barendregt (1984), p. 58.

References edit

  • Alama, Jesse (2017). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Fall 2017 ed.). Metaphysics Research Lab, Stanford University.
  • Church, Alonzo; Rosser, J. Barkley (May 1936), "Some properties of conversion" (PDF), Transactions of the American Mathematical Society, 39 (3): 472–482, doi:10.2307/1989762, JSTOR 1989762.
  • Barendregt, Hendrik Pieter (1984), , Studies in Logic and the Foundations of Mathematics, vol. 103 (Revised ed.), North Holland, Amsterdam, ISBN 0-444-87508-5, archived from the original on 2004-08-23. Errata.

church, rosser, theorem, lambda, calculus, states, that, when, applying, reduction, rules, terms, ordering, which, reductions, chosen, does, make, difference, eventual, result, more, precisely, there, distinct, reductions, sequences, reductions, that, applied,. In lambda calculus the Church Rosser theorem states that when applying reduction rules to terms the ordering in which the reductions are chosen does not make a difference to the eventual result More precisely if there are two distinct reductions or sequences of reductions that can be applied to the same term then there exists a term that is reachable from both results by applying possibly empty sequences of additional reductions 1 The theorem was proved in 1936 by Alonzo Church and J Barkley Rosser after whom it is named The theorem is symbolized by the adjacent diagram If term a can be reduced to both b and c then there must be a further term d possibly equal to either b or c to which both b and c can be reduced Viewing the lambda calculus as an abstract rewriting system the Church Rosser theorem states that the reduction rules of the lambda calculus are confluent As a consequence of the theorem a term in the lambda calculus has at most one normal form justifying reference to the normal form of a given normalizable term Contents 1 History 2 Pure untyped lambda calculus 2 1 Proof 3 Normalisation 4 Variants 5 Notes 6 ReferencesHistory editIn 1936 Alonzo Church and J Barkley Rosser proved that the theorem holds for b reduction in the lI calculus in which every abstracted variable must appear in the term s body The proof method is known as finiteness of developments and it has additional consequences such as the Standardization Theorem which relates to a method in which reductions can be performed from left to right to reach a normal form if one exists The result for the pure untyped lambda calculus was proved by D E Schroer in 1965 2 Pure untyped lambda calculus editOne type of reduction in the pure untyped lambda calculus for which the Church Rosser theorem applies is b reduction in which a subterm of the form l x t s displaystyle lambda x t s nbsp is contracted by the substitution t x s displaystyle t x s nbsp If b reduction is denoted by b displaystyle rightarrow beta nbsp and its reflexive transitive closure by b displaystyle twoheadrightarrow beta nbsp then the Church Rosser theorem is that 3 M N 1 N 2 L if M b N 1 and M b N 2 then X L N 1 b X and N 2 b X displaystyle forall M N 1 N 2 in Lambda text if M twoheadrightarrow beta N 1 text and M twoheadrightarrow beta N 2 text then exists X in Lambda N 1 twoheadrightarrow beta X text and N 2 twoheadrightarrow beta X nbsp A consequence of this property is that two terms equal in l b displaystyle lambda beta nbsp must reduce to a common term 4 M N L if l b M N then X M b X and N b X displaystyle forall M N in Lambda text if lambda beta vdash M N text then exists X M twoheadrightarrow beta X text and N twoheadrightarrow beta X nbsp The theorem also applies to h reduction in which a subterm l x S x displaystyle lambda x Sx nbsp is replaced by S displaystyle S nbsp It also applies to bh reduction the union of the two reduction rules Proof edit For b reduction one proof method originates from William W Tait and Per Martin Lof 5 Say that a binary relation displaystyle rightarrow nbsp satisfies the diamond property if M N 1 N 2 L if M N 1 and M N 2 then X L N 1 X and N 2 X displaystyle forall M N 1 N 2 in Lambda text if M rightarrow N 1 text and M rightarrow N 2 text then exists X in Lambda N 1 rightarrow X text and N 2 rightarrow X nbsp Then the Church Rosser property is the statement that b displaystyle twoheadrightarrow beta nbsp satisfies the diamond property We introduce a new reduction displaystyle rightarrow nbsp whose reflexive transitive closure is b displaystyle twoheadrightarrow beta nbsp and which satisfies the diamond property By induction on the number of steps in the reduction it thus follows that b displaystyle twoheadrightarrow beta nbsp satisfies the diamond property The relation displaystyle rightarrow nbsp has the formation rules M M displaystyle M rightarrow M nbsp If M M displaystyle M rightarrow M nbsp and N N displaystyle N rightarrow N nbsp then l x M l x M displaystyle lambda x M rightarrow lambda x M nbsp and M N M N displaystyle MN rightarrow M N nbsp and l x M N M x N displaystyle lambda x M N rightarrow M x N nbsp The h reduction rule can be proved to be Church Rosser directly Then it can be proved that b reduction and h reduction commute in the sense that 6 If M b N 1 displaystyle M rightarrow beta N 1 nbsp and M h N 2 displaystyle M rightarrow eta N 2 nbsp then there exists a term X displaystyle X nbsp such that N 1 h X displaystyle N 1 rightarrow eta X nbsp and N 2 b X displaystyle N 2 rightarrow beta X nbsp Hence we can conclude that bh reduction is Church Rosser 7 Normalisation editA reduction rule that satisfies the Church Rosser property has the property that every term M can have at most one distinct normal form as follows if X and Y are normal forms of M then by the Church Rosser property they both reduce to an equal term Z Both terms are already normal forms so X Z Y displaystyle X Z Y nbsp 4 If a reduction is strongly normalising there are no infinite reduction paths then a weak form of the Church Rosser property implies the full property see Newman s lemma The weak property for a relation displaystyle rightarrow nbsp is 8 M N 1 N 2 L displaystyle forall M N 1 N 2 in Lambda nbsp if M N 1 displaystyle M rightarrow N 1 nbsp and M N 2 displaystyle M rightarrow N 2 nbsp then there exists a term X displaystyle X nbsp such that N 1 X displaystyle N 1 twoheadrightarrow X nbsp and N 2 X displaystyle N 2 twoheadrightarrow X nbsp Variants editThe Church Rosser theorem also holds for many variants of the lambda calculus such as the simply typed lambda calculus many calculi with advanced type systems and Gordon Plotkin s beta value calculus Plotkin also used a Church Rosser theorem to prove that the evaluation of functional programs for both lazy evaluation and eager evaluation is a function from programs to values a subset of the lambda terms In older research papers a rewriting system is said to be Church Rosser or to have the Church Rosser property when it is confluent Notes edit Alama 2017 Barendregt 1984 p 283 Barendregt 1984 p 53 54 a b Barendregt 1984 p 54 Barendregt 1984 p 59 62 Barendregt 1984 p 64 65 Barendregt 1984 p 66 Barendregt 1984 p 58 References editAlama Jesse 2017 Zalta Edward N ed The Stanford Encyclopedia of Philosophy Fall 2017 ed Metaphysics Research Lab Stanford University Church Alonzo Rosser J Barkley May 1936 Some properties of conversion PDF Transactions of the American Mathematical Society 39 3 472 482 doi 10 2307 1989762 JSTOR 1989762 Barendregt Hendrik Pieter 1984 The Lambda Calculus Its Syntax and Semantics Studies in Logic and the Foundations of Mathematics vol 103 Revised ed North Holland Amsterdam ISBN 0 444 87508 5 archived from the original on 2004 08 23 Errata Retrieved from https en wikipedia org w index php title Church Rosser theorem amp oldid 1184298580, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.